Writing Your First Python Script: Complete Beginner Guide

Master Python scripting from setup to advanced examples. Learn syntax, functions, file operations, debugging, and best practices in this comprehensive guide.

Writing Your First Python Script: A Comprehensive Guide

Table of Contents

1. [Introduction to Python Scripting](#introduction-to-python-scripting) 2. [Setting Up Your Development Environment](#setting-up-your-development-environment) 3. [Understanding Python Syntax Basics](#understanding-python-syntax-basics) 4. [Creating Your First Script](#creating-your-first-script) 5. [Variables and Data Types](#variables-and-data-types) 6. [Control Structures](#control-structures) 7. [Functions in Python](#functions-in-python) 8. [File Operations](#file-operations) 9. [Error Handling](#error-handling) 10. [Best Practices and Code Organization](#best-practices-and-code-organization) 11. [Advanced Script Examples](#advanced-script-examples) 12. [Debugging and Testing](#debugging-and-testing) 13. [Command Line Arguments](#command-line-arguments) 14. [Common Python Libraries for Scripting](#common-python-libraries-for-scripting)

Introduction to Python Scripting

Python scripting refers to writing Python code in files that can be executed to perform specific tasks. Unlike interactive Python sessions, scripts are saved in files with the .py extension and can be run repeatedly. Python scripts are particularly useful for automation, data processing, system administration, and rapid prototyping.

Why Choose Python for Scripting?

| Advantage | Description | |-----------|-------------| | Readable Syntax | Python's syntax closely resembles natural language, making it easy to read and write | | Cross-platform | Python scripts run on Windows, macOS, and Linux with minimal modifications | | Extensive Libraries | Vast ecosystem of third-party packages for various tasks | | Interpreted Language | No compilation step required; scripts run directly | | Strong Community | Large community support and extensive documentation | | Versatility | Suitable for web development, data science, automation, and more |

Setting Up Your Development Environment

Installing Python

Before writing your first script, ensure Python is installed on your system.

#### Windows Installation `bash

Download from python.org and run the installer

Or use Windows Package Manager

winget install Python.Python.3.11 `

#### macOS Installation `bash

Using Homebrew

brew install python3

Or download from python.org

`

#### Linux Installation `bash

Ubuntu/Debian

sudo apt update sudo apt install python3 python3-pip

CentOS/RHEL

sudo yum install python3 python3-pip

Arch Linux

sudo pacman -S python python-pip `

Verifying Installation

`bash

Check Python version

python --version

or

python3 --version

Check pip version

pip --version

or

pip3 --version `

Choosing a Text Editor or IDE

| Editor/IDE | Pros | Cons | Best For | |------------|------|------|----------| | VS Code | Free, extensive extensions, integrated terminal | Can be resource-heavy | General development | | PyCharm | Professional IDE, excellent debugging | Paid version for full features | Professional development | | Sublime Text | Fast, lightweight, customizable | Not free for commercial use | Quick scripting | | Vim/Neovim | Highly customizable, available everywhere | Steep learning curve | System administrators | | IDLE | Comes with Python, simple interface | Limited features | Beginners | | Jupyter Notebook | Interactive, great for data science | Not ideal for traditional scripts | Data analysis |

Understanding Python Syntax Basics

Python Syntax Rules

Python syntax is designed to be intuitive and readable. Here are the fundamental rules:

#### Indentation Python uses indentation to define code blocks instead of curly braces or keywords.

`python

Correct indentation

if True: print("This is indented correctly") if True: print("This is nested indentation")

Incorrect indentation (will cause IndentationError)

if True: print("This will cause an error") `

#### Comments Comments are essential for code documentation and readability.

`python

This is a single-line comment

""" This is a multi-line comment or docstring. It can span multiple lines. """

def example_function(): """ This is a docstring that describes what the function does. """ pass # This is also a comment indicating placeholder code `

#### Line Continuation Long lines can be continued using backslashes or implicit continuation within parentheses.

`python

Using backslash

total = item_one + \ item_two + \ item_three

Using parentheses (preferred)

total = (item_one + item_two + item_three) `

Creating Your First Script

Hello World Script

Let's create your first Python script. Create a file named hello_world.py:

`python #!/usr/bin/env python3 """ My First Python Script This script prints a greeting message. """

def main(): """Main function that executes the script logic.""" print("Hello, World!") print("Welcome to Python scripting!") # Get user input name = input("What's your name? ") print(f"Nice to meet you, {name}!")

if __name__ == "__main__": main() `

Running Your Script

`bash

Method 1: Using python command

python hello_world.py

Method 2: Using python3 (on systems with both Python 2 and 3)

python3 hello_world.py

Method 3: Making script executable (Unix-like systems)

chmod +x hello_world.py ./hello_world.py `

Script Structure Explanation

| Component | Purpose | Example | |-----------|---------|---------| | Shebang Line | Tells system which interpreter to use | #!/usr/bin/env python3 | | Module Docstring | Describes what the script does | """This script does...""" | | Imports | Import required modules | import os, sys | | Functions | Reusable code blocks | def my_function(): | | Main Guard | Ensures code runs only when script is executed directly | if __name__ == "__main__": |

Variables and Data Types

Variable Declaration and Assignment

Python variables don't need explicit declaration. They're created when first assigned.

`python

Variable assignment examples

name = "Alice" # String age = 30 # Integer height = 5.6 # Float is_student = True # Boolean grades = [85, 90, 78, 92] # List person = {"name": "Bob", "age": 25} # Dictionary `

Data Types Overview

| Data Type | Description | Example | Common Methods | |-----------|-------------|---------|----------------| | int | Whole numbers | 42, -17, 0 | abs(), pow(), divmod() | | float | Decimal numbers | 3.14, -2.5, 1.0 | round(), int(), is_integer() | | str | Text strings | "Hello", 'World' | upper(), lower(), split(), join() | | bool | True/False values | True, False | and, or, not operators | | list | Ordered, mutable collection | [1, 2, 3] | append(), remove(), sort() | | dict | Key-value pairs | {"key": "value"} | keys(), values(), items() | | tuple | Ordered, immutable collection | (1, 2, 3) | count(), index() | | set | Unordered, unique elements | {1, 2, 3} | add(), remove(), union() |

Type Checking and Conversion

`python

Type checking

print(type(42)) # print(isinstance(42, int)) # True

Type conversion

number_str = "123" number_int = int(number_str) # Convert string to integer number_float = float(number_str) # Convert string to float back_to_str = str(number_int) # Convert integer back to string

Safe conversion with error handling

def safe_int_convert(value): """Safely convert value to integer.""" try: return int(value) except ValueError: print(f"Cannot convert '{value}' to integer") return None `

Control Structures

Conditional Statements

`python

Basic if-elif-else structure

def grade_classifier(score): """Classify grade based on score.""" if score >= 90: grade = "A" elif score >= 80: grade = "B" elif score >= 70: grade = "C" elif score >= 60: grade = "D" else: grade = "F" return grade

Ternary operator (conditional expression)

status = "Pass" if score >= 60 else "Fail"

Multiple conditions

if score >= 60 and attendance >= 75: print("Eligible for certificate") elif score >= 90 or extra_credit: print("Exceptional performance") `

Loops

#### For Loops

`python

Iterating over a list

fruits = ["apple", "banana", "cherry"] for fruit in fruits: print(f"I like {fruit}")

Using range()

for i in range(5): # 0 to 4 print(f"Number: {i}")

for i in range(1, 6): # 1 to 5 print(f"Number: {i}")

for i in range(0, 10, 2): # 0, 2, 4, 6, 8 print(f"Even number: {i}")

Enumerate for index and value

for index, fruit in enumerate(fruits): print(f"{index}: {fruit}")

Dictionary iteration

person = {"name": "Alice", "age": 30, "city": "New York"} for key, value in person.items(): print(f"{key}: {value}") `

#### While Loops

`python

Basic while loop

count = 0 while count < 5: print(f"Count: {count}") count += 1

While loop with user input

while True: user_input = input("Enter 'quit' to exit: ") if user_input.lower() == 'quit': break print(f"You entered: {user_input}") `

#### Loop Control Statements

| Statement | Purpose | Example | |-----------|---------|---------| | break | Exit loop completely | if condition: break | | continue | Skip to next iteration | if condition: continue | | else | Execute if loop completes normally | for...: else: print("Done") |

`python

Loop control examples

for i in range(10): if i == 3: continue # Skip when i is 3 if i == 7: break # Exit loop when i is 7 print(i) else: print("Loop completed normally") # Won't execute due to break `

Functions in Python

Function Definition and Calling

`python def greet(name, greeting="Hello"): """ Greet a person with a custom message. Args: name (str): Person's name greeting (str): Greeting message (default: "Hello") Returns: str: Formatted greeting message """ return f"{greeting}, {name}!"

Function calls

print(greet("Alice")) # Hello, Alice! print(greet("Bob", "Hi")) # Hi, Bob! print(greet(greeting="Hey", name="Charlie")) # Hey, Charlie! `

Function Parameters and Arguments

| Parameter Type | Description | Example | |----------------|-------------|---------| | Positional | Arguments passed by position | func(a, b, c) | | Keyword | Arguments passed by name | func(a=1, b=2) | | Default | Parameters with default values | def func(a, b=10): | | Variable Length | Accept any number of arguments | def func(args, *kwargs): |

`python def flexible_function(required, default_param="default", args, *kwargs): """Demonstrate different parameter types.""" print(f"Required: {required}") print(f"Default: {default_param}") print(f"Extra positional args: {args}") print(f"Extra keyword args: {kwargs}")

Example calls

flexible_function("must_have") flexible_function("must_have", "custom", "extra1", "extra2", key1="value1", key2="value2") `

Lambda Functions

`python

Lambda function syntax

square = lambda x: x 2 print(square(5)) # 25

Using lambda with built-in functions

numbers = [1, 2, 3, 4, 5] squared = list(map(lambda x: x 2, numbers)) even_numbers = list(filter(lambda x: x % 2 == 0, numbers))

Sorting with lambda

students = [("Alice", 85), ("Bob", 90), ("Charlie", 78)] students.sort(key=lambda student: student[1]) # Sort by grade `

File Operations

Reading Files

`python def read_file_methods(): """Demonstrate different ways to read files.""" # Method 1: Basic file reading file = open("example.txt", "r") content = file.read() file.close() # Method 2: Using with statement (recommended) with open("example.txt", "r") as file: content = file.read() print(content) # Method 3: Reading line by line with open("example.txt", "r") as file: for line_number, line in enumerate(file, 1): print(f"Line {line_number}: {line.strip()}") # Method 4: Reading all lines into a list with open("example.txt", "r") as file: lines = file.readlines() return [line.strip() for line in lines] `

Writing Files

`python def write_file_examples(): """Demonstrate different ways to write files.""" # Writing text to file with open("output.txt", "w") as file: file.write("Hello, World!\n") file.write("This is line 2\n") # Appending to file with open("output.txt", "a") as file: file.write("This line is appended\n") # Writing multiple lines lines = ["Line 1\n", "Line 2\n", "Line 3\n"] with open("output.txt", "w") as file: file.writelines(lines) `

File Operation Modes

| Mode | Description | File Pointer | Creates File | |------|-------------|--------------|--------------| | 'r' | Read only | Beginning | No | | 'w' | Write only (overwrites) | Beginning | Yes | | 'a' | Append only | End | Yes | | 'r+' | Read and write | Beginning | No | | 'w+' | Read and write (overwrites) | Beginning | Yes | | 'x' | Create and write (fails if exists) | Beginning | Yes | | 'b' | Binary mode (combine with others) | - | - |

File Path Operations

`python import os import pathlib

def file_path_operations(): """Demonstrate file path operations.""" # Using os module current_dir = os.getcwd() file_path = os.path.join(current_dir, "data", "file.txt") # Check if file/directory exists if os.path.exists(file_path): print(f"File size: {os.path.getsize(file_path)} bytes") # Using pathlib (modern approach) path = pathlib.Path("data") / "file.txt" if path.exists(): print(f"File size: {path.stat().st_size} bytes") print(f"Parent directory: {path.parent}") print(f"File extension: {path.suffix}") `

Error Handling

Try-Except Blocks

`python def safe_division(a, b): """Safely divide two numbers with error handling.""" try: result = a / b return result except ZeroDivisionError: print("Error: Cannot divide by zero!") return None except TypeError: print("Error: Both arguments must be numbers!") return None except Exception as e: print(f"Unexpected error: {e}") return None else: print("Division completed successfully") finally: print("Division operation attempted") `

Common Exception Types

| Exception | Description | Common Causes | |-----------|-------------|---------------| | ValueError | Invalid value for operation | int("abc"), math.sqrt(-1) | | TypeError | Wrong data type | "string" + 5, len(42) | | IndexError | List index out of range | list[10] when list has 5 elements | | KeyError | Dictionary key not found | dict["nonexistent_key"] | | FileNotFoundError | File doesn't exist | Opening non-existent file | | AttributeError | Object has no attribute | "string".nonexistent_method() | | ImportError | Module import failed | import nonexistent_module |

Custom Exception Handling

`python class CustomError(Exception): """Custom exception class.""" def __init__(self, message, error_code=None): super().__init__(message) self.error_code = error_code

def validate_age(age): """Validate age with custom exception.""" if not isinstance(age, int): raise CustomError("Age must be an integer", "TYPE_ERROR") if age < 0: raise CustomError("Age cannot be negative", "VALUE_ERROR") if age > 150: raise CustomError("Age seems unrealistic", "RANGE_ERROR") return True

Usage

try: validate_age(-5) except CustomError as e: print(f"Validation error: {e}") if hasattr(e, 'error_code'): print(f"Error code: {e.error_code}") `

Best Practices and Code Organization

PEP 8 Style Guide

`python

Good: Clear variable names

user_name = "alice" total_amount = 150.50 is_valid = True

Bad: Unclear variable names

un = "alice" ta = 150.50 iv = True

Good: Function naming

def calculate_total_price(items): """Calculate total price of items.""" pass

Good: Class naming

class ShoppingCart: """Represents a shopping cart.""" pass

Good: Constants

MAX_RETRY_ATTEMPTS = 3 DEFAULT_TIMEOUT = 30 `

Code Organization Structure

`python #!/usr/bin/env python3 """ Script Description: Brief description of what the script does Author: Your Name Date: Creation date Version: 1.0 """

Standard library imports

import os import sys import json from datetime import datetime

Third-party imports

import requests import pandas as pd

Local imports

from my_module import helper_function

Constants

MAX_CONNECTIONS = 10 DEFAULT_CONFIG_FILE = "config.json"

Global variables (use sparingly)

debug_mode = False

class MyClass: """Class docstring.""" pass

def utility_function(): """Utility function docstring.""" pass

def main(): """Main function that orchestrates the script execution.""" # Main script logic here pass

if __name__ == "__main__": main() `

Documentation Best Practices

`python def process_data(data, format_type="json", validate=True): """ Process data according to specified format and validation rules. This function takes raw data and processes it according to the specified format type. It can optionally validate the data before processing. Args: data (dict or list): Raw data to be processed format_type (str, optional): Output format ('json', 'csv', 'xml'). Defaults to 'json'. validate (bool, optional): Whether to validate data before processing. Defaults to True. Returns: str: Processed data in the specified format Raises: ValueError: If data format is invalid TypeError: If data is not dict or list Examples: >>> data = {"name": "Alice", "age": 30} >>> result = process_data(data, format_type="json") >>> print(result) '{"name": "Alice", "age": 30}' >>> data_list = [1, 2, 3, 4, 5] >>> result = process_data(data_list, format_type="csv") >>> print(result) '1,2,3,4,5' """ pass `

Advanced Script Examples

File Processing Script

`python #!/usr/bin/env python3 """ File Processing Script Processes text files and generates statistics. """

import os import sys import argparse from collections import Counter import re

class FileProcessor: """Handles file processing operations.""" def __init__(self, file_path): """Initialize with file path.""" self.file_path = file_path self.content = "" self.stats = {} def read_file(self): """Read file content.""" try: with open(self.file_path, 'r', encoding='utf-8') as file: self.content = file.read() return True except FileNotFoundError: print(f"Error: File '{self.file_path}' not found") return False except PermissionError: print(f"Error: Permission denied for file '{self.file_path}'") return False def analyze_content(self): """Analyze file content and generate statistics.""" if not self.content: return lines = self.content.split('\n') words = re.findall(r'\b\w+\b', self.content.lower()) self.stats = { 'total_characters': len(self.content), 'total_lines': len(lines), 'total_words': len(words), 'unique_words': len(set(words)), 'average_line_length': sum(len(line) for line in lines) / len(lines) if lines else 0, 'most_common_words': Counter(words).most_common(10) } def generate_report(self): """Generate and return analysis report.""" if not self.stats: return "No statistics available" report = f""" File Analysis Report for: {self.file_path} {'=' * 50} Total Characters: {self.stats['total_characters']:,} Total Lines: {self.stats['total_lines']:,} Total Words: {self.stats['total_words']:,} Unique Words: {self.stats['unique_words']:,} Average Line Length: {self.stats['average_line_length']:.2f}

Most Common Words: {'-' * 20} """ for word, count in self.stats['most_common_words']: report += f"{word:<15} {count:>5}\n" return report def save_report(self, output_file): """Save report to file.""" report = self.generate_report() try: with open(output_file, 'w', encoding='utf-8') as file: file.write(report) print(f"Report saved to: {output_file}") except Exception as e: print(f"Error saving report: {e}")

def main(): """Main function.""" parser = argparse.ArgumentParser(description='Analyze text files') parser.add_argument('file', help='Path to the text file to analyze') parser.add_argument('-o', '--output', help='Output file for report') parser.add_argument('-v', '--verbose', action='store_true', help='Verbose output') args = parser.parse_args() if args.verbose: print(f"Processing file: {args.file}") processor = FileProcessor(args.file) if not processor.read_file(): sys.exit(1) processor.analyze_content() if args.output: processor.save_report(args.output) else: print(processor.generate_report())

if __name__ == "__main__": main() `

Web Scraping Script

`python #!/usr/bin/env python3 """ Web Scraping Script Scrapes data from websites and saves to file. """

import requests from bs4 import BeautifulSoup import csv import time import logging from urllib.parse import urljoin, urlparse

Configure logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

class WebScraper: """Web scraping utility class.""" def __init__(self, base_url, headers=None, delay=1): """Initialize scraper with base URL and options.""" self.base_url = base_url self.delay = delay self.session = requests.Session() # Set default headers default_headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' } self.session.headers.update(headers or default_headers) def fetch_page(self, url): """Fetch a single page.""" try: response = self.session.get(url, timeout=10) response.raise_for_status() return response.text except requests.RequestException as e: logging.error(f"Error fetching {url}: {e}") return None def parse_content(self, html, selectors): """Parse HTML content using CSS selectors.""" soup = BeautifulSoup(html, 'html.parser') data = {} for key, selector in selectors.items(): elements = soup.select(selector) if elements: data[key] = [elem.get_text(strip=True) for elem in elements] else: data[key] = [] return data def scrape_multiple_pages(self, urls, selectors, output_file): """Scrape multiple pages and save to CSV.""" all_data = [] for i, url in enumerate(urls, 1): logging.info(f"Scraping page {i}/{len(urls)}: {url}") html = self.fetch_page(url) if html: data = self.parse_content(html, selectors) all_data.append(data) # Be respectful to the server time.sleep(self.delay) # Save to CSV self.save_to_csv(all_data, output_file) def save_to_csv(self, data_list, filename): """Save scraped data to CSV file.""" if not data_list: logging.warning("No data to save") return # Get all unique keys all_keys = set() for data in data_list: all_keys.update(data.keys()) with open(filename, 'w', newline='', encoding='utf-8') as csvfile: writer = csv.writer(csvfile) # Write header writer.writerow(list(all_keys)) # Write data for data in data_list: row = [] for key in all_keys: values = data.get(key, []) row.append('; '.join(values) if values else '') writer.writerow(row) logging.info(f"Data saved to {filename}")

def main(): """Main function demonstrating web scraping.""" # Example: Scraping news headlines urls = [ "https://example-news-site.com/page1", "https://example-news-site.com/page2", ] selectors = { 'headlines': 'h2.headline', 'authors': '.author-name', 'dates': '.publish-date' } scraper = WebScraper("https://example-news-site.com", delay=2) scraper.scrape_multiple_pages(urls, selectors, "news_data.csv")

if __name__ == "__main__": main() `

Debugging and Testing

Debugging Techniques

`python import pdb import logging

Configure logging for debugging

logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')

def debug_example_function(numbers): """Function with debugging examples.""" logging.debug(f"Function called with: {numbers}") # Print debugging print(f"DEBUG: Processing {len(numbers)} numbers") # Assertion for debugging assert isinstance(numbers, list), "Input must be a list" assert len(numbers) > 0, "List cannot be empty" result = [] for i, num in enumerate(numbers): # Breakpoint for debugging if num < 0: pdb.set_trace() # Debugger will stop here processed = num * 2 result.append(processed) logging.debug(f"Processed item {i}: {num} -> {processed}") return result

Using try-except for debugging

def safe_operation(data): """Demonstrate error handling for debugging.""" try: result = risky_operation(data) return result except Exception as e: logging.error(f"Error in safe_operation: {e}") logging.debug(f"Data that caused error: {data}") raise # Re-raise the exception `

Simple Testing

`python def test_functions(): """Simple test function.""" # Test cases test_cases = [ ([1, 2, 3], [2, 4, 6]), ([0, -1, 5], [0, -2, 10]), ([], []) ] for i, (input_data, expected) in enumerate(test_cases): try: result = debug_example_function(input_data) if result == expected: print(f"Test {i+1}: PASSED") else: print(f"Test {i+1}: FAILED - Expected {expected}, got {result}") except Exception as e: print(f"Test {i+1}: ERROR - {e}")

Run tests

if __name__ == "__main__": test_functions() `

Command Line Arguments

Using argparse

`python import argparse import sys

def create_argument_parser(): """Create and configure argument parser.""" parser = argparse.ArgumentParser( description='Example script with command line arguments', epilog='Example: python script.py -f input.txt -o output.txt --verbose' ) # Positional arguments parser.add_argument('input_file', help='Input file path') # Optional arguments parser.add_argument('-o', '--output', help='Output file path', default='output.txt') parser.add_argument('-v', '--verbose', action='store_true', help='Enable verbose output') parser.add_argument('--format', choices=['json', 'csv', 'txt'], default='txt', help='Output format') parser.add_argument('-n', '--number', type=int, default=10, help='Number of items to process') return parser

def main(): """Main function using command line arguments.""" parser = create_argument_parser() args = parser.parse_args() # Use arguments if args.verbose: print(f"Processing file: {args.input_file}") print(f"Output file: {args.output}") print(f"Format: {args.format}") print(f"Number of items: {args.number}") # Your script logic here process_file(args.input_file, args.output, args.format, args.number)

def process_file(input_file, output_file, format_type, num_items): """Process file based on arguments.""" # Implementation here pass

if __name__ == "__main__": main() `

Common Python Libraries for Scripting

Essential Libraries Overview

| Library | Purpose | Installation | Common Use Cases | |---------|---------|--------------|------------------| | os | Operating system interface | Built-in | File operations, environment variables | | sys | System-specific parameters | Built-in | Command line args, exit codes | | json | JSON data handling | Built-in | API responses, configuration files | | csv | CSV file handling | Built-in | Data import/export | | datetime | Date and time operations | Built-in | Timestamps, date calculations | | re | Regular expressions | Built-in | Text pattern matching | | requests | HTTP library | pip install requests | Web APIs, downloading files | | pandas | Data manipulation | pip install pandas | Data analysis, CSV/Excel processing | | pathlib | Object-oriented file paths | Built-in (Python 3.4+) | Modern path handling |

Library Usage Examples

`python

Working with dates

from datetime import datetime, timedelta import json import csv

def date_operations(): """Demonstrate date operations.""" now = datetime.now() yesterday = now - timedelta(days=1) print(f"Current time: {now.strftime('%Y-%m-%d %H:%M:%S')}") print(f"Yesterday: {yesterday.strftime('%Y-%m-%d')}")

JSON operations

def json_operations(): """Demonstrate JSON operations.""" data = { "name": "Alice", "age": 30, "hobbies": ["reading", "swimming"] } # Write JSON with open("data.json", "w") as f: json.dump(data, f, indent=2) # Read JSON with open("data.json", "r") as f: loaded_data = json.load(f) print(loaded_data)

CSV operations

def csv_operations(): """Demonstrate CSV operations.""" # Writing CSV data = [ ["Name", "Age", "City"], ["Alice", 30, "New York"], ["Bob", 25, "London"] ] with open("people.csv", "w", newline="") as f: writer = csv.writer(f) writer.writerows(data) # Reading CSV with open("people.csv", "r") as f: reader = csv.DictReader(f) for row in reader: print(f"{row['Name']} is {row['Age']} years old") `

This comprehensive guide provides a solid foundation for writing Python scripts. Start with simple scripts and gradually incorporate more advanced features as you become comfortable with the basics. Remember to follow best practices, handle errors gracefully, and document your code thoroughly for maintainability.

Tags

  • Automation
  • beginner-friendly
  • development-environment
  • programming fundamentals
  • scripting

Related Articles

Related Books - Expand Your Knowledge

Explore these Python books to deepen your understanding:

Browse all IT books

Popular Technical Articles & Tutorials

Explore our comprehensive collection of technical articles, programming tutorials, and IT guides written by industry experts:

Browse all 8+ technical articles | Read our IT blog

Writing Your First Python Script: Complete Beginner Guide