
1

PowerShell 7.x Fundamen-
tals

Modern Cross-Platform Automation
and Scripting with PowerShell

2

Preface

When I first began working with PowerShell, it was a Windows-only tool — powerful,

certainly, but confined to a single ecosystem. Today, PowerShell 7.x stands as

something far more ambitious: a modern, cross-platform automation engine that

runs on Windows, macOS, and Linux alike. That transformation is not just a techni-

cal achievement; it represents a fundamental shift in how IT professionals, develop-

ers, and system administrators approach their daily work. This book was written to

help you navigate that shift with confidence.

Why This Book Exists
PowerShell 7.x Fundamentals was born from a simple observation: too many

people still think of PowerShell as "just a Windows command prompt with extra

steps." Nothing could be further from the truth. PowerShell is a fully realized script-

ing language built on .NET, capable of managing cloud infrastructure, automating

complex workflows, parsing APIs, and orchestrating tasks across heterogeneous

environments. Yet for all its power, getting started with PowerShell — really getting

started, with a solid foundation — can feel daunting.

This book aims to change that. Whether you are a complete beginner who has

never opened a PowerShell console or an IT professional looking to formalize and

deepen your existing PowerShell knowledge, these pages will give you a struc-

tured, practical path from first principles to real-world automation.

3

What You Will Learn
The book is organized into a deliberate progression. We begin with the essentials

— understanding what PowerShell 7.x is and how to install and run it across plat-

forms (Chapters 1–2). From there, we dive into the core language mechanics:

cmdlets and the object pipeline, variables, data types, operators, and control flow

(Chapters 3–6). These chapters form the backbone of everything you will do in

PowerShell.

The middle section moves into applied territory. You will learn to work with the

file system, manage processes and services, and interact with the operating system

directly through PowerShell (Chapters 7–8). Then we turn to the craft of writing re-

usable, maintainable PowerShell code — functions, scripts, error handling, and

modules (Chapters 9–12).

The final chapters bring it all together. You will build real automation work-

flows, work with data formats like JSON, CSV, and XML, consume REST APIs, and

adopt PowerShell best practices that distinguish professional-quality scripts from

quick-and-dirty one-liners (Chapters 13–15). Chapter 16 looks ahead, bridging

the fundamentals covered here with the advanced PowerShell techniques you will

encounter next in your journey.

Five appendices — including a cmdlet cheat sheet, common error reference,

pipeline guide, example automation scripts, and a learning roadmap — ensure this

book remains a useful companion long after you finish reading it.

How to Use This Book
If you are new to PowerShell, I encourage you to read the chapters in order. Each

one builds on the last. If you already have PowerShell experience, feel free to jump

4

to the topics that matter most to you — the chapters are designed to be self-con-

tained enough to serve as reference material.

Throughout the book, I have prioritized clarity over cleverness. Every concept is

explained in plain language, reinforced with practical examples, and connected to

scenarios you are likely to encounter in the real world. PowerShell is a tool meant

to make your life easier, and learning it should feel the same way.

Acknowledgments
No book is written in isolation. I owe a debt of gratitude to the PowerShell open-

source community, whose tireless contributions have made PowerShell 7.x what it

is today. I am also deeply thankful to the technical reviewers who challenged my

assumptions, the editors who sharpened my prose, and the readers of early drafts

whose feedback shaped every chapter for the better.

Most of all, thank you — for picking up this book and investing your time in

learning PowerShell. The skills you build here will pay dividends across your entire

career.

Let's get started.

