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Preface 

Every system administrator eventually faces a moment of reckoning: a disk fails, a 

partition runs out of space at 2 AM, or a critical database needs to be restored from 

a snapshot that was never taken. In those moments, the difference between a rou-

tine recovery and a catastrophic loss often comes down to one thing — how well 

the underlying storage was designed and managed. 

This book exists because ZFS changed the way I think about storage, and I be-

lieve it will change the way you think about it, too. 

Why This Book? 
LVM & ZFS: Linux Storage Management was written to give Linux professionals a 

comprehensive, practical guide to modern storage management — with ZFS as its 

central focus. While LVM remains a foundational technology in the Linux ecosys-

tem and receives thorough coverage in the first half of this book, the heart of what 

follows is an in-depth exploration of ZFS: its architecture, its philosophy, and the 

extraordinary capabilities it brings to data protection, integrity, and administration. 

ZFS is more than a filesystem. It is a fundamentally different approach to stor-

age — one that collapses the traditional boundaries between volume management, 

filesystem logic, and data integrity into a single, coherent system. Understanding 

ZFS deeply means understanding why storage has historically been so fragile, and 

how ZFS was designed from the ground up to eliminate entire categories of failure. 
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What You Will Learn 
This book takes you on a deliberate journey. We begin with the Linux storage 

stack — the layers of abstraction that sit between your applications and your physi-

cal disks — and establish the design principles that should guide every storage de-

cision you make. From there, we build a solid understanding of LVM, not only be-

cause it remains widely deployed, but because understanding LVM's strengths and 

limitations provides essential context for appreciating what ZFS does differently. 

The core of the book dives deep into ZFS architecture and philosophy, cov-

ering pool creation and management, datasets and properties, snapshots and 

clones, data integrity through checksumming and scrubbing, and performance 

tuning. You will learn not just how to run ZFS commands, but why ZFS behaves the 

way it does — knowledge that proves invaluable when designing systems, diagnos-

ing problems, or making architectural decisions under pressure. 

The final chapters bring everything together: production deployment strate-

gies, a direct comparison of LVM and ZFS, and a forward-looking discussion on 

evolving from storage administrator to infrastructure architect — a transition that 

ZFS knowledge uniquely enables. 

How This Book Is Structured 

-	 Chapters 1–2 establish foundational concepts in Linux storage and de-

sign thinking. 

-	 Chapters 3–6 provide comprehensive LVM coverage as both a practical 

skill and a comparative baseline. 

-	 Chapters 7–11 form the heart of the book, delivering deep, hands-on 

ZFS expertise. 
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-	 Chapters 12–16 address performance, monitoring, production opera-

tions, and professional growth. 

-	 Appendices A–E offer quick-reference materials, including a ZFS com-

mand cheat sheet, storage design templates, failure recovery proce-

dures, and a learning roadmap. 

Who This Book Is For 
Whether you are a junior administrator encountering ZFS for the first time, a sea-

soned engineer evaluating ZFS for production workloads, or an architect designing 

resilient infrastructure, this book meets you where you are and takes you further. 

Acknowledgments 
This book would not exist without the brilliant engineers who created and continue 

to develop OpenZFS, nor without the vibrant community that has kept ZFS thriving 

on Linux. I am also grateful to the system administrators, colleagues, and mentors 

whose hard-won lessons — often learned during those 2 AM emergencies — 
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Finally, to every reader who has chosen to invest their time in truly understand-

ing storage rather than merely configuring it: thank you. The systems you build will 

be better for it, and the data entrusted to your care will be safer. 
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Chapter 1: Understanding 
Linux Storage Layers 

The journey into modern Linux storage management begins with a fundamental 

understanding of how data moves from an application down to the physical disk 

and back again. For decades, Linux administrators have relied on a layered ap-

proach to storage, where each layer handles a specific responsibility. This chapter 

explores those layers in depth, with a particular emphasis on how ZFS reimagines 

and consolidates them into a single, cohesive system. By the end of this chapter, 

you will have a solid mental model of traditional Linux storage architecture and a 

clear picture of why ZFS represents a paradigm shift in how we think about manag-

ing data on Linux systems. 

The Traditional Linux Storage Stack 
In a conventional Linux system, data passes through several distinct layers before it 

reaches the physical media. Each of these layers was designed independently, and 

over the years, system administrators have learned to stitch them together to build 

reliable storage solutions. Understanding this traditional stack is essential because 

it provides the context against which ZFS was designed and the problems it was 

built to solve. 

At the very bottom of the stack sit the physical storage devices themselves. 

These can be traditional spinning hard disk drives, solid state drives, NVMe de-

vices, or even remote storage accessed over a network. The Linux kernel communi-
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cates with these devices through device drivers, which present each device as a 

block device, typically found under the /dev directory. For example, a first SATA 

disk appears as /dev/sda, while an NVMe drive might appear as /dev/nvme0n1. 

Above the physical devices sits the partitioning layer. Tools like fdisk, gdisk, 

and parted allow administrators to divide a single physical disk into multiple parti-

tions. Each partition is itself presented as a block device. For instance, the first par-

tition on /dev/sda becomes /dev/sda1. The partition table, whether it uses the 

older MBR format or the newer GPT format, is stored on the disk itself and tells the 

kernel how to interpret the layout. 

On top of partitions, administrators can optionally deploy a volume manage-

ment layer. The most common implementation on Linux is the Logical Volume 

Manager, known as LVM. LVM introduces three key abstractions: Physical Volumes 

(PVs), Volume Groups (VGs), and Logical Volumes (LVs). Physical Volumes are ini-

tialized from partitions or whole disks. Volume Groups pool one or more Physical 

Volumes together into a single storage resource. Logical Volumes are then carved 

out of a Volume Group and presented to the system as block devices that can be 

formatted and mounted. LVM provides flexibility by allowing administrators to re-

size volumes, create snapshots, and span storage across multiple disks, but it oper-

ates entirely at the block level and has no awareness of the data stored within 

those blocks. 

Finally, at the top of the traditional stack sits the filesystem layer. This is where 

the actual organization of files and directories takes place. Common Linux filesys-

tems include ext4, XFS, and Btrfs. The filesystem is created on top of a block de-

vice, whether that device is a raw partition, an LVM logical volume, or a software 

RAID device. The filesystem manages inodes, directory entries, free space alloca-

tion, journaling, and all the metadata required to turn raw blocks into a meaningful 

hierarchy of files. 
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If an administrator wants redundancy, there is yet another layer to consider: 

software RAID, typically managed by the mdadm utility. Software RAID combines 

multiple block devices into a single array that provides mirroring, striping, or pari-

ty-based protection. This RAID layer sits between the partitioning layer and either 

LVM or the filesystem, adding yet another component to configure and manage. 

The following table summarizes the traditional Linux storage layers: 

Layer Responsibility Common Tools Example Devices

Physical Devices Raw block storage lsblk, smartctl /dev/sda, /dev/
nvme0n1

Partitioning Dividing disks into 
regions

fdisk, gdisk, parted /dev/sda1, /dev/
nvme0n1p1

Software RAID Redundancy and 
performance

mdadm /dev/md0, /dev/
md1

Volume Manage-
ment

Pooling and flexible 
allocation

pvcreate, vgcreate, 
lvcreate

/dev/vg0/lv_data

Filesystem File and directory 
organization

mkfs.ext4, mkfs.xfs Mounted at /
home, /var

Each of these layers must be configured, monitored, and maintained independent-

ly. When something goes wrong, the administrator must determine which layer is 

responsible, a task that can be surprisingly difficult in complex environments. This 

is the world into which ZFS was introduced, and understanding this complexity is 

the key to appreciating what ZFS brings to the table. 
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How ZFS Reimagines the Storage 
Stack 
ZFS was originally developed at Sun Microsystems in the early 2000s by a team led 

by Jeff Bonwick and Matthew Ahrens. It was first released as part of OpenSolaris in 

2005. The design philosophy behind ZFS was radical in its simplicity: instead of lay-

ering independent tools on top of one another, why not build a single integrated 

system that handles volume management, RAID, filesystem organization, and data 

integrity all in one place? 

This is exactly what ZFS does. When you use ZFS, you do not separately config-

ure partitions, then RAID arrays, then volume groups, then logical volumes, then 

filesystems. Instead, you create a storage pool, known as a zpool, from one or more 

physical devices, and then you create datasets within that pool. A dataset in ZFS is 

analogous to a filesystem, but it is far more flexible and feature-rich than a tradi-

tional filesystem. The pool handles all the underlying details of how data is dis-

tributed across disks, how redundancy is maintained, and how free space is allocat-

ed. 

To illustrate this concretely, consider the task of setting up a mirrored storage 

system with two disks on a traditional Linux system. You would need to perform the 

following steps: 

1.	 Partition both disks using fdisk or gdisk. 

2.	 Create a RAID 1 array using mdadm --create /dev/md0 --level=1 

--raid-devices=2 /dev/sda1 /dev/sdb1. 

3.	 Optionally create a Physical Volume on the RAID array using pvcreate 

/dev/md0. 

4.	 Create a Volume Group using vgcreate vg0 /dev/md0. 
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5.	 Create a Logical Volume using lvcreate -L 100G -n lv_data 

vg0. 

6.	 Create a filesystem using mkfs.ext4 /dev/vg0/lv_data. 

7.	 Mount the filesystem using mount /dev/vg0/lv_data /data. 

With ZFS, the equivalent operation is dramatically simpler: 

zpool create datapool mirror /dev/sda /dev/sdb 

That single command creates a mirrored storage pool using both disks. ZFS auto-

matically handles the partitioning, the RAID configuration, the volume manage-

ment, and the creation of a root dataset that can be mounted and used immediate-

ly. The pool is mounted by default at /datapool, and you can begin storing data 

right away. 

You can then create additional datasets within the pool: 

zfs create datapool/documents 

zfs create datapool/backups 

Each dataset behaves like an independent filesystem with its own mount point, its 

own properties (such as compression, quota, and reservation settings), and its own 

snapshot history. Yet all datasets share the same underlying pool of storage, and 

ZFS manages the allocation of space dynamically. 

The following table compares the traditional layered approach with the ZFS in-

tegrated approach: 

Capability Traditional Stack ZFS Approach

Volume Management LVM (pvcreate, vgcreate, 
lvcreate)

Built into zpool

RAID / Redundancy mdadm (separate configura-
tion)

Built into zpool (mirror, raidz, 
raidz2, raidz3)

Filesystem ext4, XFS (mkfs, mount) Built into ZFS datasets
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Snapshots LVM snapshots (limited, per-
formance impact)

Native ZFS snapshots (copy-
on-write, no performance 
penalty)

Data Integrity Not guaranteed (silent cor-
ruption possible)

End-to-end checksumming of 
all data and metadata

Compression Filesystem-level or applica-
tion-level

Native, per-dataset, trans-
parent compression

Administration Multiple tools, multiple con-
figuration files

Single toolset (zpool, zfs com-
mands)

This consolidation is not merely a convenience. It has profound implications for 

data integrity, performance, and administrative simplicity, all of which we will ex-

plore in greater detail throughout this book. 

The Copy-on-Write Foundation 
One of the most important architectural decisions in ZFS is its use of a copy-on-

write (COW) transactional model. In a traditional filesystem, when you modify a 

block of data, the filesystem writes the new data over the old data in place. If the 

system loses power during this write, the block can be left in an inconsistent state, 

containing neither the old data nor the complete new data. Traditional filesystems 

mitigate this risk through journaling, which adds complexity and overhead. 

ZFS takes a fundamentally different approach. When data is modified, ZFS nev-

er overwrites the existing data. Instead, it writes the new data to a new location on 

disk, updates the metadata pointers to reference the new location, and then frees 

the old blocks. This means that the on-disk state is always consistent. Either the old 

data is intact (if the metadata update has not yet been committed) or the new data 

is intact (if the metadata update has been committed). There is no intermediate 

state where data is partially written. 
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This copy-on-write model is what makes ZFS snapshots so efficient. A snapshot 

is simply a record of the metadata pointers at a particular point in time. Because 

ZFS never overwrites data in place, the snapshot remains valid as long as the old 

blocks are not freed. Creating a snapshot is nearly instantaneous and consumes no 

additional disk space at the moment of creation. Space is only consumed as the ac-

tive dataset diverges from the snapshot over time. 

To create a snapshot in ZFS: 

zfs snapshot datapool/documents@monday_backup 

To list all snapshots: 

zfs list -t snapshot 

To roll back to a snapshot: 

zfs rollback datapool/documents@monday_backup 

These operations are fast, reliable, and deeply integrated into the storage system. 

There is no need for a separate snapshot mechanism, no performance penalty dur-

ing normal operations, and no risk of the snapshot becoming inconsistent. 

End-to-End Data Integrity 
Perhaps the most compelling feature of ZFS, and one that has no equivalent in the 

traditional Linux storage stack, is its end-to-end data integrity verification. ZFS com-

putes a cryptographic checksum for every block of data and metadata that it writes 

to disk. These checksums are stored in the parent block's metadata, not alongside 

the data itself. This separation means that a corruption event that damages a data 

block cannot also damage the checksum that verifies it. 
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Every time ZFS reads a block from disk, it recomputes the checksum and com-

pares it to the stored value. If the checksums do not match, ZFS knows that the data 

has been corrupted. If the pool has redundancy (for example, a mirror or raidz con-

figuration), ZFS can automatically repair the corrupted block by reading the correct 

copy from another disk and rewriting the damaged block. This process is called 

self-healing, and it happens transparently without any administrator intervention. 

This is a critical capability because silent data corruption, sometimes called bit 

rot, is a real and well-documented phenomenon. Traditional filesystems have no 

mechanism to detect or repair this kind of corruption. A file can become corrupted 

on disk, and the filesystem will happily serve the corrupted data to applications 

without any indication that something is wrong. ZFS eliminates this risk entirely. 

You can verify the integrity of an entire pool at any time using the scrub com-

mand: 

zpool scrub datapool 

A scrub reads every block in the pool, verifies its checksum, and repairs any cor-

ruption it finds (assuming redundancy is available). It is recommended to run 

scrubs on a regular schedule, typically weekly or monthly, to proactively detect and 

repair any issues. 

To check the status of a scrub or the overall health of a pool: 

zpool status datapool 

The output of this command provides detailed information about the state of each 

device in the pool, any errors that have been detected, and the progress of any on-

going scrub operations. 

Integrity Feature Traditional Filesystems ZFS

Checksum of data blocks Not available SHA-256, fletcher4, or oth-
er algorithms
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Checksum of metadata Journal-based protection 
only

Full checksumming of all 
metadata

Silent corruption detection Not possible Automatic on every read

Automatic repair Not possible Self-healing with redun-
dant configurations

Scheduled verification Not available (fsck is offline 
only)

Online scrub with no 
downtime

Practical Exercise: Exploring the Stor-
age Layers 
To solidify your understanding of the concepts presented in this chapter, the fol-

lowing exercise walks you through examining the storage layers on a Linux system 

and then creating a basic ZFS pool. 

Note: This exercise assumes you have a Linux system with ZFS installed. On 

Ubuntu, you can install ZFS with sudo apt install zfsutils-linux. On oth-

er distributions, consult the OpenZFS documentation for installation instructions. 

Step 1: Examine existing block devices. 

lsblk 

This command displays all block devices on the system, including their partitions 

and mount points. Take note of any unused disks that you can use for experimenta-

tion. 

Step 2: Examine the current storage configuration in detail. 

lsblk -f 

The -f flag adds filesystem type and label information to the output. This helps 

you see which devices already have filesystems and which are available. 
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Step 3: Create a simple ZFS pool using a single disk or partition. 

sudo zpool create testpool /dev/sdb 

Replace /dev/sdb with an appropriate unused device on your system. This com-

mand creates a new ZFS pool named testpool using the specified device. 

Note: Be extremely careful to specify the correct device. Creating a ZFS pool 

on a device will destroy any existing data on that device. 

Step 4: Verify the pool was created. 

zpool status testpool 

zpool list testpool 

The status command shows the detailed state of the pool, including the devices 

it contains and their health. The list command shows a summary including total 

size, used space, and free space. 

Step 5: Create a dataset within the pool. 

sudo zfs create testpool/mydata 

Step 6: Verify the dataset and its mount point. 

zfs list 

df -h /testpool/mydata 

Notice that ZFS automatically mounted the dataset at /testpool/mydata without 

any entry in /etc/fstab. ZFS manages its own mount points. 

Step 7: Create a snapshot of the dataset. 

sudo zfs snapshot testpool/mydata@initial 

zfs list -t snapshot 

Step 8: Clean up when finished experimenting. 

sudo zpool destroy testpool 
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This removes the pool and all its datasets. In a production environment, you would 

obviously not destroy pools casually, but for learning purposes this allows you to 

start fresh. 

Summary of Key Concepts 
This chapter has established the foundation for everything that follows in this book. 

The traditional Linux storage stack is composed of multiple independent layers: 

physical devices, partitions, software RAID, volume management, and filesystems. 

Each layer requires its own tools, its own configuration, and its own monitoring. 

ZFS collapses all of these layers into a single integrated system that provides vol-

ume management, redundancy, filesystem services, data integrity verification, and 

advanced features like snapshots and compression, all managed through a unified 

set of commands. 

The copy-on-write transactional model ensures that the on-disk state is always 

consistent, eliminating the need for filesystem journals and enabling instanta-

neous, space-efficient snapshots. End-to-end checksumming provides protection 

against silent data corruption that no traditional filesystem can match. And the ad-

ministrative simplicity of ZFS, where a single command can replace a dozen steps 

in the traditional stack, reduces the likelihood of human error and makes storage 

management more accessible. 

As you progress through the remaining chapters, you will build on this founda-

tion to design, deploy, and manage sophisticated ZFS storage systems. But every-

thing starts here, with a clear understanding of the layers that ZFS replaces and the 

principles that guide its design. 
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Chapter 2: Storage Planning 
and Design Principles 

Storage planning is the foundation upon which every reliable system is built. Be-

fore a single command is typed, before a pool is created, and before data ever 

touches a disk, the decisions made during the planning phase will determine 

whether a storage system thrives under pressure or crumbles when it matters most. 

This chapter is dedicated to the art and science of planning storage with ZFS in 

mind. We will explore how to assess requirements, choose appropriate hardware, 

design pool layouts, plan for growth, and think critically about the trade-offs that 

every storage architect must navigate. By the end of this chapter, you will have a 

comprehensive framework for designing ZFS storage systems that are resilient, 

performant, and aligned with real-world workloads. 

Understanding Storage Requirements 
Before You Begin 
Every storage design begins with a fundamental question: what is this storage sys-

tem expected to do? The answer to that question shapes every decision that fol-

lows. ZFS is a remarkably flexible filesystem, but its flexibility means that there are 

many possible configurations, and not all of them are appropriate for every situa-

tion. 

The first step in storage planning is to conduct a thorough requirements analy-

sis. This means sitting down and carefully documenting the workload characteris-
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tics, performance expectations, capacity needs, data protection requirements, and 

growth projections for the system you are building. Without this analysis, you are 

essentially guessing, and guessing with storage systems leads to costly mistakes. 

Consider the following dimensions of storage requirements: 

Requirement Dimension Key Questions to Answer Impact on ZFS Design

Capacity How much data will be 
stored now? In one year? In 
five years?

Determines the number 
and size of disks, pool lay-
out, and expansion strategy

Performance What are the expected 
IOPS? What is the read/
write ratio? Are workloads 
sequential or random?

Influences vdev type, use 
of SLOG and L2ARC, 
recordsize tuning, and disk 
selection

Availability How much downtime is ac-
ceptable? What is the re-
covery time objective 
(RTO)?

Drives redundancy level 
(mirror, RAIDZ1, RAIDZ2, 
RAIDZ3) and spare disk 
strategy

Data Integrity How critical is the data? 
What is the tolerance for 
silent corruption?

Affects checksum policy, 
copies property, and scrub 
scheduling

Compliance Are there regulatory re-
quirements for data reten-
tion or encryption?

Influences encryption set-
tings, snapshot policies, 
and audit logging

Budget What is the total budget for 
hardware and ongoing 
maintenance?

Constrains disk type (SSD 
vs HDD), redundancy level, 
and expansion plans

Let us walk through a concrete example. Suppose you are tasked with designing a 

storage system for a small media production company. They have approximately 

20 terabytes of video footage today, expect to grow by 10 terabytes per year, need 

fast sequential read performance for editing workflows, and cannot afford to lose 

any data. They have a moderate budget and a small IT team. This profile immedi-

ately suggests certain ZFS design choices: large-capacity HDDs for bulk storage, a 
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RAIDZ2 configuration for strong data protection, possibly an SSD-based special 

vdev or L2ARC for caching frequently accessed project files, and a clear expansion 

plan that accounts for adding new vdevs over time. 

The point is that storage planning is not about memorizing a single "best" con-

figuration. It is about understanding the specific needs of your environment and 

mapping those needs to the capabilities that ZFS provides. 

Choosing the Right Hardware for ZFS 
ZFS was designed with the understanding that hardware fails. Disks develop bad 

sectors. Controllers introduce errors. Memory can flip bits. ZFS addresses all of 

these concerns through its architecture, but the hardware you choose still matters 

enormously. Poor hardware choices can undermine even the best ZFS configura-

tion. 

Disks: The Foundation of Your Pool 

The single most important hardware decision is which disks to use. ZFS works 

with both HDDs and SSDs, and the choice between them depends entirely on your 

workload profile. 

Hard disk drives remain the most cost-effective option for large-capacity stor-

age. For workloads that are primarily sequential, such as video streaming, backup 

repositories, or archival storage, HDDs provide excellent value. When selecting 

HDDs for ZFS, prefer enterprise-grade drives that are designed for continuous op-

eration. Consumer drives often have firmware-level error recovery behaviors (such 

as extended retry loops) that can conflict with ZFS's own error handling, potentially 

causing drives to be ejected from a pool unnecessarily. 

Solid-state drives are the clear choice when random I/O performance is critical. 

Database workloads, virtual machine storage, and any application that demands 
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low latency will benefit enormously from SSDs. NVMe drives, which connect direct-

ly to the PCIe bus, offer the highest performance tier and are increasingly common 

in modern ZFS deployments. 

A hybrid approach is often the most practical design. ZFS supports special de-

vice classes that allow you to combine HDDs and SSDs within the same pool. For 

example, you might use HDDs for bulk data storage while dedicating SSDs to 

metadata storage (using the special vdev), write log acceleration (using the SLOG), 

or read caching (using the L2ARC). 

Memory: More Is Almost Always Better 

ZFS uses RAM extensively for its Adaptive Replacement Cache (ARC), which 

caches both data and metadata in memory. The general guideline is to provide at 

least 1 GB of RAM per terabyte of storage, but more is better, especially for work-

loads with large working sets. For systems using deduplication, the memory re-

quirements increase dramatically because ZFS must keep the deduplication table 

(DDT) in memory for acceptable performance. A rough estimate is 5 GB of RAM 

per terabyte of deduplicated data, though this varies with block size and data char-

acteristics. 

ECC Memory: A Strong Recommendation 

ZFS checksums all data and metadata, which allows it to detect corruption. 

However, if corruption occurs in RAM before data is written to disk, ZFS will faithful-

ly checksum and store the corrupted data. ECC (Error-Correcting Code) memory 

detects and corrects single-bit errors in RAM, providing an additional layer of pro-

tection. While ZFS will function without ECC memory, using ECC memory is strong-

ly recommended for any system where data integrity is a priority. 

Host Bus Adapters Over Hardware RAID Controllers 

This is a critical point that catches many newcomers off guard. ZFS needs direct 

access to the physical disks. Hardware RAID controllers that present virtual disks to 

the operating system interfere with ZFS's ability to manage redundancy, detect er-
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rors, and perform self-healing. The correct approach is to use a Host Bus Adapter 

(HBA) in IT mode (also called JBOD mode or passthrough mode), which presents 

each physical disk directly to the operating system. The LSI SAS 9207-8i and its suc-

cessors are among the most commonly recommended HBAs for ZFS deployments. 

Hardware Component Recommended Approach What to Avoid

Disks Enterprise HDDs or SSDs 
matched to workload

Consumer drives with ag-
gressive error recovery

Memory ECC RAM, minimum 1 GB 
per TB of storage

Non-ECC RAM in produc-
tion environments

Disk Controller HBA in IT/JBOD mode Hardware RAID controllers

SLOG Device High-endurance, low-latency 
NVMe SSD with power-loss 
protection

Consumer SSDs without 
power-loss protection

L2ARC Device Fast SSD, sized appropriate-
ly for working set

Oversized L2ARC that con-
sumes too much RAM for in-
dexing

Boot Device Mirrored SSDs separate 
from data pool

Single boot device with no 
redundancy

Designing Pool Layouts and Vdev 
Topologies 
The pool layout is the heart of ZFS storage design. A ZFS pool is composed of one 

or more virtual devices (vdevs), and the type and arrangement of these vdevs de-

termine the pool's performance, capacity, and fault tolerance characteristics. 

Understanding vdev types is essential. The primary vdev types used for data 

storage are: 
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Mirror vdevs consist of two or more disks that contain identical copies of data. 

A mirror of two disks can survive one disk failure. A three-way mirror can survive 

two simultaneous failures. Mirrors offer the best random I/O performance because 

reads can be distributed across all mirror members, and write performance is limit-

ed only by the slowest member. The trade-off is capacity efficiency: a two-way mir-

ror provides only 50% of the raw disk capacity. 

RAIDZ1 vdevs distribute data and a single parity block across multiple disks. A 

RAIDZ1 vdev can survive exactly one disk failure. The capacity overhead is one 

disk's worth of parity per vdev. For example, a five-disk RAIDZ1 vdev provides four 

disks' worth of usable capacity. RAIDZ1 is suitable for non-critical data or situations 

where the risk of a second disk failing during a resilver is acceptably low. 

RAIDZ2 vdevs use double parity, allowing the vdev to survive up to two simul-

taneous disk failures. This is the most commonly recommended configuration for 

production systems because it provides a comfortable safety margin during the re-

silver process, which can take many hours with large disks. A six-disk RAIDZ2 vdev 

provides four disks' worth of usable capacity. 

RAIDZ3 vdevs use triple parity and can survive three simultaneous disk fail-

ures. This level of protection is typically reserved for very large vdevs or environ-

ments with extremely high data protection requirements. 

The following table summarizes the key characteristics of each vdev type: 

Vdev Type Minimum 
Disks

Fault Tole-
rance

Usable Ca-
pacity (n 
disks)

Read Per-
formance

Write Per-
formance

Best Use 
Case

Mirror 2 n-1 disk 
failures

n/2 (for 2-
way mirror)

Excellent Good Databases, 
VMs, high-
IOPS work-
loads
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RAIDZ1 3 1 disk fail-
ure

n-1 Good Moderate Non-criti-
cal bulk 
storage

RAIDZ2 4 2 disk fail-
ures

n-2 Good Moderate General 
production 
storage

RAIDZ3 5 3 disk fail-
ures

n-3 Good Moderate High-value 
archival 
storage

Stripe Width and Performance Considerations 

The number of disks in a RAIDZ vdev (the stripe width) has a significant impact 

on both performance and space efficiency. Wider stripes (more disks per vdev) im-

prove space efficiency because the parity overhead is amortized across more data 

disks. However, wider stripes also increase the resilver time when a disk fails, be-

cause more data must be reconstructed. 

A common and well-balanced design for RAIDZ2 is to use vdevs of six to eight 

disks. This provides a good balance between space efficiency, performance, and 

resilver time. If you have 24 disks, for example, you might create four RAIDZ2 vdevs 

of six disks each rather than two RAIDZ2 vdevs of twelve disks each. The four-vdev 

configuration will deliver significantly better IOPS because ZFS stripes data across 

vdevs, and each vdev can handle I/O operations independently. 

A Practical Example: Designing a 12-Disk Pool 

Suppose you have twelve identical 8 TB HDDs and need to design a pool for a 

file server. Here are three possible designs: 

Configuration A: Two RAIDZ2 vdevs of six disks each. This provides 32 TB of us-

able capacity (8 data disks times 8 TB), can tolerate two disk failures per vdev, and 

delivers good IOPS because two vdevs handle I/O in parallel. 

Configuration B: Six mirror vdevs of two disks each. This provides 48 TB of raw 

capacity but only 24 TB usable (six mirrors times 8 TB per mirror). However, IOPS 
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performance is excellent because six vdevs operate independently, and each mir-

ror can serve reads from either member. 

Configuration C: One RAIDZ3 vdev of twelve disks. This provides 72 TB usable 

(nine data disks times 8 TB), but IOPS performance is poor because there is only a 

single vdev, and resilver times will be extremely long. 

For a general-purpose file server, Configuration A is typically the best balance. 

For a database server, Configuration B would be preferred despite the lower ca-

pacity. Configuration C is rarely recommended due to its poor performance char-

acteristics and long resilver times. 

Planning for Growth and Expansion 
One of the most important aspects of storage planning is thinking about the future. 

Data almost always grows, and a storage system that cannot accommodate growth 

becomes a liability. 

ZFS provides several mechanisms for expanding storage, but each has con-

straints that must be understood during the planning phase. 

Adding New Vdevs to an Existing Pool 

The most straightforward way to expand a ZFS pool is to add new vdevs. When 

you add a vdev to a pool, the total capacity and performance of the pool increase 

immediately. ZFS will begin writing new data across all vdevs, balancing the load 

over time. 

The critical constraint here is that once a vdev is added to a pool, it cannot be 

removed (with limited exceptions for mirror and special vdevs in recent ZFS ver-

sions). This means you must plan your vdev additions carefully. Adding a single 

disk as a stripe vdev, for example, would create a pool with no redundancy for the 

data on that disk, which is almost never acceptable. 
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# Adding a new RAIDZ2 vdev to an existing pool 

zpool add tank raidz2 /dev/sde /dev/sdf /dev/sdg /dev/sdh /dev/

sdi /dev/sdj 

 

# Verify the new pool layout 

zpool status tank 

Note: The new vdev should ideally match the configuration of existing vdevs in the 

pool. If your pool consists of RAIDZ2 vdevs with six disks each, your expansion vde-

vs should also be RAIDZ2 with six disks. This ensures consistent performance and 

fault tolerance characteristics across the pool. 

Replacing Disks with Larger Ones 

Another expansion strategy is to replace each disk in a vdev with a larger disk, 

one at a time, allowing the vdev to resilver after each replacement. Once all disks 

in the vdev have been replaced, ZFS can use the additional capacity through the 

autoexpand property. 

# Enable autoexpand on the pool 

zpool set autoexpand=on tank 

 

# Replace a disk with a larger one 

zpool replace tank /dev/sda /dev/new_larger_disk 

 

# Monitor the resilver progress 

zpool status tank 

This approach is time-consuming because each resilver must complete before the 

next disk can be replaced, but it allows capacity expansion without adding new 

physical disk slots. 

RAIDZ Expansion (OpenZFS 2.3 and Later) 

A long-awaited feature in ZFS is the ability to expand an existing RAIDZ vdev 

by adding individual disks to it. This feature, introduced in OpenZFS 2.3, allows you 

to add a single disk to an existing RAIDZ vdev, and ZFS will redistribute the data 

across the wider stripe. 


