
1

Docker Security & Produc-
tion Hardening

Securing Containerized Applications in
Real-World Environments

2

Preface

When Docker revolutionized software delivery over a decade ago, it promised

speed, portability, and consistency. It delivered on all three. What it did not deliver

—what no technology ever delivers out of the box—was security.

Today, Docker containers power everything from startup MVPs to Fortune 500

production systems. They run in CI/CD pipelines, on bare-metal servers, across

cloud platforms, and at the edge. Yet for all their ubiquity, Docker environments re-

main dangerously under-secured. Containers are shipped with root privileges that

aren't needed, images are pulled from public registries without verification, secrets

are baked into layers for anyone to extract, and runtime configurations are left at

their permissive defaults. The speed that makes Docker transformative is the same

speed that lets insecure practices scale.

This book exists to close that gap.

Docker Security & Production Hardening is a comprehensive, practical guide to

securing containerized applications in real-world environments. It is written for De-

vOps engineers, platform teams, security professionals, and software developers

who use Docker in production and recognize that convenience without hardening

is a liability. Whether you are running a handful of containers on a single host or

managing Docker across a sprawling infrastructure, this book provides the knowl-

edge and tools to defend every layer of your Docker environment.

3

What This Book Covers
The journey begins where security must always begin: with understanding the

threat landscape. Chapters 1 and 2 establish why Docker container security is fun-

damentally different from traditional server security and walk you through threat

modeling techniques specific to Docker environments.

From there, we move into the build phase, where Chapters 3 and 4 guide you

through crafting minimal, hardened Docker images and implementing vulnerability

scanning into your workflow—because security that starts at deployment starts too

late.

The heart of the book addresses runtime and operational security. Chapters

5 through 10 cover container runtime protections, resource isolation, Docker net-

work hardening, securing external access points, secrets management, and config-

uration best practices. These chapters form the defensive core of any production

Docker deployment.

No security posture is complete without visibility and response. Chapters 11

and 12 tackle logging, observability, and incident response within Docker environ-

ments, ensuring that when something goes wrong—and eventually, something will—

you can detect it, understand it, and contain it.

Finally, we broaden the lens. Chapters 13 through 16 address Docker host

hardening, securing CI/CD pipelines for containerized applications, common

Docker security anti-patterns that even experienced teams fall into, and the path

from Docker-specific hardening to broader cloud-native security practices.

The appendices provide immediately actionable resources: a Docker securi-

ty checklist, a secure Dockerfile template, runtime configuration examples, an inci-

dent response playbook, and a learning roadmap for continued growth.

4

How to Use This Book
You can read this book cover to cover for a complete security education, or use it

as a reference, jumping to the chapters most relevant to your current Docker chal-

lenges. Every chapter is designed to be both conceptually grounded and opera-

tionally practical, with real configurations, real commands, and real-world context.

Acknowledgments
This book was shaped by the collective wisdom of the Docker and container secu-

rity community—the engineers who file CVEs, the maintainers who patch them, the

practitioners who share hard-won lessons in blog posts and conference talks, and

the open-source contributors who build the tools that make container security pos-

sible. I am deeply grateful to the technical reviewers whose sharp eyes and honest

feedback made every chapter stronger, and to the teams I've worked alongside in

production environments where these practices were forged under pressure.

Most of all, this book is for every engineer who has stared at a running Docker

container and wondered, "Is this actually secure?"

Let's make sure the answer is yes.

Dorian Thorne

5

Table of Contents

Chapter Title Page

1 Why Container Security Is Different 6

2 Threat Modeling Docker Environments 18

3 Building Minimal and Secure Images 32

4 Image Scanning and Vulnerability Management 47

5 Securing Containers at Runtime 63

6 Resource Isolation and Limits 78

7 Docker Network Hardening 93

8 Securing External Access 109

9 Managing Secrets Securely 124

10 Secure Configuration Practices 142

11 Logging and Observability 158

12 Incident Response in Docker Environments 173

13 Hardening Docker Hosts 187

14 Secure CI/CD for Containers 203

15 Common Docker Security Anti-Patterns 221

16 From Docker Hardening to Cloud-Native Security 233

App Docker Security Checklist 249

App Secure Dockerfile Template 264

App Runtime Security Configuration Examples 279

App Incident Response Playbook 304

App Container Security Learning Roadmap 317

6

Chapter 1: Why Container
Security Is Different

The first time a security breach occurs in a containerized environment, the reaction

from most engineering teams is remarkably similar. There is confusion, followed by

a scramble to understand what happened, and then the slow, uncomfortable real-

ization that the assumptions they carried over from traditional server security sim-

ply did not apply. Containers, and Docker in particular, introduced a paradigm shift

in how applications are packaged, deployed, and executed. With that shift came a

fundamentally different security landscape, one that demands its own strategies,

tools, and mental models.

