
1

PowerShell 7.x and SQLite
Fundamentals

Lightweight Data Storage and Au-
tomation with PowerShell and SQLite

2

Preface

Every PowerShell scripter eventually hits the same wall. You start with simple

scripts, graduate to managing configuration in CSV files and JSON, and then one

day you realize your automation needs have outgrown flat files. You need some-

thing more structured, more reliable, and more queryable—but standing up a full

SQL Server instance feels like bringing a sledgehammer to hang a picture frame.

That's exactly where SQLite changes everything.

PowerShell 7.x and SQLite Fundamentals was written for the PowerShell practi-

tioner who needs a lightweight, zero-configuration data storage solution that fits

naturally into the scripting and automation workflows they already know. SQLite is

the most widely deployed database engine in the world, and yet it remains surpris-

ingly underutilized in the PowerShell ecosystem. This book aims to change that.

What This Book Is About
At its core, this is a PowerShell book. Every concept, every technique, and every ex-

ample is framed through the lens of PowerShell 7.x. You won't find abstract data-

base theory here—you'll find practical, hands-on guidance for integrating SQLite

into your PowerShell scripts, tools, and automation pipelines.

We begin by establishing why PowerShell and SQLite are such a natural pairing

and then walk through the essential SQLite concepts that matter most to Power-

Shell users. From there, we move into the practical work: setting up your Power-

Shell environment, creating databases, writing SQL queries, and—critically—working

with query results as the rich PowerShell objects you're accustomed to.

3

The middle chapters are where things get particularly exciting. You'll learn how

to use SQLite to persist script state across sessions, power scheduled automation

tasks, handle transactions and error recovery gracefully, and secure your data

stores. These are the real-world challenges that PowerShell professionals face daily,

and SQLite provides elegant solutions to all of them.

The final chapters bring everything together. You'll build a complete data-dri-

ven PowerShell tool, implement inventory and reporting solutions, and internalize

the best practices that separate fragile scripts from production-ready automation.

The book closes by pointing you toward advanced data automation patterns, en-

suring this is a beginning rather than an end.

Who This Book Is For
This book is for PowerShell scripters, system administrators, DevOps engi-

neers, and automation professionals who want to add structured data storage to

their toolkit without the overhead of a client-server database. If you're comfortable

writing PowerShell scripts and want to level up your data management capabilities,

you're in the right place. No prior database experience is required—Chapter 5 cov-

ers exactly the SQL you need, and nothing you don't.

How This Book Is Structured
The sixteen chapters follow a deliberate progression from foundations to real-

world application. Chapters 1–3 set the stage. Chapters 4–8 build your core skills.

Chapters 9–12 tackle intermediate patterns like state management, scheduling, se-

curity, and error handling. Chapters 13–16 culminate in applied projects and for-

4

ward-looking guidance. The five appendices serve as ongoing references you'll re-

turn to long after your first read—including a SQL cheat sheet, reusable helper func-

tions, troubleshooting guides, and complete example projects.

Acknowledgments
No technical book is a solo endeavor. I owe deep gratitude to the PowerShell com-

munity—a remarkably generous group of professionals who share knowledge freely

and lift each other up. The creators and maintainers of SQLite deserve recognition

for building one of the most reliable pieces of software ever written. Thanks also to

the technical reviewers whose sharp eyes and honest feedback made this a better

book, and to every reader who has ever asked, "Is there something simpler than

SQL Server for my PowerShell scripts?" This book is the answer.

Whether you're tracking server inventory, logging automation results, manag-

ing configuration data, or building lightweight tools for your team, the combination

of PowerShell 7.x and SQLite will give you capabilities that are powerful, por-

table, and remarkably simple. Let's get started.

Author: Laszlo Bocso (MCT)

5

Table of Contents

Chapter Title Page

1 Why PowerShell and SQLite Belong Together 6

2 SQLite Concepts for PowerShell Users 18

3 Preparing PowerShell 7.x for SQLite Work 36

4 Creating and Opening SQLite Databases 53

5 SQL Basics You Actually Need 72

6 Designing Simple SQLite Schemas 92

7 Executing SQL Queries from PowerShell 112

8 Working with Query Results as Objects 132

9 Using SQLite for Script State 149

10 Scheduled Automation with SQLite 173

11 Securing SQLite Databases 202

12 Transactions, Errors, and Recovery 219

13 Building a Data-Driven PowerShell Tool 239

14 Inventory, Reporting, and Auditing 262

15 Best Practices for PowerShell + SQLite 282

16 From Fundamentals to Advanced Data Automation 307

App SQLite SQL Cheat Sheet 326

App PowerShell SQLite Helper Functions 346

App Common Errors and Fixes 366

App Example Automation Projects 386

App PowerShell Data Automation Roadmap 406

6

Chapter 1: Why PowerShell
and SQLite Belong Together

Introduction
There is a quiet revolution happening in the world of system administration and

automation. For years, administrators and developers working in the PowerShell

ecosystem have relied on flat files, CSV exports, XML documents, and JSON struc-

tures to store and retrieve data. While these approaches have served their pur-

pose, they carry inherent limitations that become painfully obvious as projects

grow in complexity. Enter SQLite, a lightweight, serverless, self-contained relational

database engine that fits into the PowerShell workflow as naturally as a cmdlet fits

into a pipeline. This chapter explores why the combination of PowerShell and

SQLite is not merely convenient but genuinely powerful, and why understanding

this pairing will elevate your scripting and automation capabilities to a professional

level.

Before we dive into the specifics, let us establish a shared understanding. Pow-

erShell 7.x, the cross-platform evolution of Windows PowerShell, is a task au-

tomation framework built on the .NET runtime. It provides a command-line shell, a

scripting language, and a configuration management framework. SQLite is a C-lan-

guage library that implements a small, fast, self-contained, high-reliability, full-fea-

tured SQL relational database engine. Together, they form a partnership that ad-

dresses a gap many PowerShell practitioners have felt but may not have articulat-

7

ed: the need for structured, queryable, persistent data storage without the over-

head of a full database server.

1.1 The Evolution of PowerShell as a
Data-Driven Tool
PowerShell was born out of necessity. In the early 2000s, Microsoft recognized that

its command-line tools were falling behind the Unix world. Jeffrey Snover's Monad

Manifesto laid the groundwork for what would become PowerShell, a shell that

treated everything as an object rather than a stream of text. This object-oriented

approach was revolutionary. When you run Get-Process in PowerShell, you do

not receive lines of text that you must parse with regular expressions. You receive

rich .NET objects with properties and methods that you can inspect, filter, sort, and

manipulate directly.

Over the years, PowerShell has grown from a Windows-only administrative tool

into a cross-platform powerhouse. PowerShell 7.x runs on Windows, macOS, and

Linux. It integrates with Azure, AWS, and Google Cloud. It manages Active Directo-

ry, Exchange, SharePoint, and hundreds of other services through modules. But

throughout this evolution, one theme has remained constant: PowerShell is funda-

mentally a data-driven tool.

Consider the typical workflow of a PowerShell script. You gather data from one

or more sources, transform that data, make decisions based on it, and then output

results or take actions. This is the Extract-Transform-Load pattern that database pro-

fessionals have used for decades. PowerShell excels at the extraction and transfor-

mation phases. Where it has traditionally been weaker is in the persistent storage

phase, the part where you need to save data, query it later, relate it to other data,

and maintain its integrity over time.

8

This is where most PowerShell practitioners reach for CSV files, and this is

where the limitations begin to surface.

1.2 The Limitations of Flat File Storage
in Automation
Let us examine a common scenario. You are responsible for monitoring server

health across fifty machines. You write a PowerShell script that collects CPU usage,

memory consumption, disk space, and service status from each server. You need to

store this data so you can track trends over time, generate reports, and trigger

alerts when thresholds are exceeded.

The instinctive approach is to export the data to a CSV file using Export-Csv.

This works beautifully for the first day. By the end of the first week, you have seven

CSV files. By the end of the first month, you have thirty. Now you need to answer a

question: "Which servers had CPU usage above 90 percent more than three times

in the last two weeks?" Suddenly, you are writing PowerShell code to import multi-

ple CSV files, parse date strings, filter records, group results, and count occur-

rences. The code becomes complex, brittle, and slow.

The following table summarizes the key limitations of common flat file formats

when used for persistent data storage in PowerShell automation scenarios.

Storage Format Limitation Impact on PowerShell Work-
flows

CSV No data types; everything is a
string

Requires manual type conver-
sion with [int], [datetime],
and similar casts every time data
is imported

9

CSV No relational capability Cannot join data from different
collections without writing cus-
tom PowerShell logic

CSV No concurrent access safety Multiple scripts writing to the
same file can cause corruption
or data loss

CSV No indexing Searching large files requires
reading the entire file into mem-
ory with Import-Csv

JSON Nested structures become un-
wieldy

Deep property access chains
like $data.servers.net-
work.interfaces.ipv4 are
fragile and hard to maintain

JSON No built-in query language Filtering requires loading the
entire document and using
Where-Object

XML Verbose syntax increases file
size

Large datasets produce enor-
mous files that are slow to parse
with [xml] or Select-Xml

XML Complex manipulation Adding, updating, and deleting
nodes requires understanding
the XML DOM, which adds cog-
nitive overhead

Registry Windows-only Not available on macOS or Lin-
ux, breaking cross-platform
compatibility in PowerShell 7.x

Plain Text No structure whatsoever Requires custom parsing logic
with -match, -replace, or
[regex] for every read opera-
tion

These limitations do not mean that CSV, JSON, and XML are bad formats. They are

excellent for data interchange, configuration, and simple logging. But they are not

databases, and when you try to use them as databases, you inherit all the problems

that databases were invented to solve.

10

1.3 What SQLite Brings to the Table
SQLite is not a new technology. It was created by D. Richard Hipp in the year 2000

and has since become the most widely deployed database engine in the world. It

runs inside every Android phone, every iPhone, every Mac, every Windows 10 and

later machine, every major web browser, and countless embedded devices. Its reli-

ability is legendary; the SQLite development team maintains 100 percent branch

test coverage with millions of test cases.

What makes SQLite uniquely suited to PowerShell work is its architecture. Un-

like SQL Server, PostgreSQL, or MySQL, SQLite does not require a server process.

There is no service to install, no port to configure, no authentication to manage,

and no daemon to monitor. A SQLite database is a single file on disk. You can cre-

ate it, query it, back it up by copying the file, and delete it when you are done. This

simplicity aligns perfectly with the PowerShell philosophy of getting things done

without unnecessary ceremony.

Here are the characteristics that make SQLite an ideal companion for Power-

Shell.

SQLite Characteristic Benefit for PowerShell Users

Serverless architecture No installation or configuration required; just load the as-
sembly and start working

Single-file database Easy to create, copy, move, and back up using standard
PowerShell file commands like Copy-Item

Zero configuration No connection strings with server names, ports, or creden-
tials for local use

ACID compliant Guarantees that your data remains consistent even if a
script terminates unexpectedly

Cross-platform Works identically on Windows, macOS, and Linux, match-
ing PowerShell 7.x's cross-platform nature

11

Full SQL support Provides SELECT, INSERT, UPDATE, DELETE, JOIN, GROUP
BY, subqueries, views, triggers, and more

Small footprint The entire engine is roughly 1 MB, trivial compared to any
server-based database

Public domain No licensing concerns, no cost, no restrictions on use in
commercial or government environments

Type affinity system Supports INTEGER, REAL, TEXT, BLOB, and NULL, provid-
ing meaningful data types without rigid enforcement

Built-in functions Offers date and time functions, string functions, aggregate
functions, and mathematical functions

When you combine these characteristics with PowerShell's pipeline, object model,

and scripting capabilities, you get a data management solution that is more power-

ful than flat files but simpler than a full database server. You get the ability to write

SQL queries against your automation data, to create indexes that make searches

fast, to define relationships between tables, and to ensure data integrity through

constraints and transactions.

1.4 Real-World Use Cases for the Pow-
erShell and SQLite Combination
To appreciate why PowerShell and SQLite belong together, let us examine several

real-world scenarios where this combination shines.

Inventory Management. System administrators often need to maintain an in-

ventory of hardware, software, and configurations across their environment. A

SQLite database can store server names, IP addresses, operating system versions,

installed software, hardware specifications, and configuration settings in properly

normalized tables. PowerShell scripts can update this inventory on a schedule us-

ing Invoke-Command to gather data remotely and SQL INSERT or UPDATE state-

12

ments to persist it. When you need to find all servers running a specific version

of .NET, a single SQL query returns the answer in milliseconds, regardless of

whether your inventory contains fifty or fifty thousand records.

Log Aggregation and Analysis. PowerShell scripts that monitor event logs,

application logs, or custom log sources can write parsed log entries into a SQLite

database. Because SQLite supports indexes, you can create indexes on timestamp

columns, severity levels, source names, or any other field you frequently query. This

transforms log analysis from a tedious exercise in file parsing into a straightforward

SQL query.

Configuration Drift Detection. You can capture the desired state of your sys-

tems in a SQLite database and then write PowerShell scripts that compare the cur-

rent state against the desired state. The relational nature of SQLite allows you to

model complex configurations with multiple related tables, something that would

be extremely awkward with flat files.

Report Generation. PowerShell scripts that generate reports for management

or compliance purposes benefit enormously from SQLite's aggregation functions.

Instead of writing complex PowerShell grouping and calculation logic, you can

write a SQL query with GROUP BY, COUNT, SUM, AVG, and other aggregate func-

tions, then format the results using PowerShell's Format-Table or export them

with Export-Csv.

Script State Persistence. Long-running or scheduled PowerShell scripts often

need to remember their state between executions. Which items have already been

processed? When was the last successful run? What was the last error? A SQLite

database provides a robust, queryable mechanism for persisting this state informa-

tion.

Testing and Development. When developing PowerShell modules or func-

tions that interact with databases, SQLite provides an excellent testing backend.

You can create an in-memory SQLite database that exists only for the duration of

13

your test, populate it with test data, run your code against it, and let it disappear

when the test completes. This eliminates the need for a test database server.

1.5 Comparing Approaches: Before
and After SQLite
To make the contrast concrete, consider a simple example. You want to store a list

of servers with their roles and last patch dates, then find all web servers that have

not been patched in the last 30 days.

The CSV Approach in PowerShell:

Writing data

$servers = @(

 [PSCustomObject]@{Name='SRV01'; Role='Web';

LastPatched='2024-11-15'}

 [PSCustomObject]@{Name='SRV02'; Role='Database';

LastPatched='2024-12-01'}

 [PSCustomObject]@{Name='SRV03'; Role='Web';

LastPatched='2024-10-20'}

 [PSCustomObject]@{Name='SRV04'; Role='Web';

LastPatched='2024-12-10'}

)

$servers | Export-Csv -Path "C:\Data\servers.csv"

-NoTypeInformation

Reading and querying data

$cutoffDate = (Get-Date).AddDays(-30)

$results = Import-Csv -Path "C:\Data\servers.csv" |

 Where-Object {

 $_.Role -eq 'Web' -and

 [datetime]$_.LastPatched -lt $cutoffDate

 }

$results

14

Notice that you must manually cast the LastPatched string to a [datetime] ob-

ject because CSV files have no concept of data types. If someone edits the CSV file

and introduces an invalid date format, your script will throw a runtime error. If the

CSV file grows to contain thousands of records, every query requires reading the

entire file into memory.

The SQLite Approach in PowerShell:

Establishing a connection and creating the table

$connectionString = "Data Source=C:\Data\servers.db"

$connection = New-Object

System.Data.SQLite.SQLiteConnection($connectionString)

$connection.Open()

$createTable = $connection.CreateCommand()

$createTable.CommandText = @"

 CREATE TABLE IF NOT EXISTS Servers (

 Name TEXT PRIMARY KEY,

 Role TEXT NOT NULL,

 LastPatched TEXT NOT NULL

)

"@

$createTable.ExecuteNonQuery()

Inserting data

$insertCmd = $connection.CreateCommand()

$insertCmd.CommandText = "INSERT OR REPLACE INTO Servers (Name,

Role, LastPatched) VALUES (@Name, @Role, @LastPatched)"

$insertCmd.Parameters.AddWithValue("@Name", "SRV01")

$insertCmd.Parameters.AddWithValue("@Role", "Web")

$insertCmd.Parameters.AddWithValue("@LastPatched", "2024-11-15")

$insertCmd.ExecuteNonQuery()

Querying data

$queryCmd = $connection.CreateCommand()

$queryCmd.CommandText = "SELECT * FROM Servers WHERE Role = 'Web'

AND LastPatched < date('now', '-30 days')"

$reader = $queryCmd.ExecuteReader()

while ($reader.Read()) {

15

 Write-Output "Server: $($reader['Name']), Last Patched: $

($reader['LastPatched'])"

}

$connection.Close()

The SQLite approach requires more initial setup, but the query itself is a single SQL

statement that handles date comparison natively, runs against an indexed data

store, and does not require loading the entire dataset into memory. As your data

grows, the SQL approach scales gracefully while the CSV approach degrades.

Note: The code examples above use the System.Data.SQLite .NET assem-

bly. In later chapters, we will explore how to install this assembly, how to use the

PSSQLite module that wraps these operations in PowerShell-friendly cmdlets, and

how to build your own helper functions. For now, the purpose is to illustrate the

conceptual difference between flat file and database approaches.

1.6 Setting Expectations for This Book
This book is designed for PowerShell practitioners who want to add structured data

management to their toolkit without the overhead of learning database administra-

tion. You do not need prior experience with SQL or databases. Each chapter builds

on the previous one, starting with installation and basic operations, progressing

through advanced queries and data modeling, and culminating in real-world

projects that demonstrate the full power of the PowerShell and SQLite combina-

tion.

Throughout this book, every concept is presented through the lens of Power-

Shell. When we discuss SQL syntax, we show how to execute it from PowerShell.

When we discuss database design, we frame it in terms of the PowerShell objects

16

and data structures you already understand. When we discuss performance opti-

mization, we measure it using PowerShell's Measure-Command cmdlet.

The following table outlines what you can expect to learn as you progress

through the chapters.

Topic Area What You Will Learn PowerShell Skills Ap-
plied

Installation and Setup How to obtain and config-
ure SQLite for use with
PowerShell 7.x on any plat-
form

Module installation with
Install-Module, assem-
bly loading with Add-Type

Basic Operations Creating databases, tables,
inserting data, and running
queries

Working with .NET objects,
string formatting, pipeline
output

Data Modeling Designing tables and rela-
tionships for real au-
tomation scenarios

Understanding PSCustom-
Object structures and how
they map to database rows

Advanced Queries Joins, subqueries, aggre-
gations, and window func-
tions

Comparing SQL opera-
tions to equivalent Power-
Shell pipeline operations

Transactions and Error
Handling

Ensuring data integrity and
handling failures gracefully

Try-Catch-Finally blocks,
ErrorAction preferences,
transaction management

Performance Optimization Indexing strategies, bulk
operations, and query
planning

Measure-Command, profil-
ing, batch processing tech-
niques

Real-World Projects Complete solutions for in-
ventory, logging, report-
ing, and more

Combining all skills into
production-ready Power-
Shell scripts and modules

17

Summary
PowerShell and SQLite belong together because they share a common philoso-

phy: provide maximum capability with minimum overhead. PowerShell gives you

the ability to automate, transform, and orchestrate. SQLite gives you the ability to

persist, query, and protect your data. Together, they fill a gap that flat files cannot

address and server-based databases make unnecessarily complex.

As you move through this book, you will discover that adding SQLite to your

PowerShell workflow is not a dramatic shift in how you work. It is a natural exten-

sion of what you already do. You will still write PowerShell scripts. You will still use

the pipeline. You will still work with objects. But you will have a powerful, reliable,

standards-based data store behind your scripts, one that scales from a simple con-

figuration file replacement to a full-featured local database supporting complex

queries and relationships.

The journey begins in the next chapter, where we will install everything you

need and create your first SQLite database from the PowerShell command line.

18

Chapter 2: SQLite Concepts
for PowerShell Users

Introduction
Before you can effectively harness the power of SQLite within your PowerShell

scripts and automation workflows, you need to understand the fundamental con-

cepts that make SQLite unique among database systems. This chapter bridges the

gap between traditional database knowledge and the practical reality of working

with SQLite through PowerShell. Whether you are a systems administrator who has

never touched a database or a developer transitioning from SQL Server, this chap-

ter will ground you in the essential concepts you need to write effective PowerShell

scripts that interact with SQLite databases.

SQLite is not merely a smaller version of enterprise databases like SQL Server

or PostgreSQL. It operates on a fundamentally different philosophy, and under-

standing that philosophy will directly influence how you design your PowerShell

solutions. Throughout this chapter, we will examine SQLite's architecture, its type

system, its approach to data storage, and how each of these concepts maps direct-

ly to the PowerShell environment you already know.

19

2.1 What is SQLite and Why Use It with
PowerShell
SQLite is a self-contained, serverless, zero-configuration, transactional SQL data-

base engine. Unlike SQL Server, MySQL, or PostgreSQL, SQLite does not require a

separate server process running in the background. The entire database is stored

in a single file on disk, and your PowerShell script communicates with it directly

through a library rather than over a network connection.

This architecture makes SQLite an extraordinarily powerful companion for Pow-

erShell scripting. Consider the scenarios where you currently use CSV files, XML

documents, or JSON files to store structured data. SQLite offers all the querying

power of SQL while maintaining the simplicity of a single file that you can copy,

move, back up, or email just like any other file.

The following table outlines the key characteristics of SQLite and how they

benefit PowerShell users:

Characteristic Description Benefit for PowerShell Users

Serverless No separate database server
process is required

No installation overhead;
scripts can run on any machine
without database server setup

Self-Contained The entire database engine is
a single library

Easy to distribute with Power-
Shell modules; no external de-
pendencies to manage

Zero-Configuration No setup, administration, or
tuning required

PowerShell scripts can create
and use databases immediate-
ly without DBA involvement

Single File The entire database is stored
in one cross-platform file

Easy to back up, copy, or trans-
fer using standard PowerShell
file commands like Copy-Item

20

Transactional Full ACID compliance for data
integrity

Safe concurrent access from
multiple PowerShell runspaces
or scheduled tasks

Cross-Platform Works on Windows, Linux, and
macOS

Perfect match for PowerShell
7.x, which also runs on all
three platforms

When you compare this to the approach many PowerShell scripters take with flat

files, the advantages become clear. A CSV file has no built-in indexing, no query

language beyond what PowerShell provides through Where-Object and Sort-

Object, and no transactional safety if your script crashes mid-write. SQLite gives

you all of these features while remaining almost as simple to work with as a flat file.

Note: SQLite is not a replacement for enterprise database systems. If you need

multi-user concurrent write access from dozens of clients, network-accessible data-

base services, or the advanced features of SQL Server, those tools remain the right

choice. SQLite excels in scenarios where PowerShell scripts need local, structured

data storage with powerful querying capabilities.

2.2 Understanding the SQLite Archi-
tecture
To write effective PowerShell scripts that interact with SQLite, you need to under-

stand how SQLite organizes and manages data internally. This understanding will

help you make better decisions about database design and troubleshoot issues

when they arise.

21

The Database File

Every SQLite database is a single ordinary file on the filesystem. When you create a

database in your PowerShell script, you are creating a file. When you query a data-

base, you are reading a file. This is a profound simplification compared to client-

server database systems.

The database file has a well-defined format that begins with a 100-byte header.

This header contains metadata about the database, including the page size, file

format versions, and the size of the database in pages. The rest of the file is divided

into fixed-size pages, typically 4096 bytes each.

Creating a SQLite database is as simple as specifying a file

path

$databasePath = "C:\Data\inventory.db"

When you open a connection to a non-existent file, SQLite

creates it

This is equivalent to creating a new, empty database

$connectionString = "Data Source=$databasePath;Version=3;"

Pages and the B-Tree Structure

SQLite organizes data within the database file using a B-tree data structure. There

are two types of B-trees used internally:

B-Tree Type Purpose PowerShell Relevance

Table B-Tree Stores actual table data with inte-
ger rowid as the key

Every table you create from Pow-
erShell uses one of these

Index B-Tree Stores index entries for fast
lookups

Created when you add indexes to
improve query performance in
your scripts

22

Each page in the database file belongs to one of these B-trees, or it serves as an

overflow page for large data, or it is a free page that was previously used but is

now available for reuse.

Understanding this structure matters for PowerShell users because it explains

why certain operations are fast and others are slow. When your PowerShell script

queries a table by its rowid or primary key, SQLite can navigate the B-tree efficient-

ly. When your script performs a full table scan with a complex WHERE clause on an

unindexed column, SQLite must read every page of the table's B-tree.

The Journal and Write-Ahead Log

When your PowerShell script modifies data in a SQLite database, the changes do

not go directly into the main database file. SQLite uses one of two mechanisms to

ensure data integrity:

Rollback Journal Mode: Before modifying a page, SQLite copies the original

page content to a separate journal file. If the operation fails or your PowerShell

script crashes, SQLite can restore the original pages from the journal.

