
1

Bash Mastery 2026

Advanced Shell Scripting, Automation,
and Production Practices

2

Preface

Why This Book Exists
Bash is everywhere. It powers the startup scripts of your servers, orchestrates your

CI/CD pipelines, glues together the tools that keep production systems running,

and remains the default interactive shell on virtually every Linux and macOS ma-

chine in the world. And yet, most people who write Bash every day have never truly

learned it.

They copy snippets from Stack Overflow. They wrap fragile one-liners in cron

jobs and hope for the best. They treat Bash as a "quick and dirty" tool—then won-

der why their scripts break at 3 a.m. on a Saturday.

Bash Mastery 2026 was written to change that.

This book is for developers, DevOps engineers, SREs, and system administra-

tors who are ready to stop writing throwaway Bash and start writing Bash that is

structured, reliable, secure, and production-worthy. It is not an introduction to

the command line. It assumes you already know your way around a terminal and

have written at least a handful of shell scripts. What it offers is the path from com-

petence to mastery.

3

What You'll Find Inside
The book is organized into sixteen chapters and five appendices, moving deliber-

ately from foundational thinking to advanced production practices.

We begin by reshaping how you think about Bash—not as a scripting af-

terthought, but as a legitimate programming environment with its own execution

model, scoping rules, and architectural patterns (Chapters 1–2). From there, we

dive deep into the constructs that form the backbone of every serious Bash pro-

gram: variables, arrays, parameter expansion, and control flow (Chapters 3–4).

Chapters 5–8 represent the heart of the book's philosophy: that Bash code de-

serves the same engineering discipline we apply to any other language. You'll

learn to write modular Bash programs with clean project layouts, implement error

handling that actually works in practice, and debug complex scripts with the confi-

dence of an expert.

The second half of the book tackles the domains where Bash truly shines—and

the boundaries where it doesn't. Chapters 9–12 cover advanced text processing

pipelines, structured data handling with modern techniques, system interaction,

process control, and automation at scale. Chapters 13–15 address the concerns

that separate hobbyist scripts from production infrastructure: security hardening,

deployment practices, performance optimization, and knowing when Bash has

reached its limits. Chapter 16 looks ahead, exploring how Bash continues to

evolve and where it fits in the modern toolchain beyond 2026.

The appendices are designed as daily references—strict mode patterns, anti-

pattern catalogs, production-ready templates, a debugging and logging cook-

book, and a structured learning path to guide your continued growth.

4

How to Read This Book
You can read it cover to cover for a comprehensive journey, or jump directly to the

chapters that address your most pressing challenges. Every chapter is designed to

stand on its own while contributing to a larger, cohesive understanding of Bash

mastery.

Throughout the text, you'll find real-world examples, opinionated best prac-

tices, and honest assessments of where Bash excels and where you should reach

for something else. This is not a book that pretends Bash is the right tool for every

job. It is a book that will make you exceptionally good at using Bash where it be-

longs.

Acknowledgments
This book owes a debt to the generations of shell programmers, open-source con-

tributors, and the maintainers of GNU Bash itself—particularly Chet Ramey, whose

decades of stewardship have kept Bash robust and relevant. Thanks also to the

countless engineers whose production war stories, blog posts, and hard-won

lessons informed the patterns and practices in these pages.

Most of all, thank you—the reader—for deciding that the tool you use every day

is worth mastering.

Let's write better Bash.

Miles Everhart, 2026

5

Table of Contents

Chapter Title Page

1 Thinking in Bash Like a Professional 6

2 Bash Execution Model Deep Dive 23

3 Variables, Arrays, and Parameter Expansion Mastery 40

4 Control Flow and Logic Patterns 59

5 Writing Modular Bash Programs 78

6 Script Architecture and Project Layout 99

7 Error Handling That Actually Works 121

8 Debugging Bash Like an Expert 140

9 Advanced Text Processing Pipelines 163

10 Structured Data in Bash (2026 Edition) 179

11 System Interaction and Process Control 198

12 Bash for Automation and Scheduling 217

13 Secure Bash Scripting 236

14 Bash in Production Environments 256

15 Performance, Limits, and Scaling Bash 277

16 Bash Mastery Beyond 2026 298

App Bash Strict Mode Patterns (Safe Defaults) 314

App Common Bash Anti-Patterns (and Fixes) 332

App Production-Ready Script Templates 351

App Bash Debugging & Logging Cookbook 387

App Bash Mastery Learning Path 408

6

Chapter 1: Thinking in Bash
Like a Professional

Introduction
The difference between someone who uses Bash and someone who thinks in Bash

is profound. It is the difference between a person who memorizes a handful of

commands and a practitioner who understands the philosophy, the architecture,

and the reasoning behind every keystroke. This chapter is designed to transform

the way you approach the Bash shell. We are not going to start with syntax. We are

going to start with mindset. By the end of this chapter, you will understand how

professional engineers think when they sit down at a terminal, how they decom-

pose problems, how they reason about data flow, and how they leverage the full

power of Bash as a programming environment rather than a simple command

prompt.

1.1 The Philosophy of the Unix Shell
To think in Bash like a professional, you must first understand the philosophical

foundation upon which Bash was built. Bash, the Bourne Again Shell, did not

emerge in a vacuum. It was born from the Unix tradition, a tradition that dates back

to the early 1970s at Bell Labs. The Unix philosophy, articulated most clearly by

7

Doug McIlroy, Ken Thompson, and others, can be distilled into several core princi-

ples that directly shape how professionals use Bash today.

The first principle is that each program should do one thing and do it well. In

Bash, this means that when you write a script or construct a pipeline, you should

not attempt to build monolithic solutions. Instead, you compose small, focused

tools together. The grep command searches text. The sort command sorts lines.

The uniq command removes duplicates. Each does one thing. The professional

Bash user understands that the power is not in any single command but in the

composition of many commands.

The second principle is that programs should work together. This is the princi-

ple of interoperability. In Bash, the primary mechanism for this is the pipe operator.

When you write cat access.log | grep "404" | awk '{print $1}' |

sort | uniq -c | sort -rn, you are not writing one program. You are orches-

trating five programs, each performing its specialized task, connected through a

stream of text.

The third principle is that text is the universal interface. Unlike other program-

ming environments where data might be passed as objects, structures, or binary

formats, the Unix tradition and Bash in particular treat plain text as the lingua fran-

ca. Every command reads text from standard input and writes text to standard out-

put. This simplicity is what makes Bash so remarkably composable.

Principle Description Bash Manifestation

Do one thing well Each tool has a focused
purpose

Individual commands like
grep, sed, awk

Programs should work to-
gether

Tools connect through
standard interfaces

The pipe operator and re-
direction

Text as universal interface Plain text is the common
data format

Standard input, standard
output, standard error

8

Favor composability over
features

Build complex behavior
from simple parts

Pipelines, command sub-
stitution, process substitu-
tion

Prototype rapidly Get something working
quickly

Interactive shell, one-lin-
ers, quick scripts

Understanding these principles is not academic. It is practical. When a professional

encounters a problem, they do not immediately think about writing a 200-line

script. They think about which existing tools can be composed together to solve

the problem in a single pipeline. This is what it means to think in Bash.

1.2 How Bash Processes Commands:
The Mental Model
A professional Bash user carries a mental model of how the shell processes every

command. Without this model, you are guessing. With it, you can predict the be-

havior of complex expressions before you execute them. Let us walk through this

model in detail.

When you type a command and press Enter, Bash does not simply execute

what you typed. It performs a series of transformations on your input, in a specific

order, before any command is actually run. Understanding this order is critical.

Step 1: Tokenization. Bash first breaks your input into tokens, which are words

and operators. It uses spaces, tabs, and special characters to determine where one

token ends and another begins. This is why quoting matters so much in Bash. A

space inside double quotes is treated differently than a space outside them.

Step 2: Command identification. Bash determines what type of command

you have entered. It could be a simple command, a pipeline, a list of commands

9

connected by && or ||, a compound command like a loop or conditional, or a

function call.

Step 3: Expansions. This is where the real complexity lives, and where profes-

sionals distinguish themselves from beginners. Bash performs expansions in a spe-

cific order:

Expansion Order Expansion Type Example Input Result

1 Brace expansion file{1,2,3}.txt file1.txt
file2.txt
file3.txt

2 Tilde expansion ~/documents /home/user/doc-
uments

3 Parameter and vari-
able expansion

$HOME or ${var} The value of the vari-
able

4 Command substitu-
tion

$(date +%Y) The output of the
date command

5 Arithmetic expan-
sion

$((5 + 3)) 8

6 Process substitution <(ls /tmp) A file descriptor con-
taining the output

7 Word splitting Result of unquoted
expansions

Split on characters in
$IFS

8 Filename expansion
(globbing)

*.txt All matching file-
names

9 Quote removal "hello" hello (quotes
stripped)

Consider this example:

echo "Today is $(date +%A) and there are $(ls ~/projects/*.sh |

wc -l) scripts"

10

Bash processes this by first recognizing the double-quoted string, then performing

command substitution for both $(date +%A) and $(ls ~/projects/*.sh |

wc -l), then performing tilde expansion on ~, then performing filename expan-

sion on *.sh within the subshell, and finally assembling the result. The profession-

al understands each of these steps and can predict the output without running the

command.

Step 4: Redirection. After expansions, Bash processes any redirection opera-

tors like >, >>, <, 2>&1, and so forth. These are set up before the command exe-

cutes.

Step 5: Command execution. Finally, Bash looks up the command. It checks

in this order: aliases, functions, built-in commands, and then external commands

found via the $PATH variable. The command is then executed with the processed

arguments.

Demonstrating the lookup order

type echo # echo is a shell builtin

type ls # ls is /usr/bin/ls (or aliased)

type my_function # my_function is a function (if defined)

This mental model is what allows professionals to debug problems that mystify be-

ginners. When a variable expansion does not produce the expected result, the pro-

fessional knows exactly which step in the pipeline to examine.

1.3 Streams, File Descriptors, and the
Data Flow Paradigm
Every process in a Unix system, and therefore every command you run in Bash, has

access to three standard streams. These streams are the arteries through which

data flows, and understanding them is fundamental to professional Bash usage.

11

File Descriptor Name Default Destination Purpose

0 Standard Input (stdin) Keyboard Data fed into a com-
mand

1 Standard Output (std-
out)

Terminal screen Normal output from a
command

2 Standard Error
(stderr)

Terminal screen Error messages and
diagnostics

The reason these are called file descriptors is that in Unix, everything is treated as a

file. A stream is simply a file that has been opened for reading or writing. File de-

scriptor 0 is opened for reading, while file descriptors 1 and 2 are opened for writ-

ing.

Professionals use redirection to control where these streams go:

Redirect stdout to a file

ls /etc > listing.txt

Redirect stderr to a file

ls /nonexistent 2> errors.txt

Redirect both stdout and stderr to the same file

ls /etc /nonexistent > all_output.txt 2>&1

The modern Bash shorthand for the above

ls /etc /nonexistent &> all_output.txt

Redirect stdin from a file

sort < unsorted_data.txt

Append stdout to a file instead of overwriting

echo "new entry" >> logfile.txt

But the professional goes further. Bash allows you to open additional file descrip-

tors beyond the standard three. This is a technique that separates intermediate

users from advanced practitioners:

12

Open file descriptor 3 for writing to a log file

exec 3> /var/log/my_script.log

Write to file descriptor 3

echo "Script started at $(date)" >&3

echo "Processing data..." >&3

Normal output still goes to stdout

echo "This appears on screen"

Close file descriptor 3

exec 3>&-

You can also use file descriptors for reading:

Open file descriptor 4 for reading from a configuration file

exec 4< /etc/my_app.conf

Read from file descriptor 4

while read -r line <&4; do

 echo "Config line: $line"

done

Close file descriptor 4

exec 4<&-

The data flow paradigm in Bash means that you should think of every command as

a transformer. Data flows in through stdin, gets transformed, and flows out through

stdout. Errors flow out through stderr. When you chain commands with pipes, you

are connecting the stdout of one command to the stdin of the next. This is the fun-

damental model of computation in Bash, and it is remarkably powerful once you

internalize it.

A professional pipeline demonstrating data flow

find /var/log -name "*.log" -mtime -7 -type f 2>/dev/null |

 xargs grep -l "ERROR" 2>/dev/null |

 while read -r logfile; do

 echo "=== $logfile ==="

 grep -c "ERROR" "$logfile"

13

 done |

 sort -t'=' -k2 -rn

In this example, notice how stderr is explicitly redirected to /dev/null at two

points. The professional knows that find may encounter permission errors and

that grep may encounter binary files, and they handle these cases explicitly rather

than letting error messages pollute the output stream.

1.4 Thinking in Pipelines: Decompos-
ing Problems
The hallmark of professional Bash thinking is the ability to decompose a complex

problem into a sequence of simple transformations. This is pipeline thinking, and it

requires practice to develop.

Let us work through a real-world example. Suppose you are asked to find the

top 10 IP addresses making requests to a web server, but only for requests that re-

sulted in a 500 status code, and only for the last 24 hours of logs.

