LVM & ZFS: Linux Storage
Management

Designing, Managing, and Protecting
Data on Modern Linux Systems

Preface

Every system administrator eventually faces a moment of reckoning: a disk fails, a
partition runs out of space at 2 AM, or a critical database needs to be restored from
a snapshot that was never taken. In those moments, the difference between a rou-
tine recovery and a catastrophic loss often comes down to one thing — how well
the underlying storage was designed and managed.

This book exists because ZFS changed the way | think about storage, and | be-

lieve it will change the way you think about it, too.

Why This Book?

LVM & ZFS: Linux Storage Management was written to give Linux professionals a
comprehensive, practical guide to modern storage management — with ZFS as its
central focus. While LVM remains a foundational technology in the Linux ecosys-
tem and receives thorough coverage in the first half of this book, the heart of what
follows is an in-depth exploration of ZFS: its architecture, its philosophy, and the
extraordinary capabilities it brings to data protection, integrity, and administration.
ZFS is more than a filesystem. It is a fundamentally different approach to stor-
age — one that collapses the traditional boundaries between volume management,
filesystem logic, and data integrity into a single, coherent system. Understanding
ZFS deeply means understanding why storage has historically been so fragile, and

how ZFS was designed from the ground up to eliminate entire categories of failure.

What You Will Learn

This book takes you on a deliberate journey. We begin with the Linux storage
stack — the layers of abstraction that sit between your applications and your physi-
cal disks — and establish the design principles that should guide every storage de-
cision you make. From there, we build a solid understanding of LVM, not only be-
cause it remains widely deployed, but because understanding LVM's strengths and
limitations provides essential context for appreciating what ZFS does differently.

The core of the book dives deep into ZFS architecture and philosophy, cov-
ering pool creation and management, datasets and properties, snapshots and
clones, data integrity through checksumming and scrubbing, and performance
tuning. You will learn not just how to run ZFS commands, but why ZFS behaves the
way it does — knowledge that proves invaluable when designing systems, diagnos-
ing problems, or making architectural decisions under pressure.

The final chapters bring everything together: production deployment strate-
gies, a direct comparison of LVM and ZFS, and a forward-looking discussion on
evolving from storage administrator to infrastructure architect — a transition that

ZFS knowledge uniquely enables.

How This Book Is Structured

- Chapters 1-2 establish foundational concepts in Linux storage and de-
sign thinking.

- Chapters 3-6 provide comprehensive LVM coverage as both a practical
skill and a comparative baseline.

- Chapters 7-11 form the heart of the book, delivering deep, hands-on

ZFS expertise.

- Chapters 12-16 address performance, monitoring, production opera-
tions, and professional growth.

- Appendices A-E offer quick-reference materials, including a ZFS com-
mand cheat sheet, storage design templates, failure recovery proce-

dures, and a learning roadmap.

Who This Book Is For

Whether you are a junior administrator encountering ZFS for the first time, a sea-
soned engineer evaluating ZFS for production workloads, or an architect designing

resilient infrastructure, this book meets you where you are and takes you further.

Acknowledgments

This book would not exist without the brilliant engineers who created and continue
to develop OpenZFS, nor without the vibrant community that has kept ZFS thriving
on Linux. | am also grateful to the system administrators, colleagues, and mentors
whose hard-won lessons — often learned during those 2 AM emergencies —
shaped the practical wisdom found in these pages.

Finally, to every reader who has chosen to invest their time in truly understand-
ing storage rather than merely configuring it: thank you. The systems you build will
be better for it, and the data entrusted to your care will be safer.

Let's begin.