Laszlo Bocso (MCT), 2026

5

Table of Contents

Chapter Title Page

1 What PowerShell 7.x Really Is 6

2 Installing and Running PowerShell 7.x 20

3 Cmdlets and the Object Pipeline 37

4 Variables, Data Types, and Objects 52

5 Operators and Expressions 70

6 Conditional Logic and Loops 90

7 Files, Directories, and the File System 112

8 Processes, Services, and System Interaction 129

9 Writing Functions 150

10 Writing PowerShell Scripts 173

11 Error Handling and Exceptions 191

12 Working with Modules 213

13 Automating Tasks with PowerShell 230

14 Working with Data Formats and APIs 257

15 PowerShell Best Practices 275

16 From PowerShell Fundamentals to Advanced Automation 294

App Essential PowerShell Cmdlet Cheat Sheet 312

App Common PowerShell Errors and Fixes 335

App Object Pipeline Reference 351

App Example Automation Scripts 367

App PowerShell Learning Roadmap 392

6

Chapter 1: What PowerShell
7.x Really Is

Introduction
Welcome to the very first chapter of this book. Before you write a single line of

PowerShell code, before you automate your first task, and before you build your

first script, it is essential that you understand what PowerShell truly is at its core.

This chapter is not about memorizing commands or syntax. It is about building a

solid mental model of the tool you are about to spend a great deal of time master-

ing. Too many professionals jump straight into writing scripts without understand-

ing the philosophy, architecture, and evolution behind PowerShell. That approach

leads to fragile scripts, misunderstandings about how the shell works, and frustra-

tion when things do not behave as expected. This chapter will ensure you start on

the right foundation.

The Evolution of PowerShell: From
Monad to PowerShell 7.x
The story of PowerShell begins long before the name "PowerShell" ever existed. In

the early 2000s, a Microsoft engineer named Jeffrey Snover recognized a funda-

mental problem with Windows system administration. While Linux and Unix admin-

7

istrators had powerful text-based shells like Bash, Ksh, and Zsh that allowed them

to pipe text between commands and automate complex workflows, Windows ad-

ministrators were stuck with two limited tools: the legacy Command Prompt

(cmd.exe) and Windows Script Host (which ran VBScript or JScript). Neither of

these tools was designed for the kind of structured, scalable automation that enter-

prise environments demanded.

Snover authored a visionary document called the "Monad Manifesto" in 2002.

In this document, he proposed a new kind of shell, one that would not pass plain

text between commands, but instead would pass structured .NET objects. This sin-

gle design decision would become the defining characteristic that separates Pow-

erShell from every other shell in existence. The Monad project evolved through

several beta releases before being officially released as Windows PowerShell 1.0 in

November 2006.

Over the following decade, Windows PowerShell matured through several ma-

jor versions:

Version Release Year Key Milestone

Windows PowerShell 1.0 2006 Initial release with 129 cmdlets, basic
pipeline, and remoting concepts

Windows PowerShell 2.0 2009 Introduced PowerShell Remoting (Win-
RM), background jobs, modules, and the
ISE editor

Windows PowerShell 3.0 2012 Workflows, scheduled jobs, improved
module auto-loading, CIM cmdlets

Windows PowerShell 4.0 2013 Desired State Configuration (DSC), en-
hanced debugging

Windows PowerShell 5.0 2016 PowerShell classes, PowerShellGet and
the PowerShell Gallery, OneGet pack-
age management

8

Windows PowerShell 5.1 2017 Final release of Windows PowerShell,
shipped with Windows 10 and Windows
Server 2016

PowerShell Core 6.0 2018 First cross-platform release built on .NET
Core, open source on GitHub

PowerShell Core 6.1/6.2 2018-2019 Compatibility improvements, perfor-
mance enhancements

PowerShell 7.0 2020 Dropped "Core" from the name, unified
experience, parallel ForEach-Object,
ternary operator

PowerShell 7.1 through 7.4 2020-2024 Incremental improvements, new opera-
tors, improved error handling, .NET up-
dates

PowerShell 7.5 2025 Built on .NET 9, enhanced security fea-
tures, improved tab completion, native
command error handling

The transition from Windows PowerShell 5.1 to PowerShell 7.x represents the most

significant architectural shift in PowerShell's history. Windows PowerShell was built

on the full .NET Framework, which meant it could only run on Windows. PowerShell

7.x is built on .NET 7, 8, and 9 (depending on the specific release), which is a cross-

platform runtime. This means that the same PowerShell scripts you write on Win-

dows can, in many cases, run on Linux and macOS without modification.

Note: Windows PowerShell 5.1 is not deprecated. It ships with every modern

version of Windows and will continue to be supported. However, it will not receive

new features. All new development, new cmdlets, new language features, and per-

formance improvements happen exclusively in PowerShell 7.x. Throughout this

book, when we say "PowerShell," we mean PowerShell 7.x unless explicitly stated

otherwise.

9

Understanding What PowerShell Actu-
ally Is
One of the most common misconceptions about PowerShell is that it is simply a

command-line interface, a replacement for the Command Prompt on Windows.

While PowerShell does provide a command-line interface, describing it this way is

like describing a smartphone as "a device that makes phone calls." It is technically

accurate but misses almost everything that makes it powerful.

PowerShell is three things simultaneously:

First, PowerShell is a command-line shell. You can open a PowerShell termi-

nal and type commands interactively, just as you would in Bash on Linux or

cmd.exe on Windows. You can navigate the file system, run programs, and see out-

put on screen. This is the most visible aspect of PowerShell and the one most peo-

ple encounter first.

Second, PowerShell is a scripting language. You can write .ps1 files that

contain sequences of commands, logic, loops, functions, error handling, and more.

PowerShell scripts can be as simple as a three-line file that restarts a service, or as

complex as a multi-thousand-line application that provisions entire cloud environ-

ments. The scripting language supports variables, arrays, hashtables, conditional

statements, loops, functions, classes, exception handling, and much more.

Third, PowerShell is an automation framework. This is the aspect that most

beginners overlook but that experienced professionals consider the most impor-

tant. PowerShell provides a standardized way to manage and automate virtually

any technology. Through its module system, PowerShell can be extended to man-

age Active Directory, Azure, AWS, VMware, Exchange, SQL Server, Docker, Kuber-

netes, and hundreds of other technologies. Each of these modules provides

cmdlets (pronounced "command-lets") that follow consistent naming conventions

and behavioral patterns.

10

Let us look at a simple example that demonstrates all three aspects working to-

gether:

Interactive shell usage: check running processes

Get-Process | Where-Object { $_.CPU -gt 100 } | Sort-Object CPU

-Descending

Scripting: save the above as a reusable script with parameters

param(

 [int]$CpuThreshold = 100

)

$heavyProcesses = Get-Process | Where-Object { $_.CPU -gt

$CpuThreshold }

$heavyProcesses | Sort-Object CPU -Descending | Format-Table

Name, Id, CPU -AutoSize

Automation framework: extend to remote management

Invoke-Command -ComputerName "Server01", "Server02", "Server03"

-ScriptBlock {

 Get-Process | Where-Object { $_.CPU -gt 100 } | Sort-Object

CPU -Descending

}

In the example above, the same fundamental concept (finding processes with high

CPU usage) scales from a single interactive command to a multi-server automation

task. This scalability is by design and is one of PowerShell's greatest strengths.

The Object Pipeline: PowerShell's
Defining Feature
If there is one concept you must understand deeply to use PowerShell effectively, it

is the object pipeline. This is what makes PowerShell fundamentally different from

Bash, Zsh, cmd.exe, and every other traditional shell.

11

In a traditional shell like Bash, when you pipe the output of one command to

another, you are passing text. The receiving command must parse that text, figure

out which parts are meaningful, and extract the data it needs. This approach is frag-

ile. If the output format changes even slightly (an extra space, a different column

order, a localized date format), your text parsing breaks.

In PowerShell, when you pipe the output of one cmdlet to another, you are

passing .NET objects. Each object has properties (data) and methods (actions). The

receiving cmdlet can access any property of the object directly by name, without

any text parsing whatsoever.

Consider this comparison:

In Bash (text pipeline):

Get process information and extract the name of processes using

more than 100MB

ps aux | awk '$6 > 102400 {print $11}'

This command depends on the exact column positions in the ps output. If the out-

put format changes across different Linux distributions or versions, the awk com-

mand may extract the wrong column.

In PowerShell (object pipeline):

Get process information and extract the name of processes using

more than 100MB

Get-Process | Where-Object { $_.WorkingSet64 -gt 100MB } |

Select-Object Name

This command accesses the WorkingSet64 property by name. It does not matter

how the output is formatted on screen. The property name is a stable contract pro-

vided by the .NET object. Notice also that PowerShell understands 100MB as a nu-

meric value (104,857,600 bytes). This kind of built-in intelligence permeates the

entire language.

Let us examine what an object looks like in practice:

12

Get a single process and examine its properties

$process = Get-Process -Name "pwsh" | Select-Object -First 1

View all properties

$process | Get-Member -MemberType Property

The Get-Member cmdlet is one of the most important discovery tools in Power-

Shell. It shows you all the properties and methods available on any object. When

you run the command above, you will see output similar to this:

Name MemberType Definition

BasePriority Property int BasePriority {get;}

CPU Property double CPU {get;}

Handle Property System.IntPtr Handle {get;}

HandleCount Property int HandleCount {get;}

Id Property int Id {get;}

MachineName Property string MachineName {get;}

MainWindowTitle Property string MainWindowTitle {get;}

Name Property string Name {get;}

Path Property string Path {get;}

ProcessName Property string ProcessName {get;}

StartTime Property datetime StartTime {get;}

WorkingSet64 Property long WorkingSet64 {get;}

Every single one of these properties is accessible in the pipeline. You can filter on

any of them, sort by any of them, select any combination of them, and export them

to CSV, JSON, XML, or any other format. This is the power of the object pipeline.

13

PowerShell 7.x Architecture
Understanding the architecture of PowerShell 7.x helps you understand why it be-

haves the way it does and how to troubleshoot issues when they arise.

At the highest level, PowerShell 7.x consists of several layers:

Layer Component Purpose

Runtime .NET 9 (for PowerShell 7.5) Provides the underlying runtime envi-
ronment, garbage collection, type sys-
tem, and standard libraries

Engine System.Management.Automation The core PowerShell engine that han-
dles parsing, pipeline execution, com-
mand discovery, and session manage-
ment

Host pwsh.exe / ConsoleHost The application that hosts the Power-
Shell engine and provides the user in-
terface (console, colors, input/output)

Modules Built-in and external modules Collections of cmdlets, functions, and
scripts that extend PowerShell's capa-
bilities

Providers FileSystem, Registry, Variable, etc. Adapters that expose different data
stores through a consistent file-sys-
tem-like interface

One of the most elegant aspects of PowerShell's architecture is the provider sys-

tem. PowerShell providers allow you to navigate different data stores using the

same commands you use for the file system. For example:

Navigate the file system

Set-Location C:\Users

Get-ChildItem

Navigate the Windows Registry (Windows only)

Set-Location HKLM:\SOFTWARE

Get-ChildItem

14

Navigate environment variables

Set-Location Env:

Get-ChildItem

Navigate PowerShell variables

Set-Location Variable:

Get-ChildItem

In every case above, Set-Location and Get-ChildItem work identically. The

provider system abstracts the underlying data store and presents it through a con-

sistent interface. This is a powerful example of PowerShell's design philosophy:

learn a concept once, apply it everywhere.

Cross-Platform Reality in 2026
PowerShell 7.x runs on Windows, Linux, and macOS. This is not a theoretical capa-

bility or a marketing claim. It is a practical reality that thousands of organizations

rely on daily. However, it is important to understand what "cross-platform" means

and what it does not mean.

PowerShell itself, the language, the engine, the pipeline, the module system, all

of these work identically across all platforms. A ForEach-Object loop works the

same on Ubuntu as it does on Windows. A hashtable is a hashtable regardless of

the operating system. String manipulation, regular expressions, error handling, and

all other language features are platform-independent.

What does vary across platforms is the availability of certain modules and

cmdlets. For example:

This works on all platforms

Get-Process

Get-ChildItem

Invoke-RestMethod

15

ConvertTo-Json

This works only on Windows

Get-Service

Get-EventLog

Get-WmiObject

This works on Linux and macOS (through native commands)

pwsh -Command "& { /usr/bin/uname -a }"

Note: When a cmdlet is not available on your platform, PowerShell will give you a

clear error message. You will not encounter silent failures or mysterious behavior.

PowerShell 7.x has invested heavily in making cross-platform differences explicit

and understandable.

To check your current PowerShell version and platform, use the built-in

$PSVersionTable automatic variable:

$PSVersionTable

This will produce output similar to:

Name Value

---- -----

PSVersion 7.5.0

PSEdition Core

GitCommitId 7.5.0

OS Microsoft Windows 10.0.22631

Platform Win32NT

PSCompatibleVersions {1.0, 2.0, 3.0, 4.0, 5.0, 5.1,

6.0, 6.1, 6.2, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5}

PSRemotingProtocolVersion 2.3

SerializationVersion 1.1.0.1

WSManStackVersion 3.0

The PSEdition value of Core tells you that you are running PowerShell 7.x (built

on .NET Core / .NET). If you see Desktop, you are running the legacy Windows

PowerShell 5.1.

16

The Verb-Noun Naming Convention
Every cmdlet in PowerShell follows a strict Verb-Noun naming convention. This is

not merely a suggestion or a best practice. It is an enforced design pattern that

makes PowerShell remarkably discoverable and consistent.

The verb describes the action. The noun describes what the action operates

on. Here are some examples:

Cmdlet Verb Noun What It Does

Get-Process Get Process Retrieves running processes

Stop-Process Stop Process Terminates a running process

Get-Service Get Service Retrieves Windows services

Start-Service Start Service Starts a stopped Windows service

Get-Content Get Content Reads the content of a file

Set-Content Set Content Writes content to a file

New-Item New Item Creates a new file, directory, or other
item

Remove-Item Remove Item Deletes a file, directory, or other item

Invoke-RestMethod Invoke RestMethod Sends an HTTP request to a REST API

ConvertTo-Json ConvertTo Json Converts an object to JSON format

PowerShell defines a set of approved verbs that all cmdlets should use. You can

see the complete list by running:

Get-Verb | Sort-Object Verb | Format-Table Verb, Group,

Description -AutoSize

This naming convention means that once you learn the pattern, you can often

guess the name of a cmdlet you have never used before. If you know Get-

Process exists, you can reasonably guess that Stop-Process, Start-Process,

17

and Wait-Process also exist. If you know Get-Service exists, you can guess

Stop-Service, Start-Service, and Restart-Service.

Practical Exercise: Your First Power-
Shell Exploration
Now that you understand what PowerShell is, let us put that understanding into

practice. Open a PowerShell 7.x terminal and work through the following exercises.

Do not just read them. Type each command and observe the output carefully.

Exercise 1: Verify Your Environment

Check your PowerShell version

$PSVersionTable

Check your current location in the file system

Get-Location

Check the current date and time (returned as a DateTime object)

Get-Date

Examine the object returned by Get-Date

Get-Date | Get-Member

Exercise 2: Explore the Object Pipeline

Get all running processes

Get-Process

Filter to only processes using more than 50MB of memory

Get-Process | Where-Object { $_.WorkingSet64 -gt 50MB }

Select only the Name and WorkingSet64 properties, sorted by

memory usage

Get-Process | Where-Object { $_.WorkingSet64 -gt 50MB } |

 Sort-Object WorkingSet64 -Descending |

18

 Select-Object Name,

@{Name='MemoryMB';Expression={[math]::Round($_.WorkingSet64 /

1MB, 2)}}

Exercise 3: Discover Available Commands

Count how many commands are available

(Get-Command).Count

Find all commands with the verb "Get"

Get-Command -Verb Get | Measure-Object

Find all commands related to "Process"

Get-Command -Noun Process

Get help for a specific cmdlet

Get-Help Get-Process -Detailed

Exercise 4: Experience the Provider System

List all available PowerShell providers

Get-PSProvider

List all available PowerShell drives

Get-PSDrive

Navigate to the environment variable provider

Set-Location Env:

Get-ChildItem

Return to the file system

Set-Location ~

After completing these exercises, you should have a tangible sense of how Power-

Shell works. You have seen objects in the pipeline, used the Verb-Noun naming

convention, explored the provider system, and used the built-in discovery tools

(Get-Command, Get-Help, Get-Member) that will be your constant companions

throughout this book.

19

Summary
PowerShell 7.x is far more than a command-line shell. It is a complete automation

platform built on the .NET runtime that combines an interactive shell, a full-featured

scripting language, and an extensible automation framework into a single, cohe-

sive tool. Its object-based pipeline eliminates the fragility of text parsing that

plagues traditional shells. Its cross-platform support means you can use the same

tool and the same skills whether you are managing Windows servers, Linux con-

tainers, or macOS development machines. Its consistent Verb-Noun naming con-

vention and rich discovery tools make it one of the most learnable and approach-

able programming environments available today.

In the chapters that follow, we will build on this foundation systematically. You

will learn the language syntax, master the pipeline, write robust scripts, handle er-

rors gracefully, work with modules, manage remote systems, and ultimately be-

come confident in using PowerShell to automate anything your work demands. But

everything starts here, with a clear understanding of what PowerShell 7.x really is

and why it was designed the way it was.

20

Chapter 2: Installing and
Running PowerShell 7.x

Introduction
Before you can harness the full power of PowerShell 7.x for automation, scripting,

and system administration, you need to install it properly on your operating system

and understand how to launch and configure it effectively. This chapter walks you

through every step of that process, from understanding the difference between

Windows PowerShell and PowerShell 7.x to installing it on Windows, macOS, and

Linux. By the end of this chapter, you will have a fully functional PowerShell 7.x en-

vironment ready for the exercises and concepts explored throughout the rest of

this book.

One of the most common sources of confusion for newcomers and even expe-

rienced administrators is the relationship between Windows PowerShell (version

5.1) and PowerShell 7.x. It is essential to understand that these are two distinct

products. Windows PowerShell 5.1 ships with Windows 10 and Windows 11 and is

built on the .NET Framework. PowerShell 7.x, on the other hand, is built on .NET 8

(and later .NET 9), is open source, and runs on Windows, macOS, and Linux. They

can coexist on the same machine without conflict, and in many enterprise environ-

ments, both are installed side by side.

21

2.1 Understanding the PowerShell
Landscape
Before installing anything, it is worth taking a moment to understand the broader

landscape of PowerShell versions and why PowerShell 7.x represents the future of

the platform.

Aspect Windows PowerShell 5.1 PowerShell 7.x

.NET Runtime .NET Framework 4.x .NET 8 / .NET 9

Open Source No Yes (MIT License)

Cross-Platform No (Windows only) Yes (Windows, macOS, Lin-
ux)

Executable Name powershell.exe pwsh.exe (or pwsh on Lin-
ux/macOS)

Default Install Location
(Windows)

C:\Windows\Sys-
tem32\WindowsPower-
Shell\v1.0

C:\Program Files\Power-
Shell\7

Module Compatibility Full Windows module sup-
port

Most modules supported;
some Windows-only mod-
ules may not work

Active Development No (maintenance mode
only)

Yes (actively developed by
Microsoft)

Configuration File profile.ps1 in Windows-
PowerShell folder

profile.ps1 in PowerShell
folder

Package Manager Support Limited Extensive (winget, brew,
apt, snap, and more)

Microsoft has officially stated that Windows PowerShell 5.1 will receive only security

fixes and critical bug patches. All new features, performance improvements, and

language enhancements are being delivered exclusively through PowerShell 7.x.

This means that if you want access to features like pipeline parallelization with

22

ForEach-Object -Parallel, ternary operators, null-coalescing operators, and

improved error handling, PowerShell 7.x is where you need to be.

Note: Throughout this book, when we refer to "PowerShell" without a version

qualifier, we mean PowerShell 7.x. When we specifically mean the legacy version,

we will always say "Windows PowerShell 5.1."

2.2 Installing PowerShell 7.x on Win-
dows
Windows is the platform where most PowerShell users begin their journey, and

there are several methods to install PowerShell 7.x. We will cover the most com-

mon and recommended approaches.

2.2.1 Installing via the MSI Package

The MSI installer is the most traditional method and provides a graphical installa-

tion experience. This is often preferred in enterprise environments where group

policy can deploy MSI packages.

First, navigate to the official PowerShell GitHub releases page at https://

github.com/PowerShell/PowerShell/releases. Look for the latest stable re-

lease (at the time of writing, this is PowerShell 7.5.x). Download the MSI file appro-

priate for your architecture. For most modern systems, this will be the Power-

Shell-7.5.x-win-x64.msi file.

Once downloaded, run the installer. During the installation, you will be pre-

sented with several optional features:

23

Installation Option Description Recommended Setting

Add PowerShell to PATH Adds the pwsh.exe direc-
tory to your system PATH
environment variable

Enable this option

Register Windows Event
Logging Manifest

Enables PowerShell 7.x to
write to Windows Event
Log

Enable this option

Enable PowerShell Remot-
ing

Configures WinRM for
PowerShell 7.x remoting

Enable if you plan to use
remoting

Add "Open here" context
menus

Adds right-click context
menu entries in Windows
Explorer

Optional but convenient

Add "Run with PowerShell
7" context menu for .ps1
files

Allows you to right-click a
script and run it with Pow-
erShell 7.x

Enable this option

After installation completes, you can verify the installation by opening a new termi-

nal window and typing:

pwsh --version

You should see output similar to:

PowerShell 7.5.2

2.2.2 Installing via Windows Package Manager
(winget)

For those who prefer command-line installation, the Windows Package Manager

provides a clean, scriptable approach. Open a command prompt or Windows Pow-

erShell 5.1 and run:

24

winget install --id Microsoft.PowerShell --source winget

This command downloads and installs the latest stable version of PowerShell 7.x.

The winget tool handles all the configuration automatically, including adding Pow-

erShell to your PATH.

To install a preview version instead, use:

winget install --id Microsoft.PowerShell.Preview --source winget

Note: The stable and preview versions can be installed simultaneously. The pre-

view version installs to a separate directory and uses the executable name pwsh-

preview.exe, so there is no conflict.

2.2.3 Installing via the Microsoft Store

PowerShell 7.x is also available through the Microsoft Store. Simply search for

"PowerShell" in the Store application and install it. This method has the advantage

of automatic updates, meaning you will always have the latest version without man-

ual intervention. However, Store-installed applications run in a slightly sandboxed

environment, which may cause subtle differences in behavior for certain adminis-

trative tasks.

2.2.4 Installing via the Dotnet Global Tool

If you already have the .NET SDK installed, you can install PowerShell as a .NET

global tool:

dotnet tool install --global PowerShell

This method is particularly useful for developers who already work within the .NET

ecosystem and want a lightweight installation.

25

2.3 Installing PowerShell 7.x on mac-
OS
PowerShell 7.x runs natively on macOS, and the recommended installation method

uses Homebrew, the popular package manager for macOS.

2.3.1 Installing via Homebrew

If you do not already have Homebrew installed, open the Terminal application and

run:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/

Homebrew/install/HEAD/install.sh)"

Once Homebrew is installed, installing PowerShell is a single command:

brew install powershell/tap/powershell

After installation, launch PowerShell by typing:

pwsh

You will see the familiar PowerShell prompt, and you can verify the version with:

$PSVersionTable

This command outputs a detailed table showing the PowerShell version, the .NET

runtime version, the operating system, and other relevant information:

Name Value

---- -----

PSVersion 7.5.2

PSEdition Core

GitCommitId 7.5.2

OS Darwin 24.2.0 Darwin Kernel

Version 24.2.0