A beginner might try to write a Python script or a complex awk program. A pro-

fessional Bash user decomposes the problem:

1.	 Filter the log for the last 24 hours

2.	 Filter for 500 status codes

3.	 Extract the IP address field

4.	 Count occurrences of each IP

5.	 Sort by count in descending order

6.	 Take the top 10

Each step becomes one command in a pipeline:

Assuming Apache combined log format

14

Step 1: Get lines from the last 24 hours

awk -v cutoff="$(date -d '24 hours ago' '+%d/%b/%Y:%H:%M:%S')" \

 '$4 > "["cutoff' /var/log/apache2/access.log |

Step 2: Filter for 500 status codes

awk '$9 == 500' |

Step 3: Extract the IP address (first field)

awk '{print $1}' |

Step 4: Sort and count

sort |

uniq -c |

Step 5: Sort by count descending

sort -rn |

Step 6: Take top 10

head -10

Notice how each step in the pipeline corresponds exactly to one step in the prob-

lem decomposition. This is not a coincidence. This is the methodology. The profes-

sional first thinks about the problem in terms of data transformations and then

maps each transformation to a command.

Here is another example. Suppose you need to find all duplicate files in a di-

rectory tree based on their content, not their names:

find /path/to/directory -type f -exec md5sum {} + |

 sort |

 awk '{print $1}' |

 uniq -d |

 while read -r hash; do

 echo "Duplicate group (hash: $hash):"

 grep "^$hash" <(find /path/to/directory -type f -exec

md5sum {} +)

 echo ""

 done

The pipeline thinking approach means you can build up solutions incrementally.

You start with the first command, verify its output, add the next command, verify

again, and continue until the pipeline is complete. This is how professionals devel-

op pipelines interactively at the terminal before committing them to scripts.

15

1.5 The Professional's Toolkit: Essen-
tial Concepts
Beyond philosophy and mental models, there are several concrete concepts that

professionals keep at the forefront of their thinking when working in Bash.

Quoting discipline. The professional quotes every variable expansion by de-

fault. The command rm $file is dangerous. The command rm "$file" is safe.

The difference is that without quotes, word splitting and globbing are performed

on the expanded value. If $file contains spaces or glob characters, the unquoted

version will produce unexpected and potentially destructive results.

Dangerous: word splitting and globbing on the variable

file="my important file.txt"

rm $file # This tries to remove "my", "important", and

"file.txt"

Safe: the variable is treated as a single word

rm "$file" # This correctly removes "my important file.txt"

Exit status awareness. Every command in Bash returns an exit status, an integer

between 0 and 255. Zero means success. Any non-zero value means failure. The

professional checks exit statuses and uses them for control flow:

if grep -q "pattern" file.txt; then

 echo "Pattern found"

else

 echo "Pattern not found"

fi

Using exit status with && and ||

mkdir -p /tmp/workdir && cd /tmp/workdir || { echo "Failed to

create workdir"; exit 1; }

16

Exit Status Meaning Common Usage

0 Success Command completed without errors

1 General error Catchall for miscellaneous errors

2 Misuse of shell command Syntax errors, invalid options

126 Command cannot execute Permission problem or not executable

127 Command not found Typo in command name or not in PATH

128+N Fatal error signal N Process killed by signal N

130 Terminated by Ctrl+C Script interrupted by user (signal 2)

255 Exit status out of range Exit value exceeded 255

Defensive scripting. The professional begins scripts with safety settings:

#!/usr/bin/env bash

set -euo pipefail

IFS=$'\n\t'

Let us break down what each of these settings does:

Setting Effect Why It Matters

set -e Exit immediately if a com-
mand exits with non-zero
status

Prevents scripts from con-
tinuing after failures

set -u Treat unset variables as an
error

Catches typos in variable
names

set -o pipefail A pipeline returns the exit
status of the last command
to fail

Prevents silent failures in
pipelines

17

IFS=$'\n\t' Set the Internal Field Sepa-
rator to newline and tab
only

Prevents word splitting on
spaces, which is a common
source of bugs

Note: The set -e option
has nuances that profes-
sionals must understand.
Commands in conditionals
(like if statements), com-
mands followed by && or
||, and commands in sub-
shells have different be-
havior under set -e. We
will explore these nuances
in detail in later chapters.

1.6 The Difference Between Interac-
tive and Scripted Bash
A professional understands that Bash operates in two distinct modes, and the con-

ventions for each are different.

In interactive mode, when you are typing commands at the terminal, brevity

and speed are valued. You use aliases, you rely on tab completion, you use history

expansion, and you write terse one-liners. The goal is to accomplish tasks quickly.

In scripted mode, when you are writing a script that will be executed repeated-

ly, possibly by other people or by automated systems, clarity, robustness, and

maintainability are valued. You use full option names where possible, you add

comments, you handle errors explicitly, and you validate inputs.

Interactive style (acceptable at the terminal)

for f in *.log; do wc -l $f; done | sort -rn | head

Script style (appropriate for a script file)

18

#!/usr/bin/env bash

set -euo pipefail

Count lines in each log file and display the top results

readonly LOG_DIR="${1:?Usage: $0 <log_directory>}"

readonly TOP_N="${2:-10}"

if [[! -d "$LOG_DIR"]]; then

 echo "Error: Directory '$LOG_DIR' does not exist" >&2

 exit 1

fi

find "$LOG_DIR" -maxdepth 1 -name "*.log" -type f -print0 |

 xargs -0 wc -l |

 sort -rn |

 head -n "$TOP_N"

Notice the differences in the scripted version: the shebang line, the safety settings,

the use of readonly for constants, input validation, meaningful error messages di-

rected to stderr, the use of find with -print0 and xargs -0 to handle filenames

with special characters, and the parameterization of values that might change.

1.7 Practical Exercise: Building Profes-
sional Habits
Let us put these concepts into practice with a comprehensive exercise. You will

build a small script that demonstrates professional Bash thinking.

Exercise: System Health Reporter

Create a script called health_report.sh that generates a brief system health

report. The script should demonstrate pipeline thinking, proper quoting, exit status

handling, and defensive scripting practices.

#!/usr/bin/env bash

set -euo pipefail

19

IFS=$'\n\t'

health_report.sh - Generate a system health summary

Usage: health_report.sh [output_file]

If no output file is specified, output goes to stdout

readonly SCRIPT_NAME="$(basename "$0")"

readonly OUTPUT_FILE="${1:-/dev/stdout}"

readonly TIMESTAMP="$(date '+%Y-%m-%d %H:%M:%S')"

Function to log errors to stderr

log_error() {

 echo "[ERROR] ${SCRIPT_NAME}: $1" >&2

}

Function to generate a section header

section_header() {

 local title="$1"

 printf '\n=== %s ===\n\n' "$title"

}

Verify we can write to the output file

if [["$OUTPUT_FILE" != "/dev/stdout"]]; then

 if ! touch "$OUTPUT_FILE" 2>/dev/null; then

 log_error "Cannot write to '$OUTPUT_FILE'"

 exit 1

 fi

fi

Begin generating the report

{

 echo "System Health Report"

 echo "Generated: $TIMESTAMP"

 echo "Hostname: $(hostname)"

 section_header "Disk Usage (Top 5 Filesystems)"

 df -h --output=target,pcent,size,used,avail 2>/dev/null |

 head -n 6 ||

 log_error "Could not retrieve disk usage"

 section_header "Memory Usage"

 if command -v free > /dev/null 2>&1; then

20

 free -h

 else

 log_error "free command not available"

 fi

 section_header "Top 5 CPU-Consuming Processes"

 ps aux --sort=-%cpu |

 awk 'NR<=6 {printf "%-10s %5s %5s %s\n", $1, $3, $4,

$11}' ||

 log_error "Could not retrieve process information"

 section_header "Load Average"

 uptime

 section_header "Recent Failed Login Attempts"

 if [[-r /var/log/auth.log]]; then

 grep -i "failed" /var/log/auth.log 2>/dev/null |

 tail -5 ||

 echo "No failed login attempts found"

 else

 echo "Auth log not readable (may require elevated

privileges)"

 fi

} > "$OUTPUT_FILE"

echo "${SCRIPT_NAME}: Report generated successfully" >&2

What to observe in this exercise:

Technique Where It Appears Why It Matters

Defensive settings set -euo pipefail Catches errors early

Readonly variables readonly SCRIPT_-
NAME=...

Prevents accidental modifi-
cation

Default parameter values ${1:-/dev/stdout} Makes the script flexible

Error function writing to
stderr

log_error() Keeps error messages sep-
arate from output

21

Command existence check command -v free Portable way to check if a
command is available

File readability check [[-r /var/log/
auth.log]]

Prevents errors before they
happen

Grouped output re-
direction

{ ... } > "$OUTPUT_-
FILE"

Efficient single redirection
for multiple commands

Quoted variables every-
where

"$OUTPUT_FILE",
"$TIMESTAMP"

Prevents word splitting
bugs

1.8 Summary and Key Takeaways
Thinking in Bash like a professional is not about memorizing more commands. It is

about internalizing a set of principles and mental models that guide your decisions

at every level, from how you quote a variable to how you architect a pipeline.

