Basic Math Operations in Python: Complete Guide

Master Python's mathematical operations from basic arithmetic to advanced functions. Learn operators, math module, and best practices.

Basic Math Operations in Python

Table of Contents

1. [Introduction](#introduction) 2. [Arithmetic Operators](#arithmetic-operators) 3. [Mathematical Functions](#mathematical-functions) 4. [Built-in Math Functions](#built-in-math-functions) 5. [The Math Module](#the-math-module) 6. [Order of Operations](#order-of-operations) 7. [Working with Different Number Types](#working-with-different-number-types) 8. [Advanced Mathematical Operations](#advanced-mathematical-operations) 9. [Practical Examples](#practical-examples) 10. [Best Practices and Common Pitfalls](#best-practices-and-common-pitfalls)

Introduction

Python provides comprehensive support for mathematical operations, from basic arithmetic to complex mathematical functions. Understanding these operations is fundamental for any Python programmer, whether you're working on simple calculations or complex scientific computations. Python's mathematical capabilities are built into the language itself, with additional functionality available through modules like math, decimal, and fractions.

Python treats numbers as first-class objects, meaning they can be assigned to variables, passed as arguments to functions, and returned from functions. The language supports several numeric types including integers, floating-point numbers, and complex numbers, each with their own characteristics and use cases.

Arithmetic Operators

Basic Arithmetic Operators

Python provides seven fundamental arithmetic operators that form the foundation of mathematical operations:

| Operator | Name | Description | Example | Result | |----------|------|-------------|---------|--------| | + | Addition | Adds two operands | 5 + 3 | 8 | | - | Subtraction | Subtracts right operand from left | 10 - 4 | 6 | | | Multiplication | Multiplies two operands | 6 7 | 42 | | / | Division | Divides left operand by right (float result) | 15 / 4 | 3.75 | | // | Floor Division | Divides and returns largest integer ≤ result | 15 // 4 | 3 | | % | Modulus | Returns remainder of division | 15 % 4 | 3 | | | Exponentiation | Raises left operand to power of right | 2 3 | 8 |

Detailed Operator Explanations

#### Addition Operator (+) The addition operator performs standard mathematical addition between two numbers. It can work with integers, floats, and even complex numbers.

`python

Integer addition

result1 = 10 + 5 print(result1) # Output: 15

Float addition

result2 = 3.14 + 2.86 print(result2) # Output: 6.0

Mixed type addition

result3 = 10 + 3.5 print(result3) # Output: 13.5

Complex number addition

result4 = (3 + 4j) + (1 + 2j) print(result4) # Output: (4+6j) `

#### Subtraction Operator (-) The subtraction operator subtracts the right operand from the left operand. It can also be used as a unary operator to negate a number.

`python

Basic subtraction

result1 = 20 - 8 print(result1) # Output: 12

Unary minus (negation)

positive_num = 15 negative_num = -positive_num print(negative_num) # Output: -15

Subtraction with floats

result2 = 10.5 - 3.2 print(result2) # Output: 7.3 `

#### Multiplication Operator (*) The multiplication operator multiplies two operands together.

`python

Integer multiplication

result1 = 6 * 8 print(result1) # Output: 48

Float multiplication

result2 = 2.5 * 4.0 print(result2) # Output: 10.0

String repetition (special case)

repeated_string = "Hello " * 3 print(repeated_string) # Output: Hello Hello Hello `

#### Division Operator (/) The division operator always returns a float result, even when dividing two integers.

`python

Integer division (returns float)

result1 = 10 / 2 print(result1) # Output: 5.0 print(type(result1)) # Output:

Float division

result2 = 15.6 / 3.0 print(result2) # Output: 5.2

Division by zero raises ZeroDivisionError

try: result3 = 10 / 0 except ZeroDivisionError: print("Cannot divide by zero") `

#### Floor Division Operator (//) Floor division returns the largest integer less than or equal to the division result.

`python

Positive numbers

result1 = 17 // 5 print(result1) # Output: 3

With floats

result2 = 17.0 // 5.0 print(result2) # Output: 3.0

Negative numbers (important behavior)

result3 = -17 // 5 print(result3) # Output: -4 (not -3)

result4 = 17 // -5 print(result4) # Output: -4 `

#### Modulus Operator (%) The modulus operator returns the remainder after division.

`python

Basic modulus

result1 = 17 % 5 print(result1) # Output: 2

Even/odd checking

number = 15 if number % 2 == 0: print("Even") else: print("Odd") # This will be printed

Cycling through values

for i in range(10): day_of_week = i % 7 print(f"Day {i}: {day_of_week}") `

#### Exponentiation Operator () The exponentiation operator raises the left operand to the power of the right operand.

`python

Basic exponentiation

result1 = 2 3 print(result1) # Output: 8

Square root (using fractional exponent)

result2 = 16 0.5 print(result2) # Output: 4.0

Large numbers

result3 = 10 100 print(len(str(result3))) # Python handles arbitrarily large integers

Negative exponents

result4 = 2 -3 print(result4) # Output: 0.125 `

Mathematical Functions

Built-in Math Functions

Python provides several built-in mathematical functions that don't require importing any modules:

| Function | Description | Example | Result | |----------|-------------|---------|--------| | abs(x) | Absolute value | abs(-5) | 5 | | round(x, n) | Round to n decimal places | round(3.14159, 2) | 3.14 | | min(x, y, ...) | Minimum value | min(3, 7, 1, 9) | 1 | | max(x, y, ...) | Maximum value | max(3, 7, 1, 9) | 9 | | sum(iterable) | Sum of all elements | sum([1, 2, 3, 4]) | 10 | | pow(x, y) | x raised to power y | pow(2, 3) | 8 | | divmod(x, y) | Quotient and remainder | divmod(17, 5) | (3, 2) |

Detailed Function Explanations

#### Absolute Value Function The abs() function returns the absolute value of a number, which is its distance from zero.

`python

Integer absolute value

result1 = abs(-10) print(result1) # Output: 10

result2 = abs(10) print(result2) # Output: 10

Float absolute value

result3 = abs(-3.14) print(result3) # Output: 3.14

Complex number absolute value (magnitude)

result4 = abs(3 + 4j) print(result4) # Output: 5.0 (sqrt(3^2 + 4^2)) `

#### Rounding Function The round() function rounds a number to a specified number of decimal places.

`python

Default rounding (to nearest integer)

result1 = round(3.7) print(result1) # Output: 4

result2 = round(3.2) print(result2) # Output: 3

Rounding to specific decimal places

result3 = round(3.14159, 2) print(result3) # Output: 3.14

result4 = round(3.14159, 4) print(result4) # Output: 3.1416

Rounding to tens, hundreds, etc.

result5 = round(1234.5678, -1) print(result5) # Output: 1230.0

result6 = round(1234.5678, -2) print(result6) # Output: 1200.0 `

#### Min and Max Functions These functions find the minimum and maximum values from a collection of numbers.

`python

Multiple arguments

min_val = min(5, 2, 8, 1, 9) print(min_val) # Output: 1

max_val = max(5, 2, 8, 1, 9) print(max_val) # Output: 9

With iterables

numbers = [3.5, 2.1, 4.8, 1.2, 6.9] min_val2 = min(numbers) max_val2 = max(numbers) print(f"Min: {min_val2}, Max: {max_val2}") # Output: Min: 1.2, Max: 6.9

With strings (lexicographic order)

min_str = min("hello", "world", "python") print(min_str) # Output: hello `

The Math Module

The math module provides access to mathematical functions and constants beyond the built-in functions. To use it, you must import it first.

`python import math `

Mathematical Constants

| Constant | Description | Value | |----------|-------------|-------| | math.pi | Pi (π) | 3.141592653589793 | | math.e | Euler's number (e) | 2.718281828459045 | | math.tau | Tau (2π) | 6.283185307179586 | | math.inf | Positive infinity | inf | | math.nan | Not a Number | nan |

Trigonometric Functions

| Function | Description | Example | |----------|-------------|---------| | math.sin(x) | Sine of x (in radians) | math.sin(math.pi/2)1.0 | | math.cos(x) | Cosine of x (in radians) | math.cos(0)1.0 | | math.tan(x) | Tangent of x (in radians) | math.tan(math.pi/4)1.0 | | math.asin(x) | Arc sine of x | math.asin(1)1.5707963267948966 | | math.acos(x) | Arc cosine of x | math.acos(1)0.0 | | math.atan(x) | Arc tangent of x | math.atan(1)0.7853981633974483 |

`python import math

Converting degrees to radians

degrees = 45 radians = math.radians(degrees) print(f"{degrees} degrees = {radians} radians")

Trigonometric calculations

sin_45 = math.sin(radians) cos_45 = math.cos(radians) tan_45 = math.tan(radians)

print(f"sin(45°) = {sin_45:.4f}") print(f"cos(45°) = {cos_45:.4f}") print(f"tan(45°) = {tan_45:.4f}")

Converting radians back to degrees

degrees_back = math.degrees(radians) print(f"{radians} radians = {degrees_back} degrees") `

Logarithmic and Exponential Functions

| Function | Description | Example | |----------|-------------|---------| | math.log(x) | Natural logarithm | math.log(math.e)1.0 | | math.log10(x) | Base-10 logarithm | math.log10(100)2.0 | | math.log2(x) | Base-2 logarithm | math.log2(8)3.0 | | math.exp(x) | e raised to power x | math.exp(1)2.718281828459045 | | math.pow(x, y) | x raised to power y | math.pow(2, 3)8.0 |

`python import math

Natural logarithm

result1 = math.log(10) print(f"ln(10) = {result1:.4f}")

Logarithm with custom base

def log_base(x, base): return math.log(x) / math.log(base)

result2 = log_base(8, 2) print(f"log₂(8) = {result2}")

Exponential function

result3 = math.exp(2) print(f"e² = {result3:.4f}")

Power function

result4 = math.pow(2.5, 3.2) print(f"2.5^3.2 = {result4:.4f}") `

Other Useful Math Functions

| Function | Description | Example | |----------|-------------|---------| | math.sqrt(x) | Square root | math.sqrt(16)4.0 | | math.ceil(x) | Ceiling (round up) | math.ceil(3.2)4 | | math.floor(x) | Floor (round down) | math.floor(3.8)3 | | math.factorial(x) | Factorial | math.factorial(5)120 | | math.gcd(a, b) | Greatest common divisor | math.gcd(12, 18)6 | | math.fabs(x) | Absolute value (float) | math.fabs(-3.5)3.5 |

`python import math

Square root

result1 = math.sqrt(25) print(f"√25 = {result1}")

Ceiling and floor

number = 3.7 ceil_result = math.ceil(number) floor_result = math.floor(number) print(f"ceil({number}) = {ceil_result}") print(f"floor({number}) = {floor_result}")

Factorial

factorial_5 = math.factorial(5) print(f"5! = {factorial_5}")

Greatest common divisor

gcd_result = math.gcd(48, 18) print(f"gcd(48, 18) = {gcd_result}")

Least common multiple (using gcd)

def lcm(a, b): return abs(a * b) // math.gcd(a, b)

lcm_result = lcm(12, 18) print(f"lcm(12, 18) = {lcm_result}") `

Order of Operations

Python follows the standard mathematical order of operations, often remembered by the acronym PEMDAS:

1. Parentheses - () 2. Exponents - 3. Multiplication and Division - *, /, //, % (left to right) 4. Addition and Subtraction - +, - (left to right)

Order of Operations Examples

`python

Without parentheses

result1 = 2 + 3 * 4 print(result1) # Output: 14 (not 20)

With parentheses

result2 = (2 + 3) * 4 print(result2) # Output: 20

Complex expression

result3 = 2 3 * 4 + 5 print(result3) # Output: 37 (8 * 4 + 5)

Step by step breakdown

expression = 2 + 3 4 * 2 - 1

Step 1: 4 2 = 16

Step 2: 3 * 16 = 48

Step 3: 2 + 48 = 50

Step 4: 50 - 1 = 49

print(expression) # Output: 49

Using parentheses to change order

result4 = ((2 + 3) 4) * 2 - 1 print(result4) # Output: 399 `

Working with Different Number Types

Integer Operations

Python 3 integers have unlimited precision, meaning they can be arbitrarily large.

`python

Large integer calculations

large_num1 = 123456789012345678901234567890 large_num2 = 987654321098765432109876543210 large_sum = large_num1 + large_num2 print(f"Large sum: {large_sum}")

Integer division behavior

print(f"10 / 3 = {10 / 3}") # Output: 3.3333333333333335 print(f"10 // 3 = {10 // 3}") # Output: 3 print(f"10 % 3 = {10 % 3}") # Output: 1

Binary, octal, and hexadecimal

binary_num = 0b1010 # Binary representation of 10 octal_num = 0o12 # Octal representation of 10 hex_num = 0xa # Hexadecimal representation of 10 print(f"Binary 1010 = {binary_num}") print(f"Octal 12 = {octal_num}") print(f"Hex a = {hex_num}") `

Floating-Point Operations

Floating-point numbers in Python are implemented using the IEEE 754 double precision format.

`python

Floating-point precision

result1 = 0.1 + 0.2 print(f"0.1 + 0.2 = {result1}") # Output: 0.30000000000000004

Comparing floats (problematic)

if result1 == 0.3: print("Equal") else: print("Not equal") # This will be printed

Better way to compare floats

import math if math.isclose(result1, 0.3): print("Close enough") # This will be printed

Scientific notation

scientific_num = 1.23e-4 print(f"Scientific notation: {scientific_num}") # Output: 0.000123

Float special values

positive_inf = float('inf') negative_inf = float('-inf') not_a_number = float('nan')

print(f"Positive infinity: {positive_inf}") print(f"Negative infinity: {negative_inf}") print(f"Not a number: {not_a_number}")

Checking for special values

print(f"Is inf finite? {math.isfinite(positive_inf)}") print(f"Is nan a number? {math.isnan(not_a_number)}") `

Complex Number Operations

Python has built-in support for complex numbers using the j suffix for the imaginary part.

`python

Creating complex numbers

complex1 = 3 + 4j complex2 = 1 - 2j complex3 = complex(2, 5) # Alternative creation method

print(f"Complex1: {complex1}") print(f"Complex2: {complex2}") print(f"Complex3: {complex3}")

Complex number operations

addition = complex1 + complex2 multiplication = complex1 * complex2 division = complex1 / complex2

print(f"Addition: {addition}") print(f"Multiplication: {multiplication}") print(f"Division: {division}")

Accessing real and imaginary parts

print(f"Real part of complex1: {complex1.real}") print(f"Imaginary part of complex1: {complex1.imag}")

Complex conjugate

conjugate = complex1.conjugate() print(f"Conjugate of {complex1}: {conjugate}")

Magnitude (absolute value)

magnitude = abs(complex1) print(f"Magnitude of {complex1}: {magnitude}") `

Advanced Mathematical Operations

Statistical Operations

`python import math import statistics

Dataset for examples

data = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Mean (average)

mean_value = statistics.mean(data) print(f"Mean: {mean_value}")

Median

median_value = statistics.median(data) print(f"Median: {median_value}")

Mode (most common value)

mode_data = [1, 2, 2, 3, 4, 4, 4, 5] mode_value = statistics.mode(mode_data) print(f"Mode: {mode_value}")

Standard deviation

stdev_value = statistics.stdev(data) print(f"Standard deviation: {stdev_value:.4f}")

Variance

variance_value = statistics.variance(data) print(f"Variance: {variance_value:.4f}") `

Number Base Conversions

`python

Converting between number bases

decimal_num = 255

Convert to binary, octal, and hexadecimal

binary_str = bin(decimal_num) octal_str = oct(decimal_num) hex_str = hex(decimal_num)

print(f"Decimal {decimal_num}:") print(f"Binary: {binary_str}") print(f"Octal: {octal_str}") print(f"Hexadecimal: {hex_str}")

Convert back to decimal

binary_to_decimal = int('11111111', 2) octal_to_decimal = int('377', 8) hex_to_decimal = int('ff', 16)

print(f"\nConverting back to decimal:") print(f"Binary 11111111 = {binary_to_decimal}") print(f"Octal 377 = {octal_to_decimal}") print(f"Hex ff = {hex_to_decimal}")

Custom base conversion

def convert_base(number, from_base, to_base): # Convert to decimal first decimal = int(str(number), from_base) # Convert from decimal to target base if to_base == 10: return decimal digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" result = "" while decimal > 0: result = digits[decimal % to_base] + result decimal //= to_base return result if result else "0"

Example: Convert binary 1010 to base 5

result = convert_base(1010, 2, 5) print(f"Binary 1010 in base 5: {result}") `

Practical Examples

Financial Calculations

`python import math

def compound_interest(principal, rate, time, n=1): """ Calculate compound interest principal: initial amount rate: annual interest rate (as decimal) time: time in years n: number of times interest is compounded per year """ amount = principal (1 + rate/n) (n time) return amount

def simple_interest(principal, rate, time): """Calculate simple interest""" return principal (1 + rate time)

def loan_payment(principal, rate, periods): """Calculate monthly loan payment""" if rate == 0: return principal / periods monthly_rate = rate / 12 payment = principal (monthly_rate (1 + monthly_rate) periods) / \ ((1 + monthly_rate) periods - 1) return payment

Examples

principal = 10000 annual_rate = 0.05 years = 5

compound_amount = compound_interest(principal, annual_rate, years, 12) simple_amount = simple_interest(principal, annual_rate, years)

print(f"Principal: ${principal:,.2f}") print(f"Compound interest (monthly): ${compound_amount:,.2f}") print(f"Simple interest: ${simple_amount:,.2f}") print(f"Difference: ${compound_amount - simple_amount:,.2f}")

Loan payment calculation

loan_amount = 200000 annual_rate = 0.04 years = 30 monthly_payment = loan_payment(loan_amount, annual_rate, years * 12) print(f"\nLoan payment for ${loan_amount:,.2f} at {annual_rate*100}% for {years} years:") print(f"Monthly payment: ${monthly_payment:,.2f}") `

Geometric Calculations

`python import math

def circle_area(radius): """Calculate area of a circle""" return math.pi radius * 2

def circle_circumference(radius): """Calculate circumference of a circle""" return 2 math.pi radius

def triangle_area(base, height): """Calculate area of a triangle""" return 0.5 base height

def triangle_area_heron(a, b, c): """Calculate triangle area using Heron's formula""" s = (a + b + c) / 2 # semi-perimeter return math.sqrt(s (s - a) (s - b) * (s - c))

def distance_2d(x1, y1, x2, y2): """Calculate distance between two points in 2D""" return math.sqrt((x2 - x1) 2 + (y2 - y1) 2)

def sphere_volume(radius): """Calculate volume of a sphere""" return (4/3) math.pi radius 3

def cylinder_volume(radius, height): """Calculate volume of a cylinder""" return math.pi radius 2 height

Examples

radius = 5 print(f"Circle with radius {radius}:") print(f"Area: {circle_area(radius):.2f}") print(f"Circumference: {circle_circumference(radius):.2f}")

Triangle with sides 3, 4, 5

sides = (3, 4, 5) area_heron = triangle_area_heron(*sides) print(f"\nTriangle with sides {sides}:") print(f"Area (Heron's formula): {area_heron:.2f}")

Distance between points

point1 = (0, 0) point2 = (3, 4) distance = distance_2d(point1, point2) print(f"\nDistance between {point1} and {point2}: {distance:.2f}")

3D shapes

sphere_vol = sphere_volume(radius) cylinder_vol = cylinder_volume(radius, 10) print(f"\nSphere volume (r={radius}): {sphere_vol:.2f}") print(f"Cylinder volume (r={radius}, h=10): {cylinder_vol:.2f}") `

Number Theory Operations

`python import math

def is_prime(n): """Check if a number is prime""" if n < 2: return False if n == 2: return True if n % 2 == 0: return False for i in range(3, int(math.sqrt(n)) + 1, 2): if n % i == 0: return False return True

def prime_factors(n): """Find prime factors of a number""" factors = [] d = 2 while d * d <= n: while n % d == 0: factors.append(d) n //= d d += 1 if n > 1: factors.append(n) return factors

def fibonacci(n): """Generate first n Fibonacci numbers""" if n <= 0: return [] elif n == 1: return [0] elif n == 2: return [0, 1] fib = [0, 1] for i in range(2, n): fib.append(fib[i-1] + fib[i-2]) return fib

def gcd_extended(a, b): """Extended Euclidean algorithm""" if a == 0: return b, 0, 1 gcd, x1, y1 = gcd_extended(b % a, a) x = y1 - (b // a) * x1 y = x1 return gcd, x, y

Examples

test_numbers = [17, 25, 29, 100] for num in test_numbers: print(f"{num} is prime: {is_prime(num)}")

print(f"\nPrime factors of 60: {prime_factors(60)}") print(f"Prime factors of 100: {prime_factors(100)}")

print(f"\nFirst 10 Fibonacci numbers: {fibonacci(10)}")

Extended GCD

a, b = 35, 15 gcd_val, x, y = gcd_extended(a, b) print(f"\nExtended GCD of {a} and {b}:") print(f"GCD: {gcd_val}") print(f"Coefficients: x={x}, y={y}") print(f"Verification: {a}{x} + {b}{y} = {ax + by}") `

Best Practices and Common Pitfalls

Floating-Point Precision Issues

`python import math from decimal import Decimal, getcontext

Problem: Floating-point precision

result = 0.1 + 0.2 print(f"0.1 + 0.2 = {result}") print(f"Is it equal to 0.3? {result == 0.3}")

Solution 1: Using math.isclose()

print(f"Using math.isclose(): {math.isclose(result, 0.3)}")

Solution 2: Using decimal module for exact arithmetic

getcontext().prec = 50 # Set precision decimal_result = Decimal('0.1') + Decimal('0.2') print(f"Using Decimal: {decimal_result}") print(f"Is it equal to 0.3? {decimal_result == Decimal('0.3')}")

Solution 3: Rounding for display

print(f"Rounded result: {round(result, 1)}") `

Division by Zero Handling

`python def safe_division(dividend, divisor): """Safely perform division with error handling""" try: result = dividend / divisor return result except ZeroDivisionError: print(f"Error: Cannot divide {dividend} by zero") return None

def safe_modulus(dividend, divisor): """Safely perform modulus operation""" try: result = dividend % divisor return result except ZeroDivisionError: print(f"Error: Cannot find remainder of {dividend} divided by zero") return None

Examples

print(safe_division(10, 2)) # Output: 5.0 print(safe_division(10, 0)) # Output: Error message and None print(safe_modulus(10, 3)) # Output: 1 print(safe_modulus(10, 0)) # Output: Error message and None `

Performance Considerations

`python import time import math

def timing_comparison(): """Compare performance of different mathematical operations""" n = 1000000 # Test 1: vs math.pow vs pow start_time = time.time() for i in range(n): result = 2 3 time_operator = time.time() - start_time start_time = time.time() for i in range(n): result = math.pow(2, 3) time_math_pow = time.time() - start_time start_time = time.time() for i in range(n): result = pow(2, 3) time_builtin_pow = time.time() - start_time print("Power operation performance:") print(f" operator: {time_operator:.4f} seconds") print(f"math.pow(): {time_math_pow:.4f} seconds") print(f"pow() builtin: {time_builtin_pow:.4f} seconds") # Test 2: Square root comparison start_time = time.time() for i in range(n): result = math.sqrt(16) time_sqrt = time.time() - start_time start_time = time.time() for i in range(n): result = 16 0.5 time_power = time.time() - start_time print("\nSquare root performance:") print(f"math.sqrt(): {time_sqrt:.4f} seconds") print(f" 0.5: {time_power:.4f} seconds")

Run timing comparison

timing_comparison() `

Input Validation for Mathematical Functions

`python import math

def validated_sqrt(x): """Square root with input validation""" if not isinstance(x, (int, float)): raise TypeError("Input must be a number") if x < 0: raise ValueError("Cannot compute square root of negative number") return math.sqrt(x)

def validated_log(x, base=math.e): """Logarithm with input validation""" if not isinstance(x, (int, float)) or not isinstance(base, (int, float)): raise TypeError("Inputs must be numbers") if x <= 0: raise ValueError("Logarithm input must be positive") if base <= 0 or base == 1: raise ValueError("Logarithm base must be positive and not equal to 1") if base == math.e: return math.log(x) else: return math.log(x) / math.log(base)

def validated_factorial(n): """Factorial with input validation""" if not isinstance(n, int): raise TypeError("Factorial input must be an integer") if n < 0: raise ValueError("Factorial is not defined for negative numbers") return math.factorial(n)

Examples with error handling

test_cases = [ (validated_sqrt, [16, -4, "invalid"]), (validated_log, [10, 0, -5]), (validated_factorial, [5, -3, 3.14]) ]

for func, test_values in test_cases: print(f"\nTesting {func.__name__}:") for value in test_values: try: result = func(value) print(f" {func.__name__}({value}) = {result}") except (TypeError, ValueError) as e: print(f" {func.__name__}({value}) -> Error: {e}") `

This comprehensive guide covers the fundamental mathematical operations in Python, from basic arithmetic to advanced mathematical functions. Understanding these concepts and their proper implementation is crucial for any Python programmer working with numerical data or mathematical computations. The examples and best practices provided should help you avoid common pitfalls and write more robust mathematical code.

Tags

  • Programming Basics
  • Python
  • math module
  • mathematics
  • operators

Related Articles

Related Books - Expand Your Knowledge

Explore these Python books to deepen your understanding:

Browse all IT books

Popular Technical Articles & Tutorials

Explore our comprehensive collection of technical articles, programming tutorials, and IT guides written by industry experts:

Browse all 8+ technical articles | Read our IT blog

Basic Math Operations in Python: Complete Guide