This chapter lays the foundation for everything that follows in this book. Before

we harden Docker images, lock down runtime configurations, or implement pro-

duction-grade monitoring, we need to understand why container security is its own

discipline. We need to appreciate the architectural differences between containers

and virtual machines, grasp the unique attack surface that Docker introduces, rec-

ognize the shared responsibility between developers and operations teams, and

internalize the real-world consequences of getting container security wrong.

Let us begin at the beginning.

7

The Architectural Reality of Docker
Containers
To understand why container security is different, you must first understand what a

container actually is at the operating system level. There is a persistent misconcep-

tion that containers are lightweight virtual machines. This comparison, while useful

for initial understanding, is dangerously misleading when it comes to security.

A virtual machine runs a complete guest operating system on top of a hypervi-

sor. Each virtual machine has its own kernel, its own memory space, and its own

system processes. The hypervisor mediates all access to the underlying hardware.

If an attacker compromises a virtual machine, they are still separated from the host

and other virtual machines by the hypervisor boundary, which represents a strong

isolation layer.

A Docker container, by contrast, shares the host operating system's kernel.

Containers achieve isolation through Linux kernel features, primarily namespaces

and cgroups. Namespaces provide the illusion of separation by giving each con-

tainer its own view of process IDs, network interfaces, mount points, user IDs, and

hostnames. Cgroups limit and account for resource usage such as CPU, memory,

and disk I/O. Together, these mechanisms create what feels like an isolated envi-

ronment, but the fundamental truth remains: every container on a host is making

system calls to the same kernel.

This distinction has profound security implications. Consider the following

comparison:

Characteristic Virtual Machine Docker Container

Kernel Each VM has its own kernel All containers share the
host kernel

8

Isolation mechanism Hardware-level hypervisor Kernel namespaces and
cgroups

Attack surface to host Must escape hypervisor Must escape namespace/
cgroup boundaries

Boot time Minutes Seconds or less

Resource overhead High (full OS per VM) Low (shared kernel, mini-
mal overhead)

Kernel vulnerability impact Contained to individual
VM

Potentially affects all con-
tainers and host

System call access Filtered through hypervi-
sor

Direct to shared kernel

When a kernel vulnerability is discovered, every container running on that host is

potentially affected. There is no hypervisor standing between the container and the

kernel. A container escape exploit, where an attacker breaks out of the namespace

isolation and gains access to the host, is not a theoretical concern. It has happened

in the real world, and it will happen again. The CVE-2019-5736 vulnerability in runc,

the container runtime used by Docker, allowed a malicious container to overwrite

the host runc binary and gain root-level access to the host system. This single vul-

nerability demonstrated that the boundary between a container and its host is thin-

ner than many organizations assumed.

You can inspect the namespace isolation of a running Docker container to see

this shared kernel reality for yourself:

Start a simple container

docker run -d --name test-container alpine sleep 3600

Check the kernel version inside the container

docker exec test-container uname -r

Check the kernel version on the host

uname -r

9

Both commands will return the same kernel version. The container is not running

its own kernel. It is using the host's kernel directly. This is not a flaw; it is the funda-

mental design of container technology. But it means that security strategies de-

signed for virtual machines, where the kernel boundary provides strong isolation,

must be rethought entirely for containers.

The Expanded Attack Surface of Dock-
er
Docker introduces several categories of attack surface that do not exist in tradition-

al server deployments or even in virtual machine environments. Understanding

these categories is essential before any hardening work can begin.

The first and most critical attack surface is the Docker daemon itself. The Dock-

er daemon, dockerd, runs as root on the host system. It listens for API requests and

manages containers, images, volumes, and networks. By default, it communicates

over a Unix socket at /var/run/docker.sock. Any user or process with access to

this socket effectively has root access to the host. This is not an exaggeration. If you

can communicate with the Docker daemon, you can mount the host filesystem into

a container, run a privileged container, or execute arbitrary commands as root.