The Unix philosophy teaches you to compose small, focused tools. The com-

mand processing model teaches you to predict how Bash will interpret your input.

The data flow paradigm teaches you to think in terms of streams and transforma-

tions. Pipeline thinking teaches you to decompose problems into sequential steps.

And defensive scripting practices teach you to write code that fails safely and com-

municates clearly.

As you progress through the remaining chapters of this book, every technique

and pattern we discuss will be built upon this foundation. The syntax will become

more advanced, the patterns more sophisticated, and the applications more com-

plex. But the thinking will remain the same: clear, deliberate, and grounded in the

principles we have established here.

The terminal is not just a place to type commands. For the professional, it is an

environment for thought, a place where complex problems are decomposed,

22

transformed, and solved with elegance and precision. That is what it means to think

in Bash like a professional.

Note: Before proceeding to Chapter 2, take time to practice the concepts in-

troduced here. Open a terminal and build pipelines interactively. Start with a single

command, verify its output, add another command with a pipe, verify again, and

continue building. This incremental, exploratory approach is how professionals de-

velop their solutions, and it is how you will develop your intuition for Bash.

23

Chapter 2: Bash Execution
Model Deep Dive

Understanding How Bash Processes
Your Commands From Start to Finish
When you type a command into a Bash terminal and press Enter, a remarkably

complex sequence of events unfolds behind the scenes. Most users, and even

many experienced scripters, treat Bash as a simple command interpreter: you type

something, it runs, and you get output. But the reality is far more nuanced. Bash

follows a precise, multi-stage execution model that determines how your input is

parsed, expanded, evaluated, and ultimately executed. Understanding this model

is not merely academic. It is the difference between writing scripts that work by ac-

cident and writing scripts that work by design.

This chapter takes you deep inside the Bash execution engine. We will walk

through every stage of command processing, examine how Bash creates and man-

ages processes, explore the lifecycle of subshells and child processes, and dissect

the mechanisms of job control. By the end of this chapter, you will have a mental

model of Bash internals that allows you to predict behavior, debug subtle issues,

and write scripts with confidence.

24

2.1 The Bash Command Processing
Pipeline
Every line you feed to Bash, whether interactively or from a script, passes through a

well-defined pipeline of processing stages. These stages happen in a specific or-

der, and understanding that order is critical for predicting how Bash will interpret

your input.

The Stages of Command Processing

The following table outlines each stage in the order Bash processes them:

Stage Number Stage Name Description

1 Tokenization (Lexical Analysis) Bash reads the input line and
breaks it into tokens: words and
operators. Quoting rules are ap-
plied here to determine which
characters are literal and which
are special.

2 Command Identification Bash identifies the type of com-
mand: simple command, pipe-
line, list, compound command,
or function definition.

3 Brace Expansion Expressions like {a,b,c} or
{1..10} are expanded into
multiple words. This is the first
expansion stage.

4 Tilde Expansion Leading tildes in words are re-
placed with home directory
paths. For example, ~ be-
comes /home/username.

25

5 Parameter and Variable Expan-
sion

Variables like $VAR, ${VAR},
and special parameters like $1,
$@, $? are replaced with their
values.

6 Command Substitution Expressions enclosed in $(...)
or backticks are executed, and
their standard output replaces
the expression.

7 Arithmetic Expansion Expressions inside $((...))
are evaluated as arithmetic, and
the result replaces the expres-
sion.

8 Word Splitting The results of unquoted para-
meter expansion, command
substitution, and arithmetic ex-
pansion are split into separate
words based on the value of
IFS.

9 Pathname Expansion (Globbing) Words containing *, ?, or [...]
are expanded to match file-
names in the filesystem.

10 Quote Removal Remaining quote characters that
were not produced by expan-
sion are removed from the final
words.

11 Redirection Processing Redirections like >, <, >>, and
2>&1 are set up before the com-
mand executes.

12 Command Execution Bash determines whether the
command is a builtin, a function,
or an external program, and exe-
cutes it accordingly.

Note: The order of these stages matters enormously. Brace expansion happens

before variable expansion, which means you cannot use a variable inside brace ex-

pansion and expect it to work. For example:

