
1

PHP Fundamentals 

A Practical Introduction to Modern 
PHP for Web Development 



2

Preface 

Welcome to "PHP Fundamentals: A Practical Introduction to Modern PHP for Web 

Development." Whether you're taking your first steps into web development or 

looking to solidify your understanding of PHP, this book is designed to be your 

comprehensive guide to mastering one of the web's most enduring and powerful 

programming languages. 

Why PHP Matters 
PHP powers over 75% of websites whose server-side programming language is 

known, including major platforms like WordPress, Facebook, and Wikipedia. De-

spite the emergence of newer technologies, PHP continues to evolve and thrive, 

offering developers a robust, flexible, and accessible foundation for web develop-

ment. This book focuses specifically on modern PHP practices, ensuring you learn 

not just the fundamentals, but the contemporary approaches that will serve you 

well in today's development landscape. 

What You'll Learn 
This book takes a hands-on approach to teaching PHP, emphasizing practical skills 

you can immediately apply to real-world projects. You'll begin by understanding 

PHP's role in web development and setting up a proper development environ-

ment. From there, we'll explore PHP's core concepts including syntax, data types, 



3

control structures, and functions—all the building blocks you need to write effective 

PHP code. 

As you progress, you'll dive into more advanced topics such as working with 

databases using PHP and MySQL, handling user sessions and cookies, and imple-

menting robust security practices. The latter chapters focus on modern PHP fea-

tures and best practices, culminating in a complete web application project that 

brings together everything you've learned. 

How This Book Is Structured 
The book is organized into three main sections: 

Foundation (Chapters 1-8) covers PHP basics, from installation and syntax to 

arrays and data handling. These chapters establish the core knowledge every PHP 

developer needs. 

Web Development Essentials (Chapters 9-15) focuses on practical web de-

velopment with PHP, including form handling, database integration, and security 

fundamentals—the skills that make PHP such a powerful tool for web applications. 

Advanced Concepts and Application (Chapters 16-19) explores modern 

PHP features, clean coding practices, and ties everything together with a complete 

project, plus guidance for continuing your PHP journey. 

The appendices provide valuable reference materials, including a PHP syntax 

cheat sheet, common error explanations, security checklist, practice exercises, and 

a learning roadmap to guide your continued growth as a PHP developer. 



4

Who This Book Is For 
This book is written for beginners who want to learn PHP properly from the start, as 

well as developers with some programming experience who want to add PHP to 

their toolkit. No prior PHP knowledge is assumed, though basic familiarity with 

HTML and general programming concepts will be helpful. Each chapter builds 

upon previous concepts while providing clear explanations and practical examples 

that demonstrate PHP's capabilities in real-world scenarios. 

A Practical Approach 
Throughout this book, you'll find that every concept is illustrated with practical PHP 

examples and exercises. Rather than focusing solely on theory, we emphasize 

learning by doing—writing actual PHP code that you can run, modify, and build 

upon. This approach ensures that you not only understand PHP concepts but can 

confidently apply them in your own projects. 

Acknowledgments 
This book would not have been possible without the vibrant PHP community that 

continues to push the language forward. Special thanks to the PHP development 

team for their ongoing work in evolving the language, and to the countless devel-

opers who share their knowledge through documentation, tutorials, and open-

source contributions. Their collective wisdom has shaped both the content of this 

book and the modern PHP practices it promotes. 



5

Your PHP Journey Begins 
PHP offers an excellent entry point into server-side web development, combining 

ease of learning with professional-grade capabilities. By the end of this book, you'll 

have a solid foundation in PHP programming and the confidence to build dynamic, 

database-driven web applications. More importantly, you'll understand how to 

write clean, secure, and maintainable PHP code that follows modern best practices. 

Welcome to the world of PHP development—let's begin building something 

amazing together. 

Petr Novák 



6

Table of Contents 

Chapter Title Page

1 What PHP Is and Where It Fits 8

2 Setting Up a PHP Development Environment 32

3 PHP Syntax and Variables 48

4 Data Types and Operators 67

5 Control Structures 113

6 Functions in PHP 136

7 Scope, Includes, and Files 160

8 Arrays and Data Handling 182

9 Strings and Form Data 212

10 Handling Forms with PHP 235

11 Working with Sessions and Cookies 265

12 PHP and MySQL Basics 286

13 Secure Database Access 303

14 Errors, Debugging, and Logging 321

15 PHP Security Fundamentals 347

16 Writing Clean PHP Code 372

17 Modern PHP Features 393

18 Building a Simple PHP Web Application 427

19 Learning Path After PHP Fundamentals 451

App PHP Syntax Cheat Sheet 479

App Common PHP Errors Explained 508

App PHP Security Checklist 528



7

App Beginner Exercises 550

App PHP Learning Roadmap 571



8

Chapter 1: What PHP Is and 
Where It Fits 

Introduction to the World of PHP 
In the vast landscape of web development technologies, PHP stands as one of the 

most enduring and widely adopted server-side programming languages. Born in 

the mid-1990s from the creative mind of Rasmus Lerdorf, PHP has evolved from a 

simple set of Common Gateway Interface (CGI) binaries into a sophisticated, fea-

ture-rich language that powers millions of websites across the globe. Understand-

ing what PHP is and where it fits in the modern web development ecosystem is cru-

cial for anyone looking to build dynamic, interactive web applications. 

PHP, which originally stood for "Personal Home Page" but now represents the 

recursive acronym "PHP: Hypertext Preprocessor," is a server-side scripting lan-

guage specifically designed for web development. Unlike client-side languages 

such as JavaScript that execute in the user's browser, PHP code runs on the web 

server before the resulting HTML is sent to the client's browser. This fundamental 

characteristic makes PHP an ideal choice for creating dynamic web content, han-

dling form submissions, managing user sessions, and interacting with databases. 

The beauty of PHP lies in its simplicity and accessibility. New developers can 

quickly grasp basic PHP concepts and start building functional web applications 

within hours of their first encounter with the language. Yet beneath this accessible 



9

surface lies a powerful and flexible programming environment capable of support-

ing enterprise-level applications that serve millions of users daily. 

The Historical Context and Evolution 
of PHP 
To truly understand where PHP fits in today's web development landscape, we 

must first explore its historical journey. PHP's story begins in 1994 when Rasmus 

Lerdorf created a set of CGI binaries written in C to track visits to his personal web-

site. These early tools, which he called "Personal Home Page Tools," were designed 

to perform simple tasks like displaying his resume and tracking page views. 

The initial version of PHP was relatively primitive compared to modern stan-

dards, but it addressed a real need in the emerging web development community. 

As the World Wide Web grew rapidly in the mid-1990s, developers needed tools 

that could generate dynamic content without the complexity of traditional CGI pro-

gramming in languages like C or Perl. 

In 1995, Lerdorf released the source code for PHP/FI (Personal Home Page/

Forms Interpreter), which included basic functionality for handling HTML forms and 

communicating with databases. This release marked the beginning of PHP as a 

community-driven project, attracting developers who contributed improvements 

and extensions to the language. 

The real transformation of PHP began in 1997 when two Israeli developers, 

Zeev Suraski and Andi Gutmans, rewrote the PHP parser from scratch. Their work 

resulted in PHP 3, released in 1998, which introduced many of the features that 

would define PHP as a serious programming language. PHP 3 included support for 

multiple databases, numerous protocols, and APIs, establishing PHP as a viable 

platform for professional web development. 



10

PHP 4, released in 2000, brought significant performance improvements 

through the introduction of the Zend Engine, developed by Suraski and Gutmans. 

This version solidified PHP's position as a leading web development language and 

saw widespread adoption across the internet. 

The release of PHP 5 in 2004 marked another major milestone, introducing ob-

ject-oriented programming features that brought PHP in line with other modern 

programming languages. Subsequent versions continued to add features and im-

provements, with PHP 7 (released in 2015) delivering dramatic performance en-

hancements and PHP 8 (released in 2020) introducing features like the JIT compil-

er and union types. 

PHP's Role in the Web Development 
Ecosystem 
Understanding where PHP fits requires examining the broader web development 

ecosystem and how different technologies work together to create modern web 

applications. Web development typically involves three main layers: the presenta-

tion layer (frontend), the application layer (backend), and the data layer (database). 

PHP operates primarily in the application layer, serving as the bridge between 

user interfaces and data storage systems. When a user interacts with a web appli-

cation built with PHP, the following process typically occurs: 

1.	 The user's browser sends an HTTP request to the web server 

2.	 The web server recognizes that the requested resource is a PHP file 

3.	 The server passes the request to the PHP interpreter 

4.	 PHP executes the code, which may involve database queries, file opera-

tions, or other server-side tasks 



11

5.	 PHP generates HTML output based on the executed code 

6.	 The web server sends the generated HTML back to the user's browser 

7.	 The browser renders the HTML for the user to see 

This server-side execution model provides several advantages that make PHP par-

ticularly well-suited for web development. First, it keeps sensitive business logic 

and database credentials secure on the server, away from client-side inspection. 

Second, it allows for consistent behavior across different browsers and devices 

since the processing occurs on the server. Third, it enables real-time data process-

ing and dynamic content generation based on current database states or external 

API responses. 

Technical Architecture and Core Char-
acteristics 
PHP's architecture reflects its web-centric design philosophy. At its core, PHP is an 

interpreted language, meaning that PHP code is executed line by line by the PHP 

interpreter rather than being compiled into machine code beforehand. This inter-

pretation model provides several benefits for web development, including rapid 

development cycles and the ability to make changes without lengthy compilation 

processes. 

The PHP interpreter itself is built on the Zend Engine, which handles the pars-

ing, compilation to bytecode, and execution of PHP scripts. When a PHP script is 

requested, the Zend Engine performs lexical analysis to break the source code into 

tokens, then parses these tokens to create an abstract syntax tree (AST). The AST is 

then compiled into opcodes, which are finally executed by the Zend virtual ma-

chine. 



12

Modern PHP installations often include opcode caching mechanisms like OP-

cache, which store the compiled opcodes in memory to avoid repeated compila-

tion of the same scripts. This caching significantly improves performance, especial-

ly for applications with high traffic volumes. 

PHP's memory management system automatically handles allocation and de-

allocation of memory resources through a reference counting mechanism com-

bined with cycle collection for handling circular references. This automatic memory 

management reduces the likelihood of memory leaks and simplifies development 

compared to languages that require manual memory management. 

The language supports multiple programming paradigms, including pro-

cedural programming, object-oriented programming, and functional programming 

elements. This flexibility allows developers to choose the most appropriate ap-

proach for their specific use cases and gradually adopt more sophisticated pro-

gramming patterns as their skills develop. 

PHP in Modern Web Development 
Stacks 
Contemporary web development often involves complex technology stacks that 

combine multiple tools and frameworks to create robust applications. PHP fits into 

several popular stack configurations, each offering different advantages for specific 

types of projects. 

The LAMP stack (Linux, Apache, MySQL, PHP) represents one of the most tradi-

tional and widely-used configurations for PHP web development. In this stack, Lin-

ux provides the operating system foundation, Apache serves as the web server, 

MySQL handles data storage, and PHP processes the application logic. This combi-



13

nation has proven reliable and scalable for countless web applications over the 

past two decades. 

Modern variations of the LAMP stack have emerged to address changing re-

quirements and preferences. The LEMP stack substitutes Nginx for Apache, often 

providing better performance for high-traffic applications. Some developers prefer 

PostgreSQL over MySQL for its advanced features and standards compliance. 

These variations demonstrate PHP's flexibility in working with different compo-

nents while maintaining its core role as the application processing engine. 

Cloud-based deployments have introduced new considerations for PHP ap-

plications. Platforms like AWS, Google Cloud, and Microsoft Azure offer specialized 

services for hosting PHP applications, including managed database services, con-

tent delivery networks, and auto-scaling capabilities. PHP's stateless nature makes 

it well-suited for cloud deployments, as individual requests can be processed by 

any available server instance without requiring session persistence on specific ma-

chines. 

Containerization technologies like Docker have also influenced how PHP ap-

plications are deployed and managed. PHP applications can be packaged into 

containers that include all necessary dependencies, ensuring consistent behavior 

across development, testing, and production environments. This approach simpli-

fies deployment processes and improves scalability for applications with varying 

traffic patterns. 

Comparison with Other Server-Side 
Technologies 
To fully appreciate where PHP fits in the web development landscape, it's valuable 

to understand how it compares to other server-side technologies. Each language 



14

and platform offers distinct advantages and trade-offs that make them suitable for 

different types of projects. 

Node.js, built on JavaScript's V8 engine, represents a significant alternative to 

traditional server-side languages like PHP. Node.js excels in applications requiring 

real-time communication, such as chat applications or live collaboration tools, due 

to its event-driven, non-blocking I/O model. However, PHP's mature ecosystem 

and extensive documentation often make it more accessible for traditional web ap-

plications that don't require real-time features. 

Python, with frameworks like Django and Flask, offers excellent support for 

rapid development and clean, readable code. Python's strength in data science 

and machine learning makes it attractive for applications that need to integrate 

these capabilities. PHP, however, maintains advantages in terms of web-specific op-

timizations and hosting availability, with most shared hosting providers offering 

PHP support by default. 

Ruby on Rails revolutionized web development with its "convention over con-

figuration" philosophy and rapid prototyping capabilities. While Rails can acceler-

ate initial development, PHP's performance characteristics and lower hosting costs 

often make it more practical for applications that need to scale efficiently without 

requiring significant infrastructure investments. 

Java and C# represent enterprise-focused alternatives that offer strong typing, 

extensive tooling, and robust performance for large-scale applications. These lan-

guages typically require more initial setup and have steeper learning curves com-

pared to PHP, but they provide advantages for applications with complex business 

logic or strict performance requirements. 



15

Performance Characteristics and Opti-
mization 
Modern PHP has made significant strides in performance optimization, particularly 

with the introduction of PHP 7 and subsequent versions. The performance im-

provements in PHP 7 were so dramatic that many applications saw 2x to 3x speed 

improvements simply by upgrading their PHP version, without any code changes 

required. 

These performance gains resulted from extensive optimization of the Zend En-

gine, including more efficient memory usage, improved opcode generation, and 

better CPU cache utilization. The introduction of scalar type declarations and return 

type declarations in PHP 7 also enabled additional optimizations by allowing the 

engine to make assumptions about data types during execution. 

PHP 8 introduced a Just-In-Time (JIT) compiler that can provide additional per-

formance benefits for CPU-intensive applications. While web applications don't al-

ways benefit significantly from JIT compilation due to their I/O-intensive nature, ap-

plications with complex mathematical calculations or data processing can see sub-

stantial performance improvements. 

Effective PHP performance optimization involves understanding both lan-

guage-level optimizations and application architecture decisions. Proper use of op-

code caching, database query optimization, and caching strategies can dramatical-

ly improve application performance. PHP's ecosystem includes numerous tools for 

performance monitoring and optimization, including profilers like Xdebug and XH-

Prof that help developers identify performance bottlenecks. 



16

PHP's Ecosystem and Community 
The PHP ecosystem extends far beyond the core language to include a vast collec-

tion of libraries, frameworks, and tools that accelerate development and provide 

solutions for common challenges. Composer, PHP's dependency manager, has 

revolutionized how PHP developers manage external libraries and has fostered a 

thriving ecosystem of reusable components. 

Popular PHP frameworks like Laravel, Symfony, and CodeIgniter provide struc-

tured approaches to web application development, offering features like routing, 

database abstraction, templating, and security implementations. These frameworks 

embody best practices and design patterns that help developers build maintain-

able, scalable applications more efficiently. 

The PHP community has also developed comprehensive standards through the 

PHP Framework Interop Group (PHP-FIG), which publishes PHP Standards Recom-

mendations (PSRs) that promote consistency across different PHP projects and li-

braries. These standards cover areas like autoloading, coding style, logging inter-

faces, and HTTP message interfaces, making it easier for developers to work with 

code from different sources. 

Content management systems built with PHP, including WordPress, Drupal, 

and Joomla, power a significant portion of the web. WordPress alone runs on over 

40% of all websites, demonstrating PHP's practical impact on the internet. These 

systems showcase PHP's ability to create user-friendly interfaces for content man-

agement while maintaining the flexibility needed for customization and extension. 



17

Real-World Applications and Use Cas-
es 
PHP's versatility makes it suitable for a wide range of web applications, from simple 

websites to complex enterprise systems. E-commerce platforms represent one of 

the most common use cases for PHP, with systems like Magento, WooCommerce, 

and OpenCart providing comprehensive solutions for online retail. These platforms 

demonstrate PHP's ability to handle complex business logic, payment processing, 

inventory management, and customer relationship management. 

Social media applications and content platforms frequently choose PHP for its 

rapid development capabilities and extensive ecosystem. Facebook, one of the 

world's largest social media platforms, was originally built with PHP and continues 

to use a variant called Hack for much of its backend infrastructure. This real-world 

usage at massive scale demonstrates PHP's potential for handling high-traffic ap-

plications when properly optimized and architected. 

API development represents another growing use case for PHP, particularly 

with the rise of mobile applications and microservices architectures. PHP frame-

works like Laravel and Slim provide excellent support for building RESTful APIs and 

GraphQL endpoints, making it easy to create backend services that support multi-

ple client applications. 

Educational platforms and learning management systems often leverage PHP's 

accessibility and extensive documentation to create systems that can be easily cus-

tomized and extended by educational institutions. The open-source nature of 

many PHP-based educational platforms allows institutions to modify systems to 

meet their specific requirements without licensing restrictions. 



18

Development Environment and Tool-
ing 
Setting up a productive PHP development environment involves understanding 

the various tools and configurations that support efficient PHP development. Mod-

ern PHP development typically begins with installing PHP itself, which is available 

for all major operating systems through various distribution channels. 

Local development environments can range from simple installations of PHP, 

Apache, and MySQL to comprehensive development stacks like XAMPP, MAMP, or 

Laragon that provide pre-configured environments with graphical management in-

terfaces. More advanced developers often prefer containerized development envi-

ronments using Docker, which provide consistent development environments that 

closely match production configurations. 

Integrated Development Environments (IDEs) and text editors play crucial roles 

in PHP development productivity. PhpStorm, developed by JetBrains, offers com-

prehensive PHP-specific features including intelligent code completion, debug-

ging capabilities, and framework integration. Visual Studio Code, with appropriate 

PHP extensions, provides a lighter-weight alternative with excellent PHP support. 

Traditional editors like Vim and Emacs remain popular among experienced devel-

opers who prefer customizable, keyboard-driven workflows. 

Debugging and profiling tools are essential for developing robust PHP ap-

plications. Xdebug provides step-through debugging capabilities, performance 

profiling, and code coverage analysis. These tools integrate with most modern 

IDEs to provide visual debugging interfaces that make it easier to understand ap-

plication behavior and identify issues. 

Version control systems, particularly Git, are fundamental to modern PHP de-

velopment workflows. PHP projects typically follow standard Git workflows with ad-



19

ditional considerations for managing Composer dependencies and environment-

specific configuration files. 

Testing and Quality Assurance 
PHP's mature testing ecosystem supports various approaches to ensuring code 

quality and reliability. PHPUnit, the de facto standard for unit testing in PHP, pro-

vides a comprehensive framework for writing and executing tests that verify indi-

vidual components of PHP applications. Modern PHP development practices em-

phasize test-driven development (TDD) and behavior-driven development (BDD) 

approaches that use testing to guide application design and implementation. 

Integration testing tools help verify that different components of PHP ap-

plications work correctly together. These tools can test database interactions, API 

integrations, and user interface behaviors to ensure that applications function cor-

rectly in realistic scenarios. 

Code quality tools like PHP_CodeSniffer and PHPStan help maintain consistent 

coding standards and identify potential issues before they reach production. These 

tools can be integrated into development workflows to automatically check code 

quality during the development process. 

Continuous integration and deployment (CI/CD) pipelines are increasingly im-

portant for PHP applications, particularly those developed by teams or deployed 

frequently. Services like GitHub Actions, GitLab CI, and Jenkins can automatically 

run tests, perform code quality checks, and deploy applications when changes are 

committed to version control repositories. 



20

Future Directions and Trends 
The PHP ecosystem continues to evolve in response to changing web develop-

ment requirements and emerging technologies. Recent versions of PHP have fo-

cused on performance improvements, type safety enhancements, and developer 

experience improvements that keep the language competitive with newer alterna-

tives. 

The introduction of features like union types, named arguments, and attributes 

in PHP 8 demonstrates the language's commitment to modern programming prac-

tices while maintaining backward compatibility. Future PHP versions are likely to 

continue this trend, introducing features that improve developer productivity and 

application performance. 

Asynchronous programming capabilities are an area of ongoing development 

in the PHP ecosystem. While PHP's traditional synchronous execution model works 

well for many web applications, libraries like ReactPHP and Swoole are exploring 

asynchronous programming patterns that can improve performance for specific 

use cases. 

The growth of serverless computing platforms presents new opportunities for 

PHP applications. Services like AWS Lambda and Google Cloud Functions now 

support PHP, allowing developers to deploy PHP code without managing server in-

frastructure. This trend toward serverless deployment models may influence how 

PHP applications are designed and structured in the future. 

Practical Learning Approach 
Understanding PHP's place in web development is best achieved through hands-

on experience combined with theoretical knowledge. The following practical exer-



21

cise demonstrates basic PHP concepts and shows how PHP fits into a simple web 

application. 

Create a file named welcome.php with the following content: 

<?php 

// PHP opening tag - required for all PHP code 

 

// Variables in PHP start with $ symbol 

$name = "World"; 

$currentTime = date('Y-m-d H:i:s'); 

$userAgent = $_SERVER['HTTP_USER_AGENT'] ?? 'Unknown'; 

 

// PHP can generate HTML dynamically 

?> 

<!DOCTYPE html> 

<html lang="en"> 

<head> 

    <meta charset="UTF-8"> 

    <meta name="viewport" content="width=device-width, initial-

scale=1.0"> 

    <title>Welcome to PHP</title> 

    <style> 

        body { font-family: Arial, sans-serif; margin: 40px; } 

        .info-box { background: #f0f0f0; padding: 20px; border-

radius: 5px; } 

    </style> 

</head> 

<body> 

    <h1>Hello, <?php echo htmlspecialchars($name); ?>!</h1> 

     

    <div class="info-box"> 

        <h2>Server Information</h2> 

        <p><strong>Current Time:</strong> <?php echo 

$currentTime; ?></p> 

        <p><strong>PHP Version:</strong> <?php echo phpversion(); 

?></p> 

        <p><strong>Server Software:</strong> <?php echo 

$_SERVER['SERVER_SOFTWARE'] ?? 'Unknown'; ?></p> 

        <p><strong>Your Browser:</strong> <?php echo 

htmlspecialchars($userAgent); ?></p> 



22

    </div> 

 

    <?php 

    // Demonstrate basic PHP logic 

    $hour = (int)date('H'); 

    if ($hour < 12) { 

        $greeting = "Good morning"; 

    } elseif ($hour < 18) { 

        $greeting = "Good afternoon"; 

    } else { 

        $greeting = "Good evening"; 

    } 

    ?> 

     

    <p><?php echo $greeting; ?>! This page was generated using 

PHP.</p> 

     

    <?php 

    // Show some basic PHP capabilities 

    echo "<h2>PHP Capabilities Demonstration</h2>"; 

    echo "<ul>"; 

    echo "<li>Dynamic content generation: " . date('l, F j, Y') . 

"</li>"; 

    echo "<li>Mathematical operations: 15 + 25 = " . (15 + 25) . 

"</li>"; 

    echo "<li>String manipulation: " . strtoupper("php is 

powerful") . "</li>"; 

    echo "<li>Array operations: " . count(['apple', 'banana', 

'orange']) . " fruits</li>"; 

    echo "</ul>"; 

    ?> 

</body> 

</html> 

This example demonstrates several key aspects of where PHP fits in web develop-

ment: 

Server-Side Processing: The PHP code executes on the server before sending 

HTML to the browser. Users never see the PHP source code, only the generated 

HTML output. 



23

Dynamic Content Generation: PHP can generate different content based on 

current conditions, such as the time of day or server information. 

Integration with HTML: PHP seamlessly integrates with HTML, allowing devel-

opers to mix server-side logic with presentation markup. 

Access to Server Information: PHP provides access to server variables, envi-

ronment information, and HTTP request details that client-side languages cannot 

access. 

Security Considerations: The example uses htmlspecialchars() to pre-

vent XSS attacks, demonstrating how PHP includes security features for web devel-

opment. 

To run this example, save the code as welcome.php in your web server's doc-

ument root and access it through your browser. If you're using a local development 

environment like XAMPP, place the file in the htdocs folder and visit http://lo-

calhost/welcome.php. 

Command Line PHP Operations 
PHP's versatility extends beyond web applications to command-line scripting, 

which is useful for maintenance tasks, data processing, and automation. Under-

standing PHP's command-line capabilities helps illustrate its broader role in web 

development workflows. 

Create a file named system_info.php: 

<?php 

// Command line PHP script example 

// Run with: php system_info.php 

 

echo "PHP System Information\n"; 
echo str_repeat("=", 30) . "\n\n"; 
 



24

// Display PHP version information 

echo "PHP Version: " . phpversion() . "\n"; 
echo "Zend Engine Version: " . zend_version() . "\n"; 
 

// Show loaded extensions 

echo "\nLoaded Extensions:\n"; 
$extensions = get_loaded_extensions(); 

sort($extensions); 

foreach ($extensions as $extension) { 

    echo "  - $extension\n"; 
} 

 

// Memory usage information 

echo "\nMemory Information:\n"; 
echo "Memory Limit: " . ini_get('memory_limit') . "\n"; 
echo "Current Usage: " . number_format(memory_get_usage(true) / 

1024 / 1024, 2) . " MB\n"; 
echo "Peak Usage: " . number_format(memory_get_peak_usage(true) / 

1024 / 1024, 2) . " MB\n"; 
 

// Configuration information 

echo "\nImportant Configuration:\n"; 
$important_configs = [ 

    'max_execution_time', 

    'upload_max_filesize', 

    'post_max_size', 

    'date.timezone' 

]; 

 

foreach ($important_configs as $config) { 

    echo "  $config: " . ini_get($config) . "\n"; 
} 

 

echo "\nScript completed successfully!\n"; 
?> 

Run this script from the command line using: 

php system_info.php 



25

This demonstrates PHP's role beyond web serving, showing how it can be used for 

system administration, data processing, and development tools. 