This command demonstrates the power of Docker socket access

An attacker with access to the Docker socket can mount the host

filesystem

docker run -v /:/hostfs -it alpine /bin/sh

Inside this container, the entire host filesystem is accessible

at /hostfs

This includes /etc/shadow, SSH keys, and every other sensitive

file

10

The second attack surface is the container image itself. Docker images are built in

layers, and each layer may contain software packages, configuration files, creden-

tials, or vulnerabilities. Images pulled from public registries like Docker Hub may

contain known vulnerabilities, backdoors, or malicious code. Even images you

build yourself can inherit vulnerabilities from their base images. A single outdated

library in a base image can become the entry point for an attacker.

The third attack surface is the container runtime configuration. How a container

is started matters enormously. Running a container with the --privileged flag

disables most of the security isolation that Docker provides. Mounting sensitive

host paths, running as root inside the container, exposing unnecessary ports, and

granting excessive Linux capabilities all expand the attack surface.

This is an example of an insecure container configuration

Never do this in production without understanding the

implications

docker run --privileged --net=host --pid=host -v /:/host alpine /

bin/sh

This container has:

- Full privileges (all capabilities, access to all devices)

- Host network namespace (can see all host network traffic)

- Host PID namespace (can see and interact with all host

processes)

- Host filesystem mounted

The fourth attack surface is the orchestration and networking layer. In production

environments, Docker containers communicate with each other over Docker net-

works. By default, all containers on the same Docker bridge network can communi-

cate freely. There is no network segmentation unless you explicitly create it. Service

discovery, secrets management, and inter-container authentication all present op-

portunities for lateral movement if not properly configured.

The fifth attack surface is the build pipeline. Dockerfiles are executable instruc-

tions. A compromised Dockerfile or a malicious instruction in a multi-stage build

11

can introduce vulnerabilities at build time that persist into production. Build argu-

ments, environment variables, and cached layers can all leak sensitive information.

Attack Surface Description Example Risk

Docker daemon Root-level service managing
all containers

Unauthorized socket access
grants host root

Container images Layered filesystem with soft-
ware and config

Vulnerable base images, em-
bedded credentials

Runtime configuration Flags and options at contain-
er start

Privileged mode, excessive
capabilities

Networking Inter-container and external
communication

Unrestricted lateral move-
ment between containers

Build pipeline Dockerfile instructions and
build context

Leaked secrets in image lay-
ers

Host kernel Shared operating system ker-
nel

Kernel exploits affect all con-
tainers

Volume mounts Host filesystem paths ex-
posed to containers

Sensitive host files accessible
to containers

The Shared Responsibility Model in
Docker Security
One of the most significant reasons container security is different is the blurring of

traditional security responsibilities. In a conventional infrastructure model, there

are clear boundaries. The infrastructure team manages the servers and operating

systems. The security team manages firewalls, intrusion detection, and access con-

trols. The development team writes application code. Each team has a defined

scope.

12

Docker dissolves these boundaries. A developer writing a Dockerfile is making

infrastructure decisions. They are choosing a base operating system, installing sys-

tem packages, configuring network exposure, setting user permissions, and defin-

ing the runtime environment. Every line in a Dockerfile is a potential security deci-

sion.

Consider this Dockerfile:

FROM ubuntu:latest

RUN apt-get update && apt-get install -y curl wget netcat

COPY . /app

WORKDIR /app

RUN chmod 777 /app

EXPOSE 8080

CMD ["python3", "server.py"]

This seemingly simple Dockerfile contains multiple security concerns. The ubun-

tu:latest tag is mutable and may pull different versions at different times, mak-

ing builds non-reproducible. The installed packages wget and netcat are com-

mon tools used by attackers for downloading payloads and establishing reverse

shells. The chmod 777 command makes the application directory world-writable.

The container will run as root by default because no USER instruction is specified.

None of these issues would be caught by a traditional network firewall or intrusion

detection system.

Now compare it with a security-conscious version:

FROM ubuntu:22.04@sha256:abc123...

RUN apt-get update && apt-get install -y --no-install-recommends

curl \

 && rm -rf /var/lib/apt/lists/*

RUN groupadd -r appuser && useradd -r -g appuser appuser

COPY --chown=appuser:appuser . /app

WORKDIR /app

USER appuser

EXPOSE 8080

13

CMD ["python3", "server.py"]

This version pins the base image by digest for reproducibility. It installs only the

necessary packages and removes the package cache. It creates a non-root user

and runs the application as that user. It sets appropriate file ownership. These are

security decisions made by the developer, in the Dockerfile, at build time.

This reality demands a shift in organizational thinking. Security cