
1

Automating Microsoft 365
with Python

Build Powerful Apps Using Microsoft
Graph API

2

Preface

In today's digital workplace, Microsoft 365 has become the backbone of organiza-

tional productivity, powering everything from email communication to collabora-

tive document sharing. While the web interfaces and desktop applications serve

everyday users well, there's an entire world of automation possibilities waiting to

be unlocked through programming. This book bridges that gap by teaching you

how to harness the power of Python to automate, integrate, and extend Microsoft

365 services through the Microsoft Graph API.

Why Python and Microsoft 365?
Python's simplicity, readability, and extensive ecosystem make it the perfect lan-

guage for automation tasks. When combined with Microsoft Graph API—the unified

endpoint for accessing Microsoft 365 data and services—Python becomes a power-

ful tool for creating custom solutions that can transform how organizations work.

Whether you're a system administrator looking to automate user management, a

developer building custom integrations, or a data analyst seeking to extract in-

sights from organizational data, this book will equip you with the Python skills and

knowledge needed to succeed.

3

What You'll Learn
This book takes you on a comprehensive journey through Microsoft 365 au-

tomation using Python. You'll start by setting up your development environment

and understanding authentication mechanisms, then progressively build your skills

across all major Microsoft 365 services. You'll learn to manipulate Outlook emails

and calendar events with Python, manage OneDrive files programmatically, inter-

act with SharePoint sites and lists, and automate Microsoft Teams operations—all

through clean, efficient Python code.

The book goes beyond basic API calls to teach you how to build real-world ap-

plications. You'll create practical Python solutions including a daily summary bot

that aggregates calendar and email data, a file synchronization tool for OneDrive,

an automated Teams announcement system, and a SharePoint reporting dash-

board. Each project reinforces core concepts while demonstrating how Python can

solve actual business challenges.

How This Book Benefits You
By the end of this book, you'll have mastered the art of Microsoft 365 automation

with Python. You'll understand how to authenticate securely using Microsoft's iden-

tity platform, make efficient API calls while respecting rate limits, handle errors

gracefully, and deploy your Python applications to production environments. More

importantly, you'll have a collection of working Python scripts and applications that

you can immediately apply to your own projects.

The knowledge gained here extends far beyond Microsoft 365. The authentica-

tion patterns, API interaction techniques, and error handling strategies you'll learn

4

are transferable to many other cloud services and APIs, making you a more versa-

tile Python developer.

Book Structure
The book is carefully structured to build your expertise progressively. We begin

with foundational concepts—setting up your Microsoft 365 developer environment

and understanding Python-based authentication flows. The middle chapters dive

deep into each Microsoft 365 service, providing both theoretical understanding

and practical Python implementations. The final chapters focus on production con-

siderations, security best practices, and performance optimization.

Four hands-on projects in chapters 10-13 tie everything together, showing you

how to combine multiple services into cohesive Python applications. The appen-

dices serve as quick references for permissions, endpoints, and tools that you'll re-

turn to throughout your Microsoft 365 Python development journey.

Acknowledgments
This book exists thanks to the vibrant Python community and Microsoft's commit-

ment to providing excellent developer tools and documentation. Special recogni-

tion goes to the Microsoft Graph team for creating such a well-designed API, and

to the maintainers of the MSAL Python library for making authentication straightfor-

ward and secure.

I'm also grateful to the countless developers who have shared their experi-

ences and solutions online, contributing to the collective knowledge that makes

books like this possible.

5

Ready to Automate
Microsoft 365 automation with Python opens doors to incredible productivity gains

and creative solutions. Whether you're building simple scripts to save time or com-

plex applications to transform business processes, the combination of Python's ele-

gance and Microsoft Graph's power provides unlimited possibilities.

Let's begin this journey of turning repetitive tasks into elegant Python code

and unlocking the full potential of your Microsoft 365 environment.

Dargslan

6

Table of Contents

Chapter Title Page

Intro Introduction 7

1 Setting Up Your Microsoft 365 Developer Account 18

2 Python and Microsoft Identity Authentication 37

3 Microsoft Graph API Fundamentals 64

4 Reading and Sending Outlook Emails 76

5 Automating Calendar Events 100

6 OneDrive File Management 115

7 Accessing SharePoint Online 139

8 Managing Teams and Channels 159

9 Automating User Directory Operations 180

10 Daily Summary Bot with Outlook and Calendar 195

11 File Sync Between Local and OneDrive 210

12 Automated Teams Announcements Bot 226

13 SharePoint List Reporter 238

14 Token Security and Permission Scopes 261

15 Rate Limits, Error Handling, and Retries 292

16 Moving to Production 313

App Microsoft Graph Permissions Reference 328

App Useful Graph Endpoints Cheat Sheet 346

App MSAL Token Flow Diagrams 359

7

App JSON Response Structure Examples 379

App Recommended Tools (Postman, Graph Explorer, Fiddler) 400

8

Introduction

In the rapidly evolving landscape of modern business technology, the conver-

gence of cloud computing and automation has created unprecedented opportuni-

ties for organizations to streamline their operations, enhance productivity, and

drive innovation. At the heart of this transformation lies Microsoft 365, a compre-

hensive suite of productivity tools that has become the backbone of countless en-

terprises worldwide. Yet, despite its powerful capabilities, many organizations find

themselves trapped in repetitive, time-consuming manual processes that prevent

them from realizing the full potential of their digital investments.

Enter Python – the elegant, versatile programming language that has emerged

as the de facto standard for automation, data analysis, and rapid application devel-

opment. When these two powerful technologies converge, they create a synergy

that can revolutionize how organizations interact with their digital workspace, trans-

forming mundane tasks into automated workflows and unlocking insights that

were previously buried in data silos.

This book serves as your comprehensive guide to bridging the gap between

Python's automation capabilities and Microsoft 365's vast ecosystem. Whether

you're a system administrator seeking to automate user management, a data ana-

lyst looking to extract insights from SharePoint libraries, or a developer aiming to

create sophisticated integrations between Microsoft services, this journey will

equip you with the knowledge and practical skills needed to harness the full power

of Python in the Microsoft 365 environment.

9

The Evolution of Workplace Au-
tomation
The concept of workplace automation is not new, but its implementation has un-

dergone dramatic changes over the past decade. Traditional automation ap-

proaches often required expensive enterprise software, complex configurations,

and specialized knowledge that put them out of reach for many organizations. The

emergence of cloud-based services like Microsoft 365, combined with the accessi-

bility and power of Python, has democratized automation in ways that were previ-

ously unimaginable.

Consider the typical knowledge worker's day in a modern organization. They

might start by checking emails in Outlook, reviewing documents stored in Share-

Point, updating project timelines in Microsoft Project, analyzing data in Excel, and

collaborating with team members through Microsoft Teams. Each of these activities

involves multiple clicks, data entry, and decision-making processes that, while indi-

vidually manageable, collectively consume significant time and mental energy.

Python's role in this ecosystem is transformative. Unlike traditional scripting lan-

guages that were often platform-specific or required extensive setup procedures,

Python offers a clean, readable syntax that makes automation accessible to both

seasoned developers and newcomers to programming. Its extensive library

ecosystem, including specialized packages for Microsoft 365 integration, means

that complex automation tasks can often be accomplished with surprisingly con-

cise code.

The beauty of Python lies not just in its technical capabilities, but in its philoso-

phy of simplicity and readability. When Guido van Rossum created Python, he em-

phasized the importance of code that humans could easily understand and main-

tain. This philosophy aligns perfectly with the needs of modern organizations,

10

where automation solutions must be maintainable, scalable, and transferable be-

tween team members.

Understanding the Microsoft 365
Ecosystem
Microsoft 365 represents far more than a collection of productivity applications; it's

a comprehensive platform that encompasses email, document management, col-

laboration tools, business intelligence, and enterprise social networking. Each

component within this ecosystem generates data, processes workflows, and main-

tains relationships with other services that create opportunities for automation and

integration.

At its core, Microsoft 365 is built on a foundation of APIs (Application Program-

ming Interfaces) that expose the functionality of each service to external ap-

plications. These APIs follow modern REST principles, making them accessible to

Python applications through standard HTTP libraries. The Microsoft Graph API

serves as the unified endpoint for accessing data and functionality across the entire

Microsoft 365 suite, providing a consistent interface that Python developers can

leverage to build sophisticated automation solutions.

When we examine the individual components of Microsoft 365 from a Python

automation perspective, we begin to see the interconnected nature of the plat-

form. Exchange Online manages email and calendar data that can be programmat-

ically accessed to create automated responses, schedule management systems, or

compliance monitoring tools. SharePoint Online stores documents and maintains

metadata that Python scripts can analyze, organize, and transform. Microsoft Teams

provides collaboration spaces where Python bots can participate in conversations,

respond to queries, and facilitate workflows.

11

The power of Python in this context becomes evident when we consider the

language's strengths in data processing, web service integration, and rapid proto-

typing. Python's requests library makes API calls straightforward, while pandas pro-

vides powerful data manipulation capabilities for processing the information re-

trieved from Microsoft 365 services. The combination allows developers to create

solutions that not only automate individual tasks but also orchestrate complex

workflows that span multiple services.

Python's Unique Advantages for Mi-
crosoft 365 Automation
Python's emergence as the preferred language for Microsoft 365 automation is not

accidental; it stems from several key characteristics that align perfectly with the re-

quirements of modern business automation. The language's interpreted nature

means that scripts can be developed, tested, and modified quickly without the

compilation steps required by traditional programming languages. This rapid de-

velopment cycle is crucial when creating automation solutions that need to adapt

to changing business requirements.

The extensive Python Package Index (PyPI) ecosystem provides ready-made so-

lutions for common automation challenges. Libraries like requests for HTTP com-

munication, pandas for data manipulation, openpyxl for Excel file processing, and

python-dateutil for date handling eliminate the need to build fundamental

functionality from scratch. More importantly, specialized libraries like msal (Mi-

crosoft Authentication Library) and msgraph-sdk-python provide native Python

interfaces to Microsoft services, abstracting away the complexities of authentica-

tion and API communication.

12

Python's cross-platform compatibility ensures that automation solutions devel-

oped on one operating system can run on others with minimal modification. This

flexibility is particularly valuable in heterogeneous environments where different

teams may use different operating systems, or where automation scripts need to

run on various server platforms. Whether deployed on Windows servers, Linux con-

tainers, or cloud platforms like Azure Functions, Python automation scripts maintain

their functionality across environments.

The language's strong community support and extensive documentation

ecosystem mean that developers working on Microsoft 365 automation projects

have access to a wealth of resources, examples, and troubleshooting guidance.

Stack Overflow, GitHub repositories, and specialized forums provide platforms

where developers can share solutions, discuss best practices, and collaborate on

complex automation challenges.

Perhaps most importantly, Python's learning curve is gentle enough to enable

subject matter experts who may not be professional developers to create their own

automation solutions. Business analysts, system administrators, and power users

can learn to write Python scripts that address their specific needs, reducing the

bottleneck that often occurs when all automation requests must go through dedi-

cated development teams.

Real-World Applications and Use Cas-
es
The practical applications of Python automation in Microsoft 365 environments are

virtually limitless, spanning from simple task automation to complex business

process orchestration. Understanding these applications provides context for the

13

technical skills we'll develop throughout this book and demonstrates the tangible

value that Python automation can deliver to organizations.

User lifecycle management represents one of the most impactful areas for au-

tomation. In large organizations, the process of onboarding new employees in-

volves creating user accounts, assigning licenses, adding users to appropriate

groups, setting up mailboxes, and provisioning access to SharePoint sites and

Teams channels. Traditionally, this process might involve multiple administrators

working across different systems, with manual steps that are prone to errors and in-

consistencies. Python automation can orchestrate this entire workflow, reading em-

ployee data from HR systems, making the necessary API calls to create and config-

ure accounts, and even sending welcome emails with relevant information.

Content management and compliance automation showcase Python's data

processing strengths. Organizations often need to analyze documents stored in

SharePoint for compliance purposes, identify files that haven't been accessed re-

cently, or migrate content between sites. Python scripts can traverse SharePoint

document libraries, analyze file metadata, extract content for analysis, and perform

bulk operations that would be impractical to complete manually. For example, a

Python script might identify all documents containing specific keywords, check

their sharing permissions, and generate compliance reports for auditing purposes.

Reporting and analytics automation demonstrates how Python can transform

raw Microsoft 365 data into actionable insights. Teams usage analytics, email traffic

patterns, document collaboration metrics, and user activity reports can all be gen-

erated automatically using Python scripts that query the Microsoft Graph API,

process the data using pandas, and generate visualizations using libraries like mat-

plotlib or create formatted reports in Excel or PowerPoint.

Communication automation extends beyond simple email sending to include

sophisticated workflows that respond to business events. Python applications can

monitor SharePoint lists for new items, automatically create Teams channels for new

14

projects, send personalized notifications based on user preferences, and even par-

ticipate in Teams conversations as intelligent bots that can answer questions or fa-

cilitate processes.

Integration scenarios represent perhaps the most complex but valuable ap-

plications of Python automation. Modern organizations rarely operate with Mi-

crosoft 365 in isolation; they need to integrate with CRM systems, project manage-

ment tools, financial applications, and custom business systems. Python's extensive

library ecosystem and API integration capabilities make it an ideal platform for

building these integrations, whether they involve synchronizing data between sys-

tems, triggering workflows based on external events, or providing unified inter-

faces that span multiple platforms.

The Journey Ahead
As we embark on this comprehensive exploration of Python automation in Mi-

crosoft 365 environments, it's important to understand that we're not just learning

technical skills – we're developing a new perspective on how technology can serve

business needs. The journey ahead will take us from fundamental concepts to ad-

vanced implementation patterns, building your expertise progressively while main-

taining focus on practical, real-world applications.

The early chapters will establish the foundation you need to work effectively

with Microsoft 365 APIs using Python. We'll explore authentication mechanisms,

understand the Microsoft Graph API structure, and develop the core skills needed

to retrieve and manipulate data from Microsoft services. These foundational con-

cepts are crucial because they underpin every automation solution we'll build

throughout the book.

15

As we progress, we'll dive deep into specific Microsoft 365 services, exploring

how Python can automate and enhance each one. You'll learn to programmatically

manage Exchange Online for email automation, work with SharePoint Online for

content management, integrate with Microsoft Teams for collaboration automation,

and leverage other services like OneDrive, Power Platform, and Azure Active Direc-

tory.

The later chapters will focus on advanced topics like building scalable au-

tomation solutions, implementing error handling and logging, deploying Python

applications in cloud environments, and designing automation architectures that

can grow with your organization's needs. We'll also explore best practices for secu-

rity, performance optimization, and maintenance of automation solutions.

Throughout this journey, every code example, concept explanation, and practi-

cal exercise will maintain its focus on Python. While we'll interact with Microsoft 365

services and occasionally reference other technologies for context, Python will re-

main our primary tool and the lens through which we view automation challenges

and solutions.

Setting Expectations and Prerequisites
Before we dive into the technical content, it's important to establish realistic expec-

tations and ensure you have the foundational knowledge needed to make the

most of this learning experience. This book assumes you have basic familiarity with

Python programming concepts, including variables, functions, loops, and basic ob-

ject-oriented programming. If you're new to Python, you'll benefit from completing

a basic Python tutorial before proceeding with the Microsoft 365-specific content.

You don't need to be an expert in Microsoft 365 administration, but familiarity

with the basic services – Outlook, SharePoint, Teams, and OneDrive – will help you

16

understand the business context for the automation solutions we'll build. The book

will explain Microsoft 365 concepts as needed, but having hands-on experience

with these tools will make the automation opportunities more apparent.

From a technical environment perspective, you'll need access to a Microsoft

365 tenant where you can test automation scripts. Many of the examples can be

adapted to work with personal Microsoft accounts, but a full Microsoft 365 environ-

ment provides access to the complete range of services and administrative capa-

bilities. If you don't have access to a production Microsoft 365 environment, con-

sider setting up a developer tenant through the Microsoft 365 Developer Program,

which provides a free environment specifically designed for testing and develop-

ment.

The code examples in this book are designed to be practical and immediately

applicable to real-world scenarios. Rather than abstract demonstrations, you'll work

with automation solutions that address common business challenges, providing

templates and patterns that you can adapt to your specific organizational needs.

Each chapter builds upon the previous ones, creating a comprehensive toolkit of

Python automation capabilities for Microsoft 365.

As we progress through this journey together, remember that automation is

not just about replacing manual tasks with code – it's about reimagining how work

gets done, eliminating bottlenecks, reducing errors, and freeing human creativity

to focus on higher-value activities. Python provides the technical foundation for this

transformation, while Microsoft 365 provides the platform where these improve-

ments can have immediate, measurable impact on organizational productivity and

effectiveness.

The intersection of Python and Microsoft 365 represents more than just a tech-

nical integration; it's an opportunity to fundamentally transform how organizations

leverage their technology investments. As we explore these possibilities together,

17

you'll develop not just coding skills, but a strategic understanding of how au-

tomation can drive business value in the modern digital workplace.

18

Chapter 1: Setting Up Your
Microsoft 365 Developer Ac-
count

Introduction: The Gateway to Python-
Powered Automation
In the bustling world of modern business, Microsoft 365 has become the digital

backbone for millions of organizations worldwide. From the familiar interface of

Outlook to the collaborative power of Teams, from the analytical capabilities of Ex-

cel to the document management prowess of SharePoint, Microsoft 365 represents

a comprehensive ecosystem of productivity tools. But what if you could harness the

full potential of this ecosystem through the elegant simplicity of Python?

Picture this: instead of manually sorting through hundreds of emails each

morning, your Python script automatically categorizes them, extracts important in-

formation, and creates summary reports. Imagine your Python application seam-

lessly creating Teams meetings, updating SharePoint lists, and generating PowerBI

dashboards—all while you focus on the strategic aspects of your work. This isn't sci-

ence fiction; it's the reality that awaits when you combine the versatility of Python

with the robust APIs of Microsoft 365.

The journey begins with a single, crucial step: setting up your Microsoft 365

Developer Account. This chapter serves as your comprehensive guide through this

19

foundational process, ensuring that by its conclusion, you'll have all the necessary

credentials, permissions, and understanding to begin your Python automation ad-

venture.

Think of your Microsoft 365 Developer Account as the master key that unlocks

the vast treasure trove of Microsoft's cloud services. Without it, your Python scripts

would be like ships without anchors—powerful but unable to dock at the ports

where your data and applications reside. With it, you gain access to a world where

Python's simplicity meets Microsoft's enterprise-grade capabilities.

Understanding the Microsoft 365 De-
veloper Ecosystem
Before diving into the setup process, it's essential to understand the landscape

you're about to navigate. The Microsoft 365 Developer Program is Microsoft's ini-

tiative to provide developers with the tools, resources, and sandbox environments

necessary to build applications that integrate with Microsoft 365 services.

When you establish your developer account, you're not just creating another

login credential—you're gaining entry into a sophisticated ecosystem designed

specifically for innovation and automation. This ecosystem includes access to Mi-

crosoft Graph, the unified API endpoint that serves as the gateway to Microsoft 365

data and intelligence. Through Microsoft Graph, your Python applications can inter-

act with virtually every aspect of the Microsoft 365 suite.

The beauty of this setup lies in its alignment with Python's philosophy of sim-

plicity and readability. Just as Python allows you to express complex ideas in clear,

concise code, the Microsoft 365 Developer Program provides straightforward path-

ways to access incredibly powerful enterprise features. Your Python scripts will be

20

able to authenticate, authorize, and communicate with Microsoft services using in-

dustry-standard protocols like OAuth 2.0 and REST APIs.

Consider the typical workflow of a Python developer working with Microsoft

365: your script imports the necessary libraries (such as requests for HTTP com-

munication or msal for authentication), establishes a connection using your devel-

oper credentials, makes API calls to retrieve or modify data, and processes the re-

sponses using Python's rich ecosystem of data manipulation tools. This seamless

integration between Python's capabilities and Microsoft's services is what makes

the developer account so valuable.

Prerequisites and Planning
Before embarking on the account creation process, let's ensure you have every-

thing needed for a smooth setup experience. The prerequisites for establishing

your Microsoft 365 Developer Account are refreshingly minimal, reflecting Mi-

crosoft's commitment to lowering barriers for developers.

First and foremost, you'll need a valid email address. While this might seem

obvious, it's worth noting that this email will become the primary contact point for

your developer account. Choose an email address that you check regularly and

that you'll have long-term access to. Many Python developers prefer to use a dedi-

cated email address for their development activities, helping to keep their devel-

opment communications organized and separate from personal correspondence.

You'll also need access to a web browser and a stable internet connection. The

account creation process involves several web-based steps, including email verifi-

cation and configuration of various settings. While the process doesn't require any

special browser extensions or plugins, having a modern, up-to-date browser will

ensure the best experience.

21

From a planning perspective, consider how you intend to use your developer

account. Are you building Python applications for a specific organization, or are

you exploring Microsoft 365 automation for personal learning? Understanding

your intended use case will help you make informed decisions during the setup

process, particularly when configuring application permissions and choosing be-

tween different types of developer subscriptions.

It's also worth considering your Python development environment. While you

don't need to have everything set up before creating your developer account,

thinking ahead about your preferred Python IDE, virtual environment management,

and package management approach will help you hit the ground running once

your account is active. Popular choices among Microsoft 365 Python developers in-

clude Visual Studio Code (with its excellent Python extension), PyCharm, and

Jupyter notebooks for exploratory development.

Step-by-Step Account Creation Process
Now, let's walk through the detailed process of creating your Microsoft 365 Devel-

oper Account. This journey unfolds in several distinct phases, each building upon

the previous one to establish your complete development environment.

Phase 1: Accessing the Microsoft 365 Developer
Program

Begin by navigating to the Microsoft 365 Developer Program website at develop-

er.microsoft.com/microsoft-365. The landing page presents a clean, professional

interface that immediately communicates Microsoft's commitment to supporting

22

developers. Look for the prominent "Join now" or "Get started" button, which

serves as your entry point into the program.

The initial page provides valuable context about what you're joining. Take a

moment to review the program benefits, which include access to a free Microsoft

365 E5 developer subscription, Microsoft Graph APIs, and comprehensive docu-

mentation and samples. For Python developers, these benefits translate into unlim-

ited opportunities to experiment, learn, and build without the constraints of licens-

ing costs or limited API access.

Phase 2: Account Registration

Clicking the join button initiates the registration process. You'll be presented with a

form requesting basic information about yourself and your development inten-

tions. This isn't merely administrative overhead—Microsoft uses this information to

provide you with relevant resources and to understand how developers are using

their platform.

The form typically requests your name, email address, country/region, and

company information. If you're an independent developer or student, don't worry

about the company field—you can enter "Individual" or "Student" as appropriate.

The key is honesty and accuracy, as this information may be used for verification

purposes.

One particularly important section asks about your development focus and in-

tended use of the Microsoft 365 platform. Here's where you can highlight your

Python development interests. Whether you're planning to build automation

scripts, data analysis tools, or comprehensive applications, clearly articulating your

goals helps Microsoft provide you with the most relevant resources and support.

23

Phase 3: Email Verification and Account Activation

After submitting your registration information, Microsoft will send a verification

email to the address you provided. This step is crucial for account security and en-

sures that you have access to the email account associated with your developer

profile.

The verification email typically arrives within a few minutes, though it may occa-

sionally take longer depending on email server configurations. If you don't see the

email in your inbox, check your spam or junk folders—sometimes automated emails

from Microsoft can be incorrectly filtered.

The verification email contains a unique link that you must click to activate your

account. This link is time-sensitive, typically expiring after 24 hours, so it's important

to complete this step promptly. Clicking the link will redirect you back to the Mi-

crosoft 365 Developer Program portal, where you'll see confirmation that your ac-

count has been successfully activated.

Phase 4: Setting Up Your Developer Tenant

Once your account is activated, you'll have the opportunity to set up your Microsoft

365 developer tenant. This is where the magic really begins for Python developers,

as the tenant provides you with a complete Microsoft 365 environment for testing

and development purposes.

The tenant setup process involves choosing a domain name for your develop-

ment environment. This domain will be in the format yourchosendomain.onmi-

crosoft.com. Choose something memorable and professional, as you'll be using

this domain throughout your development work. Many Python developers incorpo-

rate their name or project focus into the domain name for easy identification.

24

During this phase, you'll also create your administrator account for the tenant.

This account will have full administrative privileges within your development envi-

ronment, allowing you to configure settings, create test users, and manage ap-

plications as needed for your Python development projects.

Configuring Your Development Envi-
ronment
With your Microsoft 365 Developer Account established, the next crucial step in-

volves configuring your environment to support Python-based development and

automation. This configuration process transforms your basic developer account

into a powerful platform for Python-driven Microsoft 365 integration.

Understanding Tenant Configuration

Your developer tenant comes pre-configured with a variety of Microsoft 365 ser-

vices, but optimizing it for Python development requires some additional setup.

Think of this process as preparing a laboratory where your Python experiments

with Microsoft 365 can flourish safely and effectively.

The first consideration is user management. Your tenant includes the ability to

create additional test users, which is invaluable when developing Python ap-

plications that interact with multiple user accounts. For instance, if you're building a

Python script that manages calendar invitations across different users, having test

accounts allows you to thoroughly validate your automation without affecting real

users.

Creating test users through the Microsoft 365 admin center is straightforward,

but consider the implications for your Python development. Each test user can

25

have different permission levels, allowing you to test how your Python applications

behave under various security contexts. This is particularly important when devel-

oping scripts that will eventually run in production environments with diverse user

roles.

Application Registration Fundamentals

The heart of Python integration with Microsoft 365 lies in application registration.

Every Python script or application that interacts with Microsoft 365 services must be

registered within your Azure Active Directory (now Microsoft Entra ID) tenant. This

registration process establishes the identity and permissions for your Python ap-

plications.

Navigate to the Azure portal (portal.azure.com) using your developer account

credentials. The Azure portal serves as the control center for managing your appli-

cation registrations, and understanding its interface is crucial for Python develop-

ers working with Microsoft 365.

In the Azure portal, locate the "Azure Active Directory" service, then navigate to

"App registrations." This section displays all the applications registered in your ten-

ant and provides the interface for creating new registrations. For Python develop-

ers, each significant automation project typically warrants its own application regis-

tration, providing clear separation of concerns and granular permission manage-

ment.

Creating Your First Application Registration

Creating your first application registration is a milestone moment for Python devel-

opers entering the Microsoft 365 ecosystem. This registration will serve as the

foundation for all your Python-based automation scripts and applications.

26

Click "New registration" to begin the process. The registration form requests

several pieces of information that directly impact how your Python applications will

interact with Microsoft 365 services.

The application name should be descriptive and professional. Consider nam-

ing conventions that will make sense as your portfolio of Python automation tools

grows. For example, "Python-M365-Email-Automation" clearly indicates both the

technology stack and the purpose of the application.

The supported account types setting determines who can use your application.

For development purposes, "Accounts in this organizational directory only" is typi-

cally the appropriate choice, as it restricts access to your developer tenant while

you're building and testing your Python scripts.

The redirect URI configuration requires careful consideration for Python ap-

plications. If you're building command-line scripts or server-side applications, you

might not need a redirect URI initially. However, if your Python application will in-

volve interactive authentication (such as a web application built with Flask or Djan-

go), you'll need to specify appropriate redirect URIs.

Understanding Application Permissions

Application permissions represent one of the most critical aspects of Microsoft 365

development with Python. These permissions determine exactly what your Python

scripts can and cannot do within the Microsoft 365 environment, making them es-

sential for both security and functionality.

Microsoft Graph API permissions fall into two main categories: delegated per-

missions and application permissions. Understanding the distinction is crucial for

Python developers, as it affects how your scripts authenticate and what they can ac-

complish.

27

Delegated permissions operate in the context of a signed-in user. When your

Python script uses delegated permissions, it can only access resources that the

signed-in user has permission to access. This model is ideal for Python applications

that act on behalf of users, such as personal automation scripts or interactive ap-

plications.

Application permissions, on the other hand, allow your Python script to access

resources without a signed-in user context. These permissions are powerful and re-

quire administrative consent, but they enable scenarios like automated data pro-

cessing, scheduled tasks, and server-to-server communication.

For your initial Python development, start with delegated permissions that

match your intended use cases. Common starting permissions for Python develop-

ers include:

-	 User.Read for accessing basic user profile information

-	 Mail.Read for reading email messages

-	 Calendars.Read for accessing calendar data

-	 Files.Read for accessing OneDrive and SharePoint files

As your Python applications become more sophisticated, you can add additional

permissions as needed. The principle of least privilege should guide your permis-

sion selections—only request the permissions your Python scripts actually need to

function.

Essential Tools and Resources for
Python Development
With your Microsoft 365 Developer Account configured, it's time to assemble the

Python-specific tools and resources that will power your automation journey. This

28

toolkit represents the bridge between your developer account and the Python

scripts you'll create.

Python Libraries for Microsoft 365 Integration

The Python ecosystem offers several excellent libraries specifically designed for Mi-

crosoft 365 integration. Understanding these libraries and their capabilities will sig-

nificantly accelerate your development process.

The Microsoft Authentication Library (MSAL) for Python stands as the corner-

stone of Microsoft 365 integration. MSAL handles the complex OAuth 2.0 authenti-

cation flows that secure Microsoft 365 services, abstracting away the intricate de-

tails of token management and providing a clean, Pythonic interface for authentica-

tion.

Installing MSAL is straightforward using pip:

pip install msal

MSAL supports various authentication scenarios that align with different Python ap-

plication architectures. For interactive applications, MSAL can handle device code

flows, allowing users to authenticate through a web browser even when your

Python script runs in a command-line environment. For automated scripts, MSAL

supports client credential flows using application secrets or certificates.

The requests library, while not Microsoft-specific, becomes an essential tool

for Python developers working with Microsoft Graph APIs. Most Microsoft 365 in-

teractions from Python involve HTTP requests to Graph endpoints, and the re-

quests library provides an elegant, intuitive interface for these communications.

Consider this example of how these libraries work together in a Python script:

import msal

import requests

29

Configuration for your registered application

client_id = "your-application-id"

client_secret = "your-application-secret"

tenant_id = "your-tenant-id"

Create an MSAL instance

app = msal.ConfidentialClientApplication(

 client_id,

 authority=f"https://login.microsoftonline.com/{tenant_id}",

 client_credential=client_secret

)

Acquire a token for Microsoft Graph

result = app.acquire_token_for_client(scopes=["https://

graph.microsoft.com/.default"])

if "access_token" in result:

 # Use the token to make a Graph API call

 headers = {"Authorization": f"Bearer

{result['access_token']}"}

 response = requests.get("https://graph.microsoft.com/v1.0/

me", headers=headers)

 print(response.json())

This example demonstrates the fundamental pattern that underlies most Python-

Microsoft 365 integrations: authenticate using MSAL, obtain an access token, and

use that token to make authenticated requests to Microsoft Graph endpoints.

Development Environment Setup

Creating an effective development environment for Python-Microsoft 365 integra-

tion involves several considerations beyond basic Python installation. Your environ-

ment should support efficient coding, debugging, and testing of Microsoft 365 in-

tegrations.

30

Visual Studio Code has emerged as a popular choice among Python develop-

ers working with Microsoft 365, partly due to Microsoft's excellent Python exten-

sion and the integrated Azure tools. The Python extension provides intelligent

code completion, debugging support, and integrated terminal access, while Azure

extensions help manage your developer account resources directly from your IDE.

Virtual environments become particularly important when developing Mi-

crosoft 365 integrations, as different projects may require different versions of au-

thentication libraries or have conflicting dependencies. Python's built-in venv

module provides a straightforward way to create isolated environments for each

project:

python -m venv m365-automation-env

source m365-automation-env/bin/activate # On Windows: m365-

automation-env\Scripts\activate

pip install msal requests python-dotenv

The python-dotenv library deserves special mention for Microsoft 365 develop-

ment, as it provides a secure way to manage the application credentials and con-

figuration values that your Python scripts need. Instead of hardcoding sensitive in-

formation like client secrets and tenant IDs, you can store them in a .env file and

load them programmatically:

from dotenv import load_dotenv

import os

load_dotenv()

client_id = os.getenv("CLIENT_ID")

client_secret = os.getenv("CLIENT_SECRET")

tenant_id = os.getenv("TENANT_ID")

31

Documentation and Learning Resources

Microsoft provides comprehensive documentation for their Graph APIs, but navi-

gating this documentation effectively requires understanding how it relates to

Python development. The Microsoft Graph documentation includes interactive API

explorers, code samples, and detailed reference materials that directly support

Python development.

The Graph Explorer (developer.microsoft.com/graph/graph-explorer) deserves

particular attention from Python developers. This web-based tool allows you to ex-

periment with Graph API calls interactively, helping you understand API responses

and test different query parameters before implementing them in your Python

scripts. The Explorer also generates sample code in various languages, including

Python, providing excellent starting points for your automation scripts.

Microsoft's official Python samples repository on GitHub contains numerous ex-

amples of Python applications that integrate with Microsoft 365 services. These

samples demonstrate best practices for authentication, error handling, and API us-

age that can significantly accelerate your learning process.

Security Best Practices and Initial Test-
ing
Security considerations permeate every aspect of Microsoft 365 development with

Python, from initial account setup through production deployment. Understanding

and implementing security best practices from the beginning will save you signifi-

cant effort later and ensure that your Python automation tools meet enterprise se-

curity standards.

32

Credential Management

The management of application credentials represents one of the most critical se-

curity considerations for Python developers. Your application registration gener-

ates several types of credentials, including client secrets and potentially certifi-

cates, that your Python scripts need to authenticate with Microsoft 365 services.

Never hardcode credentials directly in your Python scripts. This practice creates

security vulnerabilities and makes credential rotation difficult. Instead, use environ-

ment variables or secure configuration files to store sensitive information. The

python-dotenv library mentioned earlier provides an excellent foundation for

this approach.

Consider implementing credential rotation procedures early in your develop-

ment process. Microsoft recommends rotating client secrets regularly, and building

this capability into your Python applications from the beginning will simplify main-

tenance later. Your Python scripts should be designed to handle credential updates

gracefully, perhaps by checking for updated credentials at startup or implementing

automatic retry logic when authentication fails.

Testing Your Setup

With your developer account configured and security practices in place, it's time to

validate your setup with a simple Python test. This initial test serves multiple pur-

poses: verifying that your authentication configuration works correctly, confirming

that your Python environment has the necessary libraries installed, and providing a

foundation for more complex automation scripts.

Create a simple Python script that authenticates with your developer tenant

and retrieves basic information about your user account:

import msal

import requests

33

from dotenv import load_dotenv

import os

Load environment variables

load_dotenv()

Configuration

config = {

 "client_id": os.getenv("CLIENT_ID"),

 "client_secret": os.getenv("CLIENT_SECRET"),

 "tenant_id": os.getenv("TENANT_ID"),

 "scope": ["https://graph.microsoft.com/.default"]

}

def get_access_token():

 """Acquire an access token for Microsoft Graph"""

 app = msal.ConfidentialClientApplication(

 config["client_id"],

 authority=f"https://login.microsoftonline.com/

{config['tenant_id']}",

 client_credential=config["client_secret"]

)

 result = app.acquire_token_for_client(scopes=config["scope"])

 if "access_token" in result:

 return result["access_token"]

 else:

 print(f"Authentication failed:

{result.get('error_description', 'Unknown error')}")

 return None

def test_graph_connection():

 """Test the connection to Microsoft Graph"""

 token = get_access_token()

 if not token:

 return False

 headers = {

 "Authorization": f"Bearer {token}",

 "Content-Type": "application/json"

34

 }

 # Test with a simple Graph API call

 response = requests.get("https://graph.microsoft.com/v1.0/

organization", headers=headers)

 if response.status_code == 200:

 org_info = response.json()

 print("Connection successful!")

 print(f"Organization: {org_info['value'][0]

['displayName']}")

 return True

 else:

 print(f"Connection failed: {response.status_code} -

{response.text}")

 return False

if __name__ == "__main__":

 print("Testing Microsoft 365 Developer Account setup...")

 success = test_graph_connection()

 if success:

 print("Setup validation complete. Your environment is

ready for Microsoft 365 automation with Python!")

 else:

 print("Setup validation failed. Please check your

configuration and try again.")

This test script demonstrates several important concepts for Python-Microsoft 365

development:

1.	 Secure credential loading using environment variables

2.	 Proper error handling for authentication failures

3.	 Clean separation of authentication and API calling logic

4.	 Informative output to help diagnose issues

35

Running this script successfully indicates that your Microsoft 365 Developer Ac-

count is properly configured and ready for more advanced Python automation

projects.

Conclusion: Your Foundation for
Python-Powered Microsoft 365 Au-
tomation
Congratulations! You've successfully navigated the process of setting up your Mi-

crosoft 365 Developer Account and configuring it for Python development. This

achievement represents more than just completing administrative tasks—you've es-

tablished the foundation for a powerful automation platform that can transform

how you work with Microsoft 365 services.

The developer account you've created provides you with unprecedented ac-

cess to Microsoft's cloud services, all accessible through the elegant simplicity of

Python code. Your tenant serves as a safe sandbox where you can experiment,

learn, and build without the constraints of production environments or licensing

limitations.

The application registration you've configured acts as the identity for your

Python scripts within the Microsoft 365 ecosystem. Through this registration, your

Python applications can authenticate securely and access the specific Microsoft

365 services they need to accomplish their automation tasks.

The security practices you've implemented—from secure credential manage-

ment to proper permission configuration—ensure that your Python automation

tools will meet enterprise standards from day one. These practices will serve you

well as your automation projects grow in scope and complexity.

36

Looking ahead, your Microsoft 365 Developer Account opens doors to count-

less automation possibilities. You might develop Python scripts that automatically

organize your email inbox, create comprehensive reports from SharePoint data, or

orchestrate complex workflows across multiple Microsoft 365 services. The founda-

tion you've built in this chapter will support all of these endeavors and more.

As you continue your journey into Microsoft 365 automation with Python, re-

member that the developer account you've established is more than just a techni-

cal requirement—it's your gateway to a world where Python's versatility meets Mi-

crosoft's enterprise capabilities. The combination is powerful, and the possibilities

are limitless.

In the next chapter, we'll build upon this foundation by exploring the Microsoft

Graph API in detail, learning how to navigate its vast capabilities and integrate

them seamlessly into your Python applications. Your developer account will be the

key that unlocks these powerful APIs, enabling you to create Python automation so-

lutions that would have been impossible without the groundwork you've complet-

ed here.

The journey of mastering Microsoft 365 automation with Python has begun,

and you're now equipped with the essential foundation to make that journey suc-

cessful. Your developer account awaits your creative Python scripts, ready to trans-

form your ideas into powerful automation realities.