Miles Everhart

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Understanding Linux Storage Layers
Storage Planning and Design Principles
LVM Architecture Explained

Creating and Managing LVM Volumes
Resizing and Managing Storage with LVM
LVM Snapshots and Backup Strategies
ZFS Architecture and Philosophy
Creating and Managing ZFS Pools

ZFS Datasets and Properties

ZFS Snapshots and Clones

Data Integrity and Scrubbing

Storage Performance Tuning

Monitoring and Maintenance

LVM and ZFS in Production Environments

Comparing LVM and ZFS

Page

6
17
31
44
59
73
88
103
119
134
148
164
176
192
206

From Storage Administrator to Infrastructure Architect 219

LVM Command Reference Cheat Sheet
ZFS Command Reference Cheat Sheet

Storage Design Templates

Common Storage Failures and Recovery Steps

Linux Storage Learning Roadmap

232
250
270
284
297

Chapter 1: Understanding
Linux Storage Layers

The journey into modern Linux storage management begins with a fundamental
understanding of how data moves from an application down to the physical disk
and back again. For decades, Linux administrators have relied on a layered ap-
proach to storage, where each layer handles a specific responsibility. This chapter
explores those layers in depth, with a particular emphasis on how ZFS reimagines
and consolidates them into a single, cohesive system. By the end of this chapter,
you will have a solid mental model of traditional Linux storage architecture and a
clear picture of why ZFS represents a paradigm shift in how we think about manag-

ing data on Linux systems.

The Traditional Linux Storage Stack

In a conventional Linux system, data passes through several distinct layers before it
reaches the physical media. Each of these layers was designed independently, and
over the years, system administrators have learned to stitch them together to build
reliable storage solutions. Understanding this traditional stack is essential because
it provides the context against which ZFS was designed and the problems it was
built to solve.

At the very bottom of the stack sit the physical storage devices themselves.
These can be traditional spinning hard disk drives, solid state drives, NVMe de-

vices, or even remote storage accessed over a network. The Linux kernel communi-

cates with these devices through device drivers, which present each device as a
block device, typically found under the /dev directory. For example, a first SATA
disk appears as /dev/sda, while an NVMe drive might appear as /dev/nvme0Onl.

Above the physical devices sits the partitioning layer. Tools like £disk, gdisk,
and parted allow administrators to divide a single physical disk into multiple parti-
tions. Each partition is itself presented as a block device. For instance, the first par-
tition on /dev/sda becomes /dev/sdal. The partition table, whether it uses the
older MBR format or the newer GPT format, is stored on the disk itself and tells the
kernel how to interpret the layout.

On top of partitions, administrators can optionally deploy a volume manage-
ment layer. The most common implementation on Linux is the Logical Volume
Manager, known as LVM. LVM introduces three key abstractions: Physical Volumes
(PVs), Volume Groups (VGs), and Logical Volumes (LVs). Physical Volumes are ini-
tialized from partitions or whole disks. Volume Groups pool one or more Physical
Volumes together into a single storage resource. Logical Volumes are then carved
out of a Volume Group and presented to the system as block devices that can be
formatted and mounted. LVM provides flexibility by allowing administrators to re-
size volumes, create snapshots, and span storage across multiple disks, but it oper-
ates entirely at the block level and has no awareness of the data stored within
those blocks.

Finally, at the top of the traditional stack sits the filesystem layer. This is where
the actual organization of files and directories takes place. Common Linux filesys-
tems include ext4, XFS, and Btrfs. The filesystem is created on top of a block de-
vice, whether that device is a raw partition, an LVM logical volume, or a software
RAID device. The filesystem manages inodes, directory entries, free space alloca-
tion, journaling, and all the metadata required to turn raw blocks into a meaningful

hierarchy of files.

If an administrator wants redundancy, there is yet another layer to consider:
software RAID, typically managed by the mdadm utility. Software RAID combines
multiple block devices into a single array that provides mirroring, striping, or pari-
ty-based protection. This RAID layer sits between the partitioning layer and either
LVM or the filesystem, adding yet another component to configure and manage.

The following table summarizes the traditional Linux storage layers:

Layer Responsibility Common Tools Example Devices
Physical Devices Raw block storage Isblk, smartctl /dev/sda, /dev/
nvmeOn’

Partitioning Dividing disks into fdisk, gdisk, parted /dev/sda1, /dev/
regions nvmeOn1p1

Software RAID Redundancy and ~ mdadm /dev/md0, /dev/
performance md1

Volume Manage- Pooling and flexible pvcreate, vgcreate, /dev/vg0/Iv_data

ment allocation lvcreate

Filesystem File and directory mkfs.ext4, mkfs.xfs Mounted at/
organization home, /var

Each of these layers must be configured, monitored, and maintained independent-
ly. When something goes wrong, the administrator must determine which layer is
responsible, a task that can be surprisingly difficult in complex environments. This
is the world into which ZFS was introduced, and understanding this complexity is

the key to appreciating what ZFS brings to the table.

How ZFS Reimagines the Storage
Stack

ZFS was originally developed at Sun Microsystems in the early 2000s by a team led
by Jeff Bonwick and Matthew Ahrens. It was first released as part of OpenSolaris in
2005. The design philosophy behind ZFS was radical in its simplicity: instead of lay-
ering independent tools on top of one another, why not build a single integrated
system that handles volume management, RAID, filesystem organization, and data
integrity all in one place?

This is exactly what ZFS does. When you use ZFS, you do not separately config-
ure partitions, then RAID arrays, then volume groups, then logical volumes, then
filesystems. Instead, you create a storage pool, known as a zpool, from one or more
physical devices, and then you create datasets within that pool. A dataset in ZFS is
analogous to a filesystem, but it is far more flexible and feature-rich than a tradi-
tional filesystem. The pool handles all the underlying details of how data is dis-
tributed across disks, how redundancy is maintained, and how free space is allocat-
ed.

To illustrate this concretely, consider the task of setting up a mirrored storage
system with two disks on a traditional Linux system. You would need to perform the

following steps:

1. Partition both disks using fdisk or gdisk.

2. Create a RAID 1 array using mdadm --create /dev/md0 --level=1
--raid-devices=2 /dev/sdal /dev/sdbl.

3. Optionally create a Physical Volume on the RAID array using pvcreate
/dev/md0.

4. Create a Volume Group using vgcreate vg0 /dev/md0.

5. Create a Logical Volume using lvcreate -L 100G -n 1lv data
vgO0.
6. Create a filesystem using mkfs.ext4 /dev/vg0/lv_data.

7. Mount the filesystem using mount /dev/vg0/lv data /data.

With ZFS, the equivalent operation is dramatically simpler:

zpool create datapool mirror /dev/sda /dev/sdb

That single command creates a mirrored storage pool using both disks. ZFS auto-
matically handles the partitioning, the RAID configuration, the volume manage-
ment, and the creation of a root dataset that can be mounted and used immediate-
ly. The pool is mounted by default at /datapool, and you can begin storing data
right away.

You can then create additional datasets within the pool:

zfs create datapool/documents

zfs create datapool/backups

Each dataset behaves like an independent filesystem with its own mount point, its
own properties (such as compression, quota, and reservation settings), and its own
snapshot history. Yet all datasets share the same underlying pool of storage, and
ZFS manages the allocation of space dynamically.

The following table compares the traditional layered approach with the ZFS in-

tegrated approach:

Capability Traditional Stack ZFS Approach
Volume Management LVM (pvcreate, vgcreate, Built into zpool
lvcreate)

RAID / Redundancy mdadm (separate configura- Built into zpool (mirror, raidz,
tion) raidz2, raidz3)

Filesystem extd, XFS (mkfs, mount) Built into ZFS datasets

10

Snapshots LVM snapshots (limited, per- Native ZFS snapshots (copy-

formance impact) on-write, no performance
penalty)
Data Integrity Not guaranteed (silent cor- End-to-end checksumming of
ruption possible) all data and metadata
Compression Filesystem-level or applica- Native, per-dataset, trans-
tion-level parent compression
Administration Multiple tools, multiple con- Single toolset (zpool, zfs com-
figuration files mands)

This consolidation is not merely a convenience. It has profound implications for
data integrity, performance, and administrative simplicity, all of which we will ex-

plore in greater detail throughout this book.

The Copy-on-Write Foundation

One of the most important architectural decisions in ZFS is its use of a copy-on-
write (COW) transactional model. In a traditional filesystem, when you modify a
block of data, the filesystem writes the new data over the old data in place. If the
system loses power during this write, the block can be left in an inconsistent state,
containing neither the old data nor the complete new data. Traditional filesystems
mitigate this risk through journaling, which adds complexity and overhead.

ZFS takes a fundamentally different approach. When data is modified, ZFS nev-
er overwrites the existing data. Instead, it writes the new data to a new location on
disk, updates the metadata pointers to reference the new location, and then frees
the old blocks. This means that the on-disk state is always consistent. Either the old
data is intact (if the metadata update has not yet been committed) or the new data
is intact (if the metadata update has been committed). There is no intermediate

state where data is partially written.

11

This copy-on-write model is what makes ZFS snapshots so efficient. A snapshot
is simply a record of the metadata pointers at a particular point in time. Because
ZFS never overwrites data in place, the snapshot remains valid as long as the old
blocks are not freed. Creating a snapshot is nearly instantaneous and consumes no
additional disk space at the moment of creation. Space is only consumed as the ac-
tive dataset diverges from the snapshot over time.

To create a snapshot in ZFS:

zfs snapshot datapool/documents@monday backup

To list all snapshots:

zfs list -t snapshot

To roll back to a snapshot:

zfs rollback datapool/documents@monday backup

These operations are fast, reliable, and deeply integrated into the storage system.
There is no need for a separate snapshot mechanism, no performance penalty dur-

ing normal operations, and no risk of the snapshot becoming inconsistent.

End-to-End Data Integrity

Perhaps the most compelling feature of ZFS, and one that has no equivalent in the
traditional Linux storage stack, is its end-to-end data integrity verification. ZFS com-
putes a cryptographic checksum for every block of data and metadata that it writes
to disk. These checksums are stored in the parent block's metadata, not alongside
the data itself. This separation means that a corruption event that damages a data

block cannot also damage the checksum that verifies it.

12

Every time ZFS reads a block from disk, it recomputes the checksum and com-
pares it to the stored value. If the checksums do not match, ZFS knows that the data
has been corrupted. If the pool has redundancy (for example, a mirror or raidz con-
figuration), ZFS can automatically repair the corrupted block by reading the correct
copy from another disk and rewriting the damaged block. This process is called
self-healing, and it happens transparently without any administrator intervention.

This is a critical capability because silent data corruption, sometimes called bit
rot, is a real and well-documented phenomenon. Traditional filesystems have no
mechanism to detect or repair this kind of corruption. A file can become corrupted
on disk, and the filesystem will happily serve the corrupted data to applications
without any indication that something is wrong. ZFS eliminates this risk entirely.

You can verify the integrity of an entire pool at any time using the scrub com-

mand:

zpool scrub datapool

A scrub reads every block in the pool, verifies its checksum, and repairs any cor-
ruption it finds (assuming redundancy is available). It is recommended to run
scrubs on a regular schedule, typically weekly or monthly, to proactively detect and
repair any issues.

To check the status of a scrub or the overall health of a pool:
zpool status datapool
The output of this command provides detailed information about the state of each

device in the pool, any errors that have been detected, and the progress of any on-

going scrub operations.

Integrity Feature Traditional Filesystems ZFS

Checksum of data blocks Not available SHA-256, fletcher4, or oth-
er algorithms

13

Checksum of metadata Journal-based protection Full checksumming of all

only metadata
Silent corruption detection Not possible Automatic on every read
Automatic repair Not possible Self-healing with redun-

dant configurations

Scheduled verification Not available (fsck is offline Online scrub with no
only) downtime

Practical Exercise: Exploring the Stor-
age Layers

To solidify your understanding of the concepts presented in this chapter, the fol-
lowing exercise walks you through examining the storage layers on a Linux system
and then creating a basic ZFS pool.

Note: This exercise assumes you have a Linux system with ZFS installed. On
Ubuntu, you can install ZFS with sudo apt install zfsutils-linux.On oth-
er distributions, consult the OpenZFS documentation for installation instructions.

Step 1: Examine existing block devices.
lsblk
This command displays all block devices on the system, including their partitions
and mount points. Take note of any unused disks that you can use for experimenta-

tion.

Step 2: Examine the current storage configuration in detail.

1sblk -f

The -f flag adds filesystem type and label information to the output. This helps

you see which devices already have filesystems and which are available.

14

Step 3: Create a simple ZFS pool using a single disk or partition.
sudo zpool create testpool /dev/sdb
Replace /dev/sdb with an appropriate unused device on your system. This com-
mand creates a new ZFS pool named testpool using the specified device.

Note: Be extremely careful to specify the correct device. Creating a ZFS pool

on a device will destroy any existing data on that device.

Step 4: Verify the pool was created.

zpool status testpool
zpool list testpool

The status command shows the detailed state of the pool, including the devices
it contains and their health. The 1ist command shows a summary including total
size, used space, and free space.

Step 5: Create a dataset within the pool.

sudo zfs create testpool/mydata

Step 6: Verify the dataset and its mount point.

zfs list
df -h /testpool/mydata

Notice that ZFS automatically mounted the dataset at /testpool /mydata without
any entry in /etc/fstab. ZFS manages its own mount points.

Step 7: Create a snapshot of the dataset.

sudo zfs snapshot testpool/mydata@initial
zfs list -t snapshot

Step 8: Clean up when finished experimenting.

sudo zpool destroy testpool

15

This removes the pool and all its datasets. In a production environment, you would
obviously not destroy pools casually, but for learning purposes this allows you to

start fresh.

Summary of Key Concepts

This chapter has established the foundation for everything that follows in this book.
The traditional Linux storage stack is composed of multiple independent layers:
physical devices, partitions, software RAID, volume management, and filesystems.
Each layer requires its own tools, its own configuration, and its own monitoring.
ZFS collapses all of these layers into a single integrated system that provides vol-
ume management, redundancy, filesystem services, data integrity verification, and
advanced features like snapshots and compression, all managed through a unified
set of commands.

The copy-on-write transactional model ensures that the on-disk state is always
consistent, eliminating the need for filesystem journals and enabling instanta-
neous, space-efficient snapshots. End-to-end checksumming provides protection
against silent data corruption that no traditional filesystem can match. And the ad-
ministrative simplicity of ZFS, where a single command can replace a dozen steps
in the traditional stack, reduces the likelihood of human error and makes storage
management more accessible.

As you progress through the remaining chapters, you will build on this founda-
tion to design, deploy, and manage sophisticated ZFS storage systems. But every-
thing starts here, with a clear understanding of the layers that ZFS replaces and the

principles that guide its design.

16

Chapter 2: Storage Planning
and Design Principles

Storage planning is the foundation upon which every reliable system is built. Be-
fore a single command is typed, before a pool is created, and before data ever
touches a disk, the decisions made during the planning phase will determine
whether a storage system thrives under pressure or crumbles when it matters most.
This chapter is dedicated to the art and science of planning storage with ZFS in
mind. We will explore how to assess requirements, choose appropriate hardware,
design pool layouts, plan for growth, and think critically about the trade-offs that
every storage architect must navigate. By the end of this chapter, you will have a
comprehensive framework for designing ZFS storage systems that are resilient,

performant, and aligned with real-world workloads.

Understanding Storage Requirements
Before You Begin

Every storage design begins with a fundamental question: what is this storage sys-
tem expected to do? The answer to that question shapes every decision that fol-
lows. ZFS is a remarkably flexible filesystem, but its flexibility means that there are
many possible configurations, and not all of them are appropriate for every situa-
tion.

The first step in storage planning is to conduct a thorough requirements analy-

sis. This means sitting down and carefully documenting the workload characteris-

17

tics, performance expectations, capacity needs, data protection requirements, and
growth projections for the system you are building. Without this analysis, you are
essentially guessing, and guessing with storage systems leads to costly mistakes.

Consider the following dimensions of storage requirements:

Requirement Dimension Key Questions to Answer Impact on ZFS Design

Capacity How much data will be Determines the number
stored now? In one year? In and size of disks, pool lay-
five years? out, and expansion strategy

Performance What are the expected Influences vdev type, use

IOPS? What is the read/ of SLOG and L2ARC,
write ratio? Are workloads recordsize tuning, and disk

sequential or random? selection

Availability How much downtime is ac- Drives redundancy level
ceptable? What is the re- (mirror, RAIDZ1, RAIDZ2,
covery time objective RAIDZ3) and spare disk
(RTO)? strategy

Data Integrity How critical is the data? Affects checksum policy,
What is the tolerance for copies property, and scrub
silent corruption? scheduling

Compliance Are there regulatory re- Influences encryption set-
quirements for data reten- tings, snapshot policies,
tion or encryption? and audit logging

Budget What is the total budget for Constrains disk type (SSD
hardware and ongoing vs HDD), redundancy level,
maintenance? and expansion plans

Let us walk through a concrete example. Suppose you are tasked with designing a
storage system for a small media production company. They have approximately
20 terabytes of video footage today, expect to grow by 10 terabytes per year, need
fast sequential read performance for editing workflows, and cannot afford to lose
any data. They have a moderate budget and a small IT team. This profile immedi-

ately suggests certain ZFS design choices: large-capacity HDDs for bulk storage, a

18

RAIDZ2 configuration for strong data protection, possibly an SSD-based special
vdev or L2ARC for caching frequently accessed project files, and a clear expansion
plan that accounts for adding new vdevs over time.

The point is that storage planning is not about memorizing a single "best" con-
figuration. It is about understanding the specific needs of your environment and

mapping those needs to the capabilities that ZFS provides.

Choosing the Right Hardware for ZFS

ZFS was designed with the understanding that hardware fails. Disks develop bad
sectors. Controllers introduce errors. Memory can flip bits. ZFS addresses all of
these concerns through its architecture, but the hardware you choose still matters
enormously. Poor hardware choices can undermine even the best ZFS configura-
tion.

Disks: The Foundation of Your Pool

The single most important hardware decision is which disks to use. ZFS works
with both HDDs and SSDs, and the choice between them depends entirely on your
workload profile.

Hard disk drives remain the most cost-effective option for large-capacity stor-
age. For workloads that are primarily sequential, such as video streaming, backup
repositories, or archival storage, HDDs provide excellent value. When selecting
HDDs for ZFS, prefer enterprise-grade drives that are designed for continuous op-
eration. Consumer drives often have firmware-level error recovery behaviors (such
as extended retry loops) that can conflict with ZFS's own error handling, potentially
causing drives to be ejected from a pool unnecessarily.

Solid-state drives are the clear choice when random I/O performance is critical.

Database workloads, virtual machine storage, and any application that demands

19

low latency will benefit enormously from SSDs. NVMe drives, which connect direct-
ly to the PCle bus, offer the highest performance tier and are increasingly common
in modern ZFS deployments.

A hybrid approach is often the most practical design. ZFS supports special de-
vice classes that allow you to combine HDDs and SSDs within the same pool. For
example, you might use HDDs for bulk data storage while dedicating SSDs to
metadata storage (using the special vdev), write log acceleration (using the SLOG),
or read caching (using the L2ARC).

Memory: More Is Almost Always Better

ZFS uses RAM extensively for its Adaptive Replacement Cache (ARC), which
caches both data and metadata in memory. The general guideline is to provide at
least 1 GB of RAM per terabyte of storage, but more is better, especially for work-
loads with large working sets. For systems using deduplication, the memory re-
quirements increase dramatically because ZFS must keep the deduplication table
(DDT) in memory for acceptable performance. A rough estimate is 5 GB of RAM
per terabyte of deduplicated data, though this varies with block size and data char-
acteristics.

