PowerShell 7.x and SQLite
Fundamentals

Lightweight Data Storage and Au-
tomation with PowerShell and SQLite

Preface

Every PowerShell scripter eventually hits the same wall. You start with simple
scripts, graduate to managing configuration in CSV files and JSON, and then one
day you realize your automation needs have outgrown flat files. You need some-
thing more structured, more reliable, and more queryable—but standing up a full
SQL Server instance feels like bringing a sledgehammer to hang a picture frame.

That's exactly where SQLite changes everything.

PowerShell 7.x and SQLite Fundamentals was written for the PowerShell practi-
tioner who needs a lightweight, zero-configuration data storage solution that fits
naturally into the scripting and automation workflows they already know. SQLite is
the most widely deployed database engine in the world, and yet it remains surpris-

ingly underutilized in the PowerShell ecosystem. This book aims to change that.

What This Book Is About

At its core, this is a PowerShell book. Every concept, every technique, and every ex-
ample is framed through the lens of PowerShell 7.x. You won't find abstract data-
base theory here—you'll find practical, hands-on guidance for integrating SQLite
into your PowerShell scripts, tools, and automation pipelines.

We begin by establishing why PowerShell and SQLite are such a natural pairing
and then walk through the essential SQLite concepts that matter most to Power-
Shell users. From there, we move into the practical work: setting up your Power-
Shell environment, creating databases, writing SQL queries, and—critically—working

with query results as the rich PowerShell objects you're accustomed to.

The middle chapters are where things get particularly exciting. You'll learn how
to use SQLite to persist script state across sessions, power scheduled automation
tasks, handle transactions and error recovery gracefully, and secure your data
stores. These are the real-world challenges that PowerShell professionals face daily,
and SQLite provides elegant solutions to all of them.

The final chapters bring everything together. You'll build a complete data-dri-
ven PowerShell tool, implement inventory and reporting solutions, and internalize
the best practices that separate fragile scripts from production-ready automation.
The book closes by pointing you toward advanced data automation patterns, en-

suring this is a beginning rather than an end.

Who This Book Is For

This book is for PowerShell scripters, system administrators, DevOps engi-
neers, and automation professionals who want to add structured data storage to
their toolkit without the overhead of a client-server database. If you're comfortable
writing PowerShell scripts and want to level up your data management capabilities,
you're in the right place. No prior database experience is required—Chapter 5 cov-

ers exactly the SQL you need, and nothing you don't.

How This Book Is Structured

The sixteen chapters follow a deliberate progression from foundations to real-
world application. Chapters 1-3 set the stage. Chapters 4-8 build your core skills.
Chapters 9-12 tackle intermediate patterns like state management, scheduling, se-

curity, and error handling. Chapters 13-16 culminate in applied projects and for-

ward-looking guidance. The five appendices serve as ongoing references you'll re-
turn to long after your first read—including a SQL cheat sheet, reusable helper func-

tions, troubleshooting guides, and complete example projects.

Acknowledgments

No technical book is a solo endeavor. | owe deep gratitude to the PowerShell com-
munity—a remarkably generous group of professionals who share knowledge freely
and lift each other up. The creators and maintainers of SQLite deserve recognition
for building one of the most reliable pieces of software ever written. Thanks also to
the technical reviewers whose sharp eyes and honest feedback made this a better
book, and to every reader who has ever asked, "Is there something simpler than
SQL Server for my PowerShell scripts?" This book is the answer.

Whether you're tracking server inventory, logging automation results, manag-
ing configuration data, or building lightweight tools for your team, the combination
of PowerShell 7.x and SQLite will give you capabilities that are powerful, por-
table, and remarkably simple. Let's get started.

Author: Laszlo Bocso (MCT)

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Why PowerShell and SQLite Belong Together
SQLite Concepts for PowerShell Users
Preparing PowerShell 7.x for SQLite Work
Creating and Opening SQLite Databases
SQL Basics You Actually Need

Designing Simple SQLite Schemas
Executing SQL Queries from PowerShell
Working with Query Results as Objects
Using SQLite for Script State

Scheduled Automation with SQLite
Securing SQLite Databases

Transactions, Errors, and Recovery
Building a Data-Driven PowerShell Tool
Inventory, Reporting, and Auditing

Best Practices for PowerShell + SQLite

From Fundamentals to Advanced Data Automation

SQLite SQL Cheat Sheet

PowerShell SQLite Helper Functions
Common Errors and Fixes

Example Automation Projects

PowerShell Data Automation Roadmap

Page

18

36

53

72

92

112
132
149
173
202
219
239
262
282
307
326
346
366
386
406

Chapter 1: Why PowerShell
and SQLite Belong Together

Introduction

There is a quiet revolution happening in the world of system administration and
automation. For years, administrators and developers working in the PowerShell
ecosystem have relied on flat files, CSV exports, XML documents, and JSON struc-
tures to store and retrieve data. While these approaches have served their pur-
pose, they carry inherent limitations that become painfully obvious as projects
grow in complexity. Enter SQLite, a lightweight, serverless, self-contained relational
database engine that fits into the PowerShell workflow as naturally as a cmdlet fits
into a pipeline. This chapter explores why the combination of PowerShell and
SQLite is not merely convenient but genuinely powerful, and why understanding
this pairing will elevate your scripting and automation capabilities to a professional
level.

Before we dive into the specifics, let us establish a shared understanding. Pow-
erShell 7.x, the cross-platform evolution of Windows PowerShell, is a task au-
tomation framework built on the .NET runtime. It provides a command-line shell, a
scripting language, and a configuration management framework. SQLite is a C-lan-
guage library that implements a small, fast, self-contained, high-reliability, full-fea-
tured SQL relational database engine. Together, they form a partnership that ad-

dresses a gap many PowerShell practitioners have felt but may not have articulat-

ed: the need for structured, queryable, persistent data storage without the over-

head of a full database server.

1.1 The Evolution of PowerShell as a
Data-Driven Tool

PowerShell was born out of necessity. In the early 2000s, Microsoft recognized that
its command-line tools were falling behind the Unix world. Jeffrey Snover's Monad
Manifesto laid the groundwork for what would become PowerShell, a shell that
treated everything as an object rather than a stream of text. This object-oriented
approach was revolutionary. When you run Get-Process in PowerShell, you do
not receive lines of text that you must parse with regular expressions. You receive
rich .NET objects with properties and methods that you can inspect, filter, sort, and
manipulate directly.

Over the years, PowerShell has grown from a Windows-only administrative tool
into a cross-platform powerhouse. PowerShell 7.x runs on Windows, macOS, and
Linux. It integrates with Azure, AWS, and Google Cloud. It manages Active Directo-
ry, Exchange, SharePoint, and hundreds of other services through modules. But
throughout this evolution, one theme has remained constant: PowerShell is funda-
mentally a data-driven tool.

Consider the typical workflow of a PowerShell script. You gather data from one
or more sources, transform that data, make decisions based on it, and then output
results or take actions. This is the Extract-Transform-Load pattern that database pro-
fessionals have used for decades. PowerShell excels at the extraction and transfor-
mation phases. Where it has traditionally been weaker is in the persistent storage
phase, the part where you need to save data, query it later, relate it to other data,

and maintain its integrity over time.

This is where most PowerShell practitioners reach for CSV files, and this is

where the limitations begin to surface.

1.2 The Limitations of Flat File Storage
in Automation

Let us examine a common scenario. You are responsible for monitoring server
health across fifty machines. You write a PowerShell script that collects CPU usage,
memory consumption, disk space, and service status from each server. You need to
store this data so you can track trends over time, generate reports, and trigger
alerts when thresholds are exceeded.

The instinctive approach is to export the data to a CSV file using Export-Csv.
This works beautifully for the first day. By the end of the first week, you have seven
CSV files. By the end of the first month, you have thirty. Now you need to answer a
question: "Which servers had CPU usage above 90 percent more than three times
in the last two weeks?" Suddenly, you are writing PowerShell code to import multi-
ple CSV files, parse date strings, filter records, group results, and count occur-
rences. The code becomes complex, brittle, and slow.

The following table summarizes the key limitations of common flat file formats

when used for persistent data storage in PowerShell automation scenarios.

Storage Format Limitation Impact on PowerShell Work-
flows
CSsv No data types; everythingisa Requires manual type conver-
string sion with [int], [datetime],
and similar casts every time data
is imported

Csv

Ccsv

CSsv

JSON

JSON

XML

XML

Registry

Plain Text

No relational capability

No concurrent access safety

No indexing

Nested structures become un-
wieldy

No built-in query language

Verbose syntax increases file

size

Complex manipulation

Windows-only

No structure whatsoever

Cannot join data from different
collections without writing cus-
tom PowerShell logic

Multiple scripts writing to the
same file can cause corruption
or data loss

Searching large files requires
reading the entire file into mem-
ory with Tmport-Csv

Deep property access chains
like Sdata.servers.net-
work.interfaces.ipv4 are
fragile and hard to maintain

Filtering requires loading the
entire document and using
Where-Object

Large datasets produce enor-
mous files that are slow to parse
with [xml] or Select-Xml

Adding, updating, and deleting
nodes requires understanding

the XML DOM, which adds cog-
nitive overhead

Not available on macOS or Lin-
ux, breaking cross-platform
compatibility in PowerShell 7.x

Requires custom parsing logic
with -match, -replace, or
[regex] for every read opera-
tion

These limitations do not mean that CSV, JSON, and XML are bad formats. They are

excellent for data interchange, configuration, and simple logging. But they are not

databases, and when you try to use them as databases, you inherit all the problems

that databases were invented to solve.

1.3 What SQLite Brings to the Table

SQLite is not a new technology. It was created by D. Richard Hipp in the year 2000
and has since become the most widely deployed database engine in the world. It
runs inside every Android phone, every iPhone, every Mac, every Windows 10 and
later machine, every major web browser, and countless embedded devices. Its reli-
ability is legendary; the SQLite development team maintains 100 percent branch
test coverage with millions of test cases.

What makes SQLite uniquely suited to PowerShell work is its architecture. Un-
like SQL Server, PostgreSQL, or MySQL, SQLite does not require a server process.
There is no service to install, no port to configure, no authentication to manage,
and no daemon to monitor. A SQLite database is a single file on disk. You can cre-
ate it, query it, back it up by copying the file, and delete it when you are done. This
simplicity aligns perfectly with the PowerShell philosophy of getting things done
without unnecessary ceremony.

Here are the characteristics that make SQLite an ideal companion for Power-

Shell.

SQLite Characteristic Benefit for PowerShell Users
Serverless architecture No installation or configuration required; just load the as-
sembly and start working

Single-file database Easy to create, copy, move, and back up using standard
PowerShell file commands like Copy-Item

Zero configuration No connection strings with server names, ports, or creden-
tials for local use

ACID compliant Guarantees that your data remains consistent even if a
script terminates unexpectedly

Cross-platform Works identically on Windows, macOS, and Linux, match-
ing PowerShell 7.x's cross-platform nature

10

Full SQL support Provides SELECT, INSERT, UPDATE, DELETE, JOIN, GROUP
BY, subqueries, views, triggers, and more

Small footprint The entire engine is roughly 1 MB, trivial compared to any
server-based database

Public domain No licensing concerns, no cost, no restrictions on use in
commercial or government environments

Type affinity system Supports INTEGER, REAL, TEXT, BLOB, and NULL, provid-
ing meaningful data types without rigid enforcement

Built-in functions Offers date and time functions, string functions, aggregate
functions, and mathematical functions

When you combine these characteristics with PowerShell's pipeline, object model,
and scripting capabilities, you get a data management solution that is more power-
ful than flat files but simpler than a full database server. You get the ability to write
SQL queries against your automation data, to create indexes that make searches
fast, to define relationships between tables, and to ensure data integrity through

constraints and transactions.

1.4 Real-World Use Cases for the Pow-
erShell and SQLite Combination

To appreciate why PowerShell and SQLite belong together, let us examine several
real-world scenarios where this combination shines.

Inventory Management. System administrators often need to maintain an in-
ventory of hardware, software, and configurations across their environment. A
SQLite database can store server names, IP addresses, operating system versions,
installed software, hardware specifications, and configuration settings in properly
normalized tables. PowerShell scripts can update this inventory on a schedule us-

ing Invoke-Command to gather data remotely and SQL INSERT or UPDATE state-

11

ments to persist it. When you need to find all servers running a specific version
of .NET, a single SQL query returns the answer in milliseconds, regardless of
whether your inventory contains fifty or fifty thousand records.

Log Aggregation and Analysis. PowerShell scripts that monitor event logs,
application logs, or custom log sources can write parsed log entries into a SQLite
database. Because SQLite supports indexes, you can create indexes on timestamp
columns, severity levels, source names, or any other field you frequently query. This
transforms log analysis from a tedious exercise in file parsing into a straightforward
SQL query.

Configuration Drift Detection. You can capture the desired state of your sys-
tems in a SQLite database and then write PowerShell scripts that compare the cur-
rent state against the desired state. The relational nature of SQLite allows you to
model complex configurations with multiple related tables, something that would
be extremely awkward with flat files.

Report Generation. PowerShell scripts that generate reports for management
or compliance purposes benefit enormously from SQLite's aggregation functions.
Instead of writing complex PowerShell grouping and calculation logic, you can
write a SQL query with GROUP BY, COUNT, SUM, AVG, and other aggregate func-
tions, then format the results using PowerShell's Format-Table or export them
with Export-Csv.

Script State Persistence. Long-running or scheduled PowerShell scripts often
need to remember their state between executions. Which items have already been
processed? When was the last successful run? What was the last error? A SQLite
database provides a robust, queryable mechanism for persisting this state informa-
tion.

Testing and Development. When developing PowerShell modules or func-
tions that interact with databases, SQLite provides an excellent testing backend.

You can create an in-memory SQLite database that exists only for the duration of

12

your test, populate it with test data, run your code against it, and let it disappear

when the test completes. This eliminates the need for a test database server.

1.5 Comparing Approaches: Before
and After SQLite

To make the contrast concrete, consider a simple example. You want to store a list
of servers with their roles and last patch dates, then find all web servers that have
not been patched in the last 30 days.

The CSV Approach in PowerShell:

Writing data
Sservers = (@ (
[PSCustomObject]@{Name="'SRV0O1l'; Role='Web';
LastPatched='2024-11-15"}
[PSCustomObject]@{Name="SRV02'; Role='Database';
LastPatched='2024-12-01"}
[PSCustomObject]@{Name="'SRV03'; Role='Web';
LastPatched='2024-10-20"}
[PSCustomObject]@{Name="'SRV04'; Role='Web';
LastPatched='2024-12-10"}
)
Sservers | Export-Csv -Path "C:\Datal\servers.csv"

-NoTypeInformation

Reading and querying data
ScutoffDate = (Get-Date) .AddDays (-30)
Sresults = Import-Csv -Path "C:\Data\servers.csv" |
Where-0Object {
$.Role -eg 'Web' -and
[datetime]$.LastPatched -1t ScutoffDate
}

Sresults

13

Notice that you must manually cast the LastPatched string to a [datetime] ob-
ject because CSV files have no concept of data types. If someone edits the CSV file
and introduces an invalid date format, your script will throw a runtime error. If the
CSV file grows to contain thousands of records, every query requires reading the
entire file into memory.

The SQLite Approach in PowerShell:

Establishing a connection and creating the table
SconnectionString = "Data Source=C:\Data\servers.db"
Sconnection = New-Object
System.Data.SQLite.SQLiteConnection (SconnectionString)

Sconnection.Open ()

ScreateTable = S$Sconnection.CreateCommand ()
ScreateTable.CommandText = @"
CREATE TABLE IF NOT EXISTS Servers (
Name TEXT PRIMARY KEY,
Role TEXT NOT NULL,
LastPatched TEXT NOT NULL

"@
ScreateTable.ExecuteNonQuery ()

Inserting data

SinsertCmd = Sconnection.CreateCommand ()

SinsertCmd.CommandText = "INSERT OR REPLACE INTO Servers (Name,
Role, LastPatched) VALUES (@Name, (@Role, @LastPatched)"
SinsertCmd.Parameters.AddWithvValue ("@Name", "SRV0O1l")
SinsertCmd.Parameters.AddWithValue ("@Role", "Web")
SinsertCmd.Parameters.AddWithValue ("@LastPatched", "2024-11-15")

SinsertCmd.ExecuteNonQuery ()

Querying data

SqueryCmd = Sconnection.CreateCommand ()

SqueryCmd.CommandText = "SELECT * FROM Servers WHERE Role = 'Web'
AND LastPatched < date('now', '-30 days')"

Sreader = SqueryCmd.ExecuteReader ()

while (Sreader.Read()) {

14

Write-Output "Server: $($Sreader['Name']), Last Patched: $
(Sreader['LastPatched'])"
}

Sconnection.Close ()

The SQLite approach requires more initial setup, but the query itself is a single SQL
statement that handles date comparison natively, runs against an indexed data
store, and does not require loading the entire dataset into memory. As your data
grows, the SQL approach scales gracefully while the CSV approach degrades.
Note: The code examples above use the System.Data.SQLite .NET assem-
bly. In later chapters, we will explore how to install this assembly, how to use the
PSSQLite module that wraps these operations in PowerShell-friendly cmdlets, and
how to build your own helper functions. For now, the purpose is to illustrate the

conceptual difference between flat file and database approaches.

1.6 Setting Expectations for This Book

This book is designed for PowerShell practitioners who want to add structured data
management to their toolkit without the overhead of learning database administra-
tion. You do not need prior experience with SQL or databases. Each chapter builds
on the previous one, starting with installation and basic operations, progressing
through advanced queries and data modeling, and culminating in real-world
projects that demonstrate the full power of the PowerShell and SQLite combina-
tion.

Throughout this book, every concept is presented through the lens of Power-
Shell. When we discuss SQL syntax, we show how to execute it from PowerShell.

When we discuss database design, we frame it in terms of the PowerShell objects

15

and data structures you already understand. When we discuss performance opti-
mization, we measure it using PowerShell's Measure-Command cmdlet.
The following table outlines what you can expect to learn as you progress

through the chapters.

Topic Area What You Will Learn PowerShell Skills Ap-
plied

Installation and Setup How to obtain and config- Module installation with
ure SQLite for use with Install-Module, assem-
PowerShell 7.x on any plat- bly loading with Add-Type
form

Basic Operations Creating databases, tables, Working with .NET objects,
inserting data, and running string formatting, pipeline
queries output

Data Modeling Designing tables and rela- Understanding PSCustom-
tionships for real au- Object structures and how
tomation scenarios they map to database rows

Advanced Queries Joins, subqueries, aggre- Comparing SQL opera-
gations, and window func- tions to equivalent Power-
tions Shell pipeline operations

Transactions and Error Ensuring data integrity and Try-Catch-Finally blocks,

Handling handling failures gracefully ErrorAction preferences,

transaction management

Performance Optimization Indexing strategies, bulk Measure-Command, profil-

operations, and query ing, batch processing tech-
planning niques

Real-World Projects Complete solutions forin- Combining all skills into
ventory, logging, report- production-ready Power-
ing, and more Shell scripts and modules

16

Summary

PowerShell and SQLite belong together because they share a common philoso-
phy: provide maximum capability with minimum overhead. PowerShell gives you
the ability to automate, transform, and orchestrate. SQLite gives you the ability to
persist, query, and protect your data. Together, they fill a gap that flat files cannot
address and server-based databases make unnecessarily complex.

As you move through this book, you will discover that adding SQLite to your
PowerShell workflow is not a dramatic shift in how you work. It is a natural exten-
sion of what you already do. You will still write PowerShell scripts. You will still use
the pipeline. You will still work with objects. But you will have a powerful, reliable,
standards-based data store behind your scripts, one that scales from a simple con-
figuration file replacement to a full-featured local database supporting complex
queries and relationships.

The journey begins in the next chapter, where we will install everything you

need and create your first SQLite database from the PowerShell command line.

17

Chapter 2: SQLite Concepts
for PowerShell Users

Introduction

Before you can effectively harness the power of SQLite within your PowerShell
scripts and automation workflows, you need to understand the fundamental con-
cepts that make SQLite unique among database systems. This chapter bridges the
gap between traditional database knowledge and the practical reality of working
with SQLite through PowerShell. Whether you are a systems administrator who has
never touched a database or a developer transitioning from SQL Server, this chap-
ter will ground you in the essential concepts you need to write effective PowerShell
scripts that interact with SQLite databases.

SQLite is not merely a smaller version of enterprise databases like SQL Server
or PostgreSQL. It operates on a fundamentally different philosophy, and under-
standing that philosophy will directly influence how you design your PowerShell
solutions. Throughout this chapter, we will examine SQLite's architecture, its type
system, its approach to data storage, and how each of these concepts maps direct-

ly to the PowerShell environment you already know.

18

2.1 What is SQLite and Why Use It with
PowerShell

SQLite is a self-contained, serverless, zero-configuration, transactional SQL data-
base engine. Unlike SQL Server, MySQL, or PostgreSQL, SQLite does not require a
separate server process running in the background. The entire database is stored
in a single file on disk, and your PowerShell script communicates with it directly
through a library rather than over a network connection.

This architecture makes SQLite an extraordinarily powerful companion for Pow-
erShell scripting. Consider the scenarios where you currently use CSV files, XML
documents, or JSON files to store structured data. SQLite offers all the querying
power of SQL while maintaining the simplicity of a single file that you can copy,
move, back up, or email just like any other file.

The following table outlines the key characteristics of SQLite and how they

benefit PowerShell users:

Characteristic Description Benefit for PowerShell Users
Serverless No separate database server No installation overhead;
process is required scripts can run on any machine

without database server setup

Self-Contained The entire database engineis Easy to distribute with Power-
a single library Shell modules; no external de-
pendencies to manage

Zero-Configuration No setup, administration, or ~ PowerShell scripts can create
tuning required and use databases immediate-
ly without DBA involvement

Single File The entire database is stored Easy to back up, copy, or trans-
in one cross-platform file fer using standard PowerShell
file commands like Copy-ltem

19

Transactional Full ACID compliance for data Safe concurrent access from
integrity multiple PowerShell runspaces
or scheduled tasks

Cross-Platform Works on Windows, Linux, and Perfect match for PowerShell
macQOS 7.x, which also runs on all
three platforms

When you compare this to the approach many PowerShell scripters take with flat
files, the advantages become clear. A CSV file has no built-in indexing, no query
language beyond what PowerShell provides through Where-Object and Sort-
Object, and no transactional safety if your script crashes mid-write. SQLite gives
you all of these features while remaining almost as simple to work with as a flat file.

Note: SQLite is not a replacement for enterprise database systems. If you need
multi-user concurrent write access from dozens of clients, network-accessible data-
base services, or the advanced features of SQL Server, those tools remain the right
choice. SQLite excels in scenarios where PowerShell scripts need local, structured

data storage with powerful querying capabilities.

2.2 Understanding the SQLite Archi-
tecture

To write effective PowerShell scripts that interact with SQLite, you need to under-
stand how SQLite organizes and manages data internally. This understanding will
help you make better decisions about database design and troubleshoot issues

when they arise.

20

The Database File

Every SQLite database is a single ordinary file on the filesystem. When you create a
database in your PowerShell script, you are creating a file. When you query a data-
base, you are reading a file. This is a profound simplification compared to client-
server database systems.

The database file has a well-defined format that begins with a 100-byte header.
This header contains metadata about the database, including the page size, file
format versions, and the size of the database in pages. The rest of the file is divided

into fixed-size pages, typically 4096 bytes each.

Creating a SQLite database is as simple as specifying a file
path
SdatabasePath = "C:\Data\inventory.db"

When you open a connection to a non-existent file, SQLite
creates it
This i1s equivalent to creating a new, empty database

SconnectionString = "Data Source=$databasePath;Version=3;"

Pages and the B-Tree Structure

SQLite organizes data within the database file using a B-tree data structure. There

are two types of B-trees used internally:

B-Tree Type Purpose PowerShell Relevance

Table B-Tree Stores actual table data with inte- Every table you create from Pow-

ger rowid as the key erShell uses one of these
Index B-Tree Stores index entries for fast Created when you add indexes to
lookups improve query performance in

your scripts

21

Each page in the database file belongs to one of these B-trees, or it serves as an
overflow page for large data, or it is a free page that was previously used but is
now available for reuse.

Understanding this structure matters for PowerShell users because it explains
why certain operations are fast and others are slow. When your PowerShell script
queries a table by its rowid or primary key, SQLite can navigate the B-tree efficient-
ly. When your script performs a full table scan with a complex WHERE clause on an

unindexed column, SQLite must read every page of the table's B-tree.

The Journal and Write-Ahead Log

When your PowerShell script modifies data in a SQLite database, the changes do
not go directly into the main database file. SQLite uses one of two mechanisms to
ensure data integrity:

Rollback Journal Mode: Before modifying a page, SQLite copies the original
page content to a separate journal file. If the operation fails or your PowerShell
script crashes, SQLite can restore the original pages from the journal.

Write-Ahead Log (WAL) Mode: Instead of writing changes to the main data-
base file, SQLite appends them to a separate WAL file. Readers can continue read-
ing the main database file while a writer appends to the WAL. This mode generally
provides better concurrency, which matters when multiple PowerShell processes

might access the same database.
You can set the journal mode from PowerShell when configuring
your database

WAL mode is often preferred for better concurrent access

SpragmaCommand = "PRAGMA journal mode=WAL;"

22

Note: The WAL mode is particularly valuable when you have PowerShell scheduled
tasks that might overlap in execution, or when you are running background jobs

that access the same SQLite database as your interactive session.

2.3 SQLite Data Types and PowerShell
Type Mapping

One of the most distinctive features of SQLite is its type system, and understanding

it is critical for PowerShell users who are accustomed to the strongly-typed world of

.NET objects.

SQLite Type Affinity

Unlike SQL Server, where a column declared as INTEGER will reject any attempt to
store a string, SQLite uses a concept called "type affinity." The declared type of a
column is a recommendation, not a strict requirement. SQLite can store any type of
value in any column, regardless of the declared type.

SQLite has five storage classes:

Storage Class Description PowerShell .NET Equivalent

NULL Represents a missing or unknown $null
value

INTEGER A signed integer stored in 1,2,3, [System.Int64] or [long]
4,6, or 8 bytes

REAL Afloating-point number stored [System.Double] or [dou-
as an 8-byte IEEE float ble]

23

TEXT A text string stored using the [System.String] or

database encoding (UTF-8, [string]
UTF-16)

BLOB Binary data stored exactly asin- [System.Byte[]] or
put [bytel]]

When you declare a column type in your CREATE TABLE statement, SQLite assigns
one of five type affinities to that column: TEXT, NUMERIC, INTEGER, REAL, or
BLOB. The affinity determines how SQLite attempts to convert values stored in that
column.

The following table shows how common SQL type declarations map to SQLite

affinities:

Declared Column Type Resulting Affinity Behavior

INT, INTEGER, BIGINT, SMALL- INTEGER Values are stored as integers

INT when possible

CHAR, VARCHAR, TEXT, CLOB TEXT Values are stored as text
strings

REAL, FLOAT, DOUBLE REAL Values are stored as floating-
point numbers

BLOB, no type specified BLOB (NONE) Values are stored exactly as
provided

NUMERIC, DECIMAL, BOOL- NUMERIC Values are stored as integer or

EAN, DATE, DATETIME real if possible, otherwise as
text

Mapping Between PowerShell and SQLite Types

When you send data from PowerShell to SQLite or retrieve data from SQLite into
PowerShell, type conversion happens at the boundary. Understanding this conver-

sion is essential for writing reliable scripts.

24

PowerShell variables and their SQLite storage behavior

SintegerValue = 42 # Stored as INTEGER in SQLite
SfloatValue = 3.14159 # Stored as REAL in SQLite
SstringValue = "Hello World" # Stored as TEXT in SQLite
$nullvValue = Snull # Stored as NULL in SQLite
SbinaryValue = [byte[]] (0x48, 0x65, 0x6C, 0x6C, O0x6F) # Stored

as BLOB in SQLite

When retrieving data from SQLite back into PowerShell, the reverse mapping oc-
curs. INTEGER values become [long] objects, REAL values become [double]
objects, TEXT values become [string] objects, and BLOB values become
[byte[]] arrays.

Note: One common pitfall for PowerShell users is the handling of dates. SQLite
has no native DATE or DATETIME storage class. Dates are typically stored as TEXT
in ISO 8601 format (such as "2024-01-15 14:30:00"), as INTEGER representing Unix
timestamps, or as REAL representing Julian day numbers. When working with
dates in PowerShell, you must explicitly convert [datetime] objects to one of

these formats before storing them, and convert them back when retrieving.

Storing a date as ISO 8601 text
ScurrentDate = Get-Date -Format "yyyy-MM-dd HH:mm:ss"
ScurrentDate is now a string like "2024-01-15 14:30:00"

Storing a date as Unix timestamp
SunixTimestamp = [long] (Get-Date -UFormat %s)

SunixTimestamp is now an integer like 1705312200

Retrieving and converting back to PowerShell datetime
SretrievedDateString = "2024-01-15 14:30:00"

SdateTimeObject = [datetime]::ParseExact (SretrievedDateString,
"yyyy-MM-dd HH:mm:ss", S$Snull)

25