Database Integration Example 
Database interaction represents one of PHP's most important capabilities in web 

development. The following example shows how PHP connects different layers of a 

web application: 

<?php 

// Database configuration (in real applications, use environment 

variables) 

$host = 'localhost'; 

$dbname = 'test_db'; 

$username = 'root'; 

$password = ''; 

 

try { 

    // Create PDO connection - PHP Data Objects for database 

abstraction 

    $pdo = new 

PDO("mysql:host=$host;dbname=$dbname;charset=utf8mb4",  

                   $username, $password, [ 

        PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION, 

        PDO::ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC, 

        PDO::ATTR_EMULATE_PREPARES => false, 

    ]); 

 

    // Create a simple table for demonstration 

    $createTable = " 

        CREATE TABLE IF NOT EXISTS users ( 

            id INT AUTO_INCREMENT PRIMARY KEY, 

            name VARCHAR(100) NOT NULL, 

            email VARCHAR(100) UNIQUE NOT NULL, 

            created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP 

        ) 

    "; 



26

    $pdo->exec($createTable); 

 

    // Insert sample data if table is empty 

    $count = $pdo->query("SELECT COUNT(*) FROM users")-

>fetchColumn(); 

    if ($count == 0) { 

        $insertUsers = " 

            INSERT INTO users (name, email) VALUES  

            ('John Doe', 'john@example.com'), 

            ('Jane Smith', 'jane@example.com'), 

            ('Bob Johnson', 'bob@example.com') 

        "; 

        $pdo->exec($insertUsers); 

    } 

 

    // Fetch and display users 

    $stmt = $pdo->query("SELECT * FROM users ORDER BY created_at 

DESC"); 

    $users = $stmt->fetchAll(); 

 

    ?> 

    <!DOCTYPE html> 

    <html> 

    <head> 

        <title>PHP Database Integration</title> 

        <style> 

            table { border-collapse: collapse; width: 100%; 

margin: 20px 0; } 

            th, td { border: 1px solid #ddd; padding: 12px; text-

align: left; } 

            th { background-color: #f2f2f2; } 

        </style> 

    </head> 

    <body> 

        <h1>User Database</h1> 

        <p>This demonstrates PHP's role in connecting web 

interfaces to databases.</p> 

         

        <table> 

            <thead> 

                <tr> 

                    <th>ID</th> 



27

                    <th>Name</th> 

                    <th>Email</th> 

                    <th>Created At</th> 

                </tr> 

            </thead> 

            <tbody> 

                <?php foreach ($users as $user): ?> 

                <tr> 

                    <td><?php echo htmlspecialchars($user['id']); 

?></td> 

                    <td><?php echo 

htmlspecialchars($user['name']); ?></td> 

                    <td><?php echo 

htmlspecialchars($user['email']); ?></td> 

                    <td><?php echo 

htmlspecialchars($user['created_at']); ?></td> 

                </tr> 

                <?php endforeach; ?> 

            </tbody> 

        </table> 

         

        <p><strong>Database Connection:</strong> Successfully 

connected to MySQL database</p> 

        <p><strong>Total Users:</strong> <?php echo 

count($users); ?></p> 

    </body> 

    </html> 

    <?php 

 

} catch (PDOException $e) { 

    die("Database connection failed: " . $e->getMessage()); 

} 

?> 

This example illustrates several important aspects of PHP's role in web develop-

ment: 

Database Abstraction: PHP Data Objects (PDO) provides a consistent inter-

face for different database systems, making applications more portable. 



28

Security: Prepared statements and proper escaping protect against SQL injec-

tion attacks, a critical concern in web applications. 

Error Handling: PHP's exception handling allows graceful management of 

database errors and other runtime issues. 

Data Presentation: PHP seamlessly combines database operations with HTML 

generation to create dynamic web pages. 

Configuration and Environment Man-
agement 
Understanding PHP configuration helps developers optimize applications for dif-

ferent environments and requirements. PHP's configuration system allows fine-tun-

ing of behavior for development, testing, and production environments. 

Create a configuration analysis script named config_analysis.php: 

<?php 

// PHP Configuration Analysis Script 

 

function displayConfigSection($title, $configs) { 

    echo "\n" . $title . "\n"; 
    echo str_repeat("-", strlen($title)) . "\n"; 
     

    foreach ($configs as $key => $config) { 

        $value = ini_get($config); 

        $display_value = $value === false ? 'Not Set' :  

                        ($value === '' ? 'Empty' : $value); 

        printf("%-25s: %s\n", $config, $display_value); 
    } 

} 

 

// Security-related configurations 

$security_configs = [ 

    'expose_php', 

    'display_errors', 



29

    'display_startup_errors', 

    'log_errors', 

    'error_log', 

    'allow_url_fopen', 

    'allow_url_include' 

]; 

 

// Performance-related configurations 

$performance_configs = [ 

    'memory_limit', 

    'max_execution_time', 

    'max_input_time', 

    'upload_max_filesize', 

    'post_max_size', 

    'max_file_uploads' 

]; 

 

// Development-related configurations 

$development_configs = [ 

    'error_reporting', 

    'html_errors', 

    'auto_prepend_file', 

    'auto_append_file', 

    'include_path' 

]; 

 

echo "PHP Configuration Analysis\n"; 
echo str_repeat("=", 40) . "\n"; 
 

displayConfigSection("Security Settings", $security_configs); 

displayConfigSection("Performance Settings", 

$performance_configs); 

displayConfigSection("Development Settings", 

$development_configs); 

 

// Show loaded modules relevant to web development 

echo "\nWeb Development Modules\n"; 
echo str_repeat("-", 25) . "\n"; 
 

$web_modules = ['curl', 'gd', 'mbstring', 'openssl', 'pdo', 

'session', 'xml', 'json']; 

foreach ($web_modules as $module) { 



30

    $loaded = extension_loaded($module) ? 'Loaded' : 'Not 

Loaded'; 

    printf("%-15s: %s\n", $module, $loaded); 
} 

 

// Environment information 

echo "\nEnvironment Information\n"; 
echo str_repeat("-", 25) . "\n"; 
echo "PHP SAPI: " . php_sapi_name() . "\n"; 
echo "Operating System: " . PHP_OS . "\n"; 
echo "Architecture: " . (PHP_INT_SIZE * 8) . "-bit\n"; 
 

if (php_sapi_name() !== 'cli') { 

    echo "Web Server: " . ($_SERVER['SERVER_SOFTWARE'] ?? 

'Unknown') . "\n"; 
    echo "Document Root: " . ($_SERVER['DOCUMENT_ROOT'] ?? 'Not 

Set') . "\n"; 
} 

?> 

Run this script both from the command line and through a web browser to see how 

PHP configuration differs between environments: 

php config_analysis.php 

This analysis helps developers understand how PHP adapts to different execution 

environments and how configuration affects application behavior. 

Summary and Key Takeaways 
PHP occupies a unique and valuable position in the web development ecosystem 

as a server-side scripting language specifically designed for web applications. Its 

evolution from a simple set of CGI tools to a sophisticated programming platform 

reflects the growth and maturation of web development as a discipline. 



31

The key strengths that define PHP's place in web development include its ac-

cessibility for new developers, extensive ecosystem of libraries and frameworks, 

strong database integration capabilities, and proven scalability for high-traffic ap-

plications. PHP's server-side execution model provides security and consistency 

advantages while its interpreted nature enables rapid development cycles. 

Modern PHP development embraces best practices including dependency 

management through Composer, testing with PHPUnit, and deployment through 

containerization and cloud platforms. The language continues to evolve with per-

formance improvements and new features that keep it competitive with newer al-

ternatives while maintaining its core philosophy of simplicity and practicality. 

Understanding where PHP fits in the broader web development landscape 

helps developers make informed decisions about technology choices and archi-

tectural approaches. Whether building simple websites, complex e-commerce 

platforms, or API services, PHP provides a solid foundation with the flexibility to 

grow and adapt as requirements change. 

The practical examples and exercises in this chapter demonstrate PHP's core 

capabilities and show how it integrates with other web technologies to create com-

plete applications. As you continue learning PHP, remember that its true power lies 

not just in its syntax and features, but in how it connects different aspects of web 

development into cohesive, functional applications that serve real user needs. 

PHP's enduring popularity and continued development ensure that it will re-

main a relevant and valuable skill for web developers. By understanding what PHP 

is and where it fits, you're building the foundation for a deeper exploration of this 

versatile and powerful web development platform. 