ECC Memory: A Strong Recommendation

ZFS checksums all data and metadata, which allows it to detect corruption.
However, if corruption occurs in RAM before data is written to disk, ZFS will faithful-
ly checksum and store the corrupted data. ECC (Error-Correcting Code) memory
detects and corrects single-bit errors in RAM, providing an additional layer of pro-
tection. While ZFS will function without ECC memory, using ECC memory is strong-
ly recommended for any system where data integrity is a priority.

Host Bus Adapters Over Hardware RAID Controllers

This is a critical point that catches many newcomers off guard. ZFS needs direct
access to the physical disks. Hardware RAID controllers that present virtual disks to

the operating system interfere with ZFS's ability to manage redundancy, detect er-

20

rors, and perform self-healing. The correct approach is to use a Host Bus Adapter
(HBA) in IT mode (also called JBOD mode or passthrough mode), which presents
each physical disk directly to the operating system. The LSI SAS 9207-8i and its suc-

cessors are among the most commonly recommended HBAs for ZFS deployments.

Hardware Component Recommended Approach What to Avoid

Disks Enterprise HDDs or SSDs ~ Consumer drives with ag-
matched to workload gressive error recovery

Memory ECC RAM, minimum 1 GB ~ Non-ECC RAM in produc-
per TB of storage tion environments

Disk Controller HBA in IT/JBOD mode Hardware RAID controllers

SLOG Device High-endurance, low-latency Consumer SSDs without
NVMe SSD with power-loss power-loss protection
protection

L2ARC Device Fast SSD, sized appropriate- Oversized L2ARC that con-
ly for working set sumes too much RAM for in-

dexing

Boot Device Mirrored SSDs separate Single boot device with no

from data pool redundancy

Designing Pool Layouts and Vdev
Topologies

The pool layout is the heart of ZFS storage design. A ZFS pool is composed of one

or more virtual devices (vdevs), and the type and arrangement of these vdevs de-

termine the pool's performance, capacity, and fault tolerance characteristics.
Understanding vdev types is essential. The primary vdev types used for data

storage are:

21

Mirror vdevs consist of two or more disks that contain identical copies of data.
A mirror of two disks can survive one disk failure. A three-way mirror can survive
two simultaneous failures. Mirrors offer the best random 1/O performance because
reads can be distributed across all mirror members, and write performance is limit-
ed only by the slowest member. The trade-off is capacity efficiency: a two-way mir-
ror provides only 50% of the raw disk capacity.

RAIDZ1 vdevs distribute data and a single parity block across multiple disks. A
RAIDZ1 vdev can survive exactly one disk failure. The capacity overhead is one
disk's worth of parity per vdev. For example, a five-disk RAIDZ1 vdev provides four
disks' worth of usable capacity. RAIDZ1 is suitable for non-critical data or situations
where the risk of a second disk failing during a resilver is acceptably low.

RAIDZ2 vdevs use double parity, allowing the vdev to survive up to two simul-
taneous disk failures. This is the most commonly recommended configuration for
production systems because it provides a comfortable safety margin during the re-
silver process, which can take many hours with large disks. A six-disk RAIDZ2 vdev
provides four disks' worth of usable capacity.

RAIDZ3 vdevs use triple parity and can survive three simultaneous disk fail-
ures. This level of protection is typically reserved for very large vdevs or environ-
ments with extremely high data protection requirements.

The following table summarizes the key characteristics of each vdev type:

Vdev Type Minimum Fault Tole- Usable Ca- Read Per- Write Per- Best Use

Disks rance pacity (n formance formance Case
disks)
Mirror 2 n-1 disk n/2 (for 2- Excellent Good Databases,
failures way mirror) VMs, high-
|IOPS work-
loads

22

RAIDZ1 3 1 disk fail- n-1 Good Moderate Non-criti-

ure cal bulk

storage

RAIDZ2 4 2 disk fail- n-2 Good Moderate General
ures production

storage
RAIDZ3 5 3 disk fail- n-3 Good Moderate High-value

ures archival

storage

Stripe Width and Performance Considerations

The number of disks in a RAIDZ vdev (the stripe width) has a significant impact
on both performance and space efficiency. Wider stripes (more disks per vdev) im-
prove space efficiency because the parity overhead is amortized across more data
disks. However, wider stripes also increase the resilver time when a disk fails, be-
cause more data must be reconstructed.

A common and well-balanced design for RAIDZ2 is to use vdevs of six to eight
disks. This provides a good balance between space efficiency, performance, and
resilver time. If you have 24 disks, for example, you might create four RAIDZ2 vdevs
of six disks each rather than two RAIDZ2 vdevs of twelve disks each. The four-vdev
configuration will deliver significantly better IOPS because ZFS stripes data across
vdevs, and each vdev can handle I/O operations independently.

A Practical Example: Designing a 12-Disk Pool

Suppose you have twelve identical 8 TB HDDs and need to design a pool for a
file server. Here are three possible designs:

Configuration A: Two RAIDZ2 vdevs of six disks each. This provides 32 TB of us-
able capacity (8 data disks times 8 TB), can tolerate two disk failures per vdev, and
delivers good IOPS because two vdevs handle I/O in parallel.

Configuration B: Six mirror vdevs of two disks each. This provides 48 TB of raw

capacity but only 24 TB usable (six mirrors times 8 TB per mirror). However, IOPS

23

performance is excellent because six vdevs operate independently, and each mir-
ror can serve reads from either member.

Configuration C: One RAIDZ3 vdev of twelve disks. This provides 72 TB usable
(nine data disks times 8 TB), but IOPS performance is poor because there is only a
single vdev, and resilver times will be extremely long.

For a general-purpose file server, Configuration A is typically the best balance.
For a database server, Configuration B would be preferred despite the lower ca-
pacity. Configuration C is rarely recommended due to its poor performance char-

acteristics and long resilver times.

Planning for Growth and Expansion

One of the most important aspects of storage planning is thinking about the future.
Data almost always grows, and a storage system that cannot accommodate growth
becomes a liability.

ZFS provides several mechanisms for expanding storage, but each has con-
straints that must be understood during the planning phase.

Adding New Vdevs to an Existing Pool

The most straightforward way to expand a ZFS pool is to add new vdevs. When
you add a vdev to a pool, the total capacity and performance of the pool increase
immediately. ZFS will begin writing new data across all vdevs, balancing the load
over time.

The critical constraint here is that once a vdev is added to a pool, it cannot be
removed (with limited exceptions for mirror and special vdevs in recent ZFS ver-
sions). This means you must plan your vdev additions carefully. Adding a single
disk as a stripe vdev, for example, would create a pool with no redundancy for the

data on that disk, which is almost never acceptable.

24

Adding a new RAIDZ2 vdev to an existing pool
zpool add tank raidz2 /dev/sde /dev/sdf /dev/sdg /dev/sdh /dev/
sdi /dev/sdj

Verify the new pool layout

zpool status tank

Note: The new vdev should ideally match the configuration of existing vdevs in the
pool. If your pool consists of RAIDZ2 vdevs with six disks each, your expansion vde-
vs should also be RAIDZ2 with six disks. This ensures consistent performance and
fault tolerance characteristics across the pool.

Replacing Disks with Larger Ones

Another expansion strategy is to replace each disk in a vdev with a larger disk,
one at a time, allowing the vdev to resilver after each replacement. Once all disks
in the vdev have been replaced, ZFS can use the additional capacity through the

autoexpand property.

Enable autoexpand on the pool

zpool set autoexpand=on tank

Replace a disk with a larger one

zpool replace tank /dev/sda /dev/new larger disk

Monitor the resilver progress

zpool status tank

This approach is time-consuming because each resilver must complete before the
next disk can be replaced, but it allows capacity expansion without adding new
physical disk slots.

RAIDZ Expansion (OpenZFS 2.3 and Later)

A long-awaited feature in ZFS is the ability to expand an existing RAIDZ vdev
by adding individual disks to it. This feature, introduced in OpenZFS 2.3, allows you
to add a single disk to an existing RAIDZ vdev, and ZFS will redistribute the data

across the wider stripe.

25