Write-Ahead Log (WAL) Mode: Instead of writing changes to the main data-

base file, SQLite appends them to a separate WAL file. Readers can continue read-

ing the main database file while a writer appends to the WAL. This mode generally

provides better concurrency, which matters when multiple PowerShell processes

might access the same database.

You can set the journal mode from PowerShell when configuring

your database

WAL mode is often preferred for better concurrent access

$pragmaCommand = "PRAGMA journal_mode=WAL;"

23

Note: The WAL mode is particularly valuable when you have PowerShell scheduled

tasks that might overlap in execution, or when you are running background jobs

that access the same SQLite database as your interactive session.

2.3 SQLite Data Types and PowerShell
Type Mapping
One of the most distinctive features of SQLite is its type system, and understanding

it is critical for PowerShell users who are accustomed to the strongly-typed world of

.NET objects.

SQLite Type Affinity

Unlike SQL Server, where a column declared as INTEGER will reject any attempt to

store a string, SQLite uses a concept called "type affinity." The declared type of a

column is a recommendation, not a strict requirement. SQLite can store any type of

value in any column, regardless of the declared type.

SQLite has five storage classes:

Storage Class Description PowerShell .NET Equivalent

NULL Represents a missing or unknown
value

$null

INTEGER A signed integer stored in 1, 2, 3,
4, 6, or 8 bytes

[System.Int64] or [long]

REAL A floating-point number stored
as an 8-byte IEEE float

[System.Double] or [dou-
ble]

24

TEXT A text string stored using the
database encoding (UTF-8,
UTF-16)

[System.String] or
[string]

BLOB Binary data stored exactly as in-
put

[System.Byte[]] or
[byte[]]

When you declare a column type in your CREATE TABLE statement, SQLite assigns

one of five type affinities to that column: TEXT, NUMERIC, INTEGER, REAL, or

BLOB. The affinity determines how SQLite attempts to convert values stored in that

column.

The following table shows how common SQL type declarations map to SQLite

affinities:

Declared Column Type Resulting Affinity Behavior

INT, INTEGER, BIGINT, SMALL-
INT

INTEGER Values are stored as integers
when possible

CHAR, VARCHAR, TEXT, CLOB TEXT Values are stored as text
strings

REAL, FLOAT, DOUBLE REAL Values are stored as floating-
point numbers

BLOB, no type specified BLOB (NONE) Values are stored exactly as
provided

NUMERIC, DECIMAL, BOOL-
EAN, DATE, DATETIME

NUMERIC Values are stored as integer or
real if possible, otherwise as
text

Mapping Between PowerShell and SQLite Types

When you send data from PowerShell to SQLite or retrieve data from SQLite into

PowerShell, type conversion happens at the boundary. Understanding this conver-

sion is essential for writing reliable scripts.

25

PowerShell variables and their SQLite storage behavior

$integerValue = 42 # Stored as INTEGER in SQLite

$floatValue = 3.14159 # Stored as REAL in SQLite

$stringValue = "Hello World" # Stored as TEXT in SQLite

$nullValue = $null # Stored as NULL in SQLite

$binaryValue = [byte[]](0x48, 0x65, 0x6C, 0x6C, 0x6F) # Stored

as BLOB in SQLite

When retrieving data from SQLite back into PowerShell, the reverse mapping oc-

curs. INTEGER values become [long] objects, REAL values become [double]

objects, TEXT values become [string] objects, and BLOB values become

[byte[]] arrays.

Note: One common pitfall for PowerShell users is the handling of dates. SQLite

has no native DATE or DATETIME storage class. Dates are typically stored as TEXT

in ISO 8601 format (such as "2024-01-15 14:30:00"), as INTEGER representing Unix

timestamps, or as REAL representing Julian day numbers. When working with

dates in PowerShell, you must explicitly convert [datetime] objects to one of

these formats before storing them, and convert them back when retrieving.

Storing a date as ISO 8601 text

$currentDate = Get-Date -Format "yyyy-MM-dd HH:mm:ss"

$currentDate is now a string like "2024-01-15 14:30:00"

Storing a date as Unix timestamp

$unixTimestamp = [long](Get-Date -UFormat %s)

$unixTimestamp is now an integer like 1705312200

Retrieving and converting back to PowerShell datetime

$retrievedDateString = "2024-01-15 14:30:00"

$dateTimeObject = [datetime]::ParseExact($retrievedDateString,

"yyyy-MM-dd HH:mm:ss", $null)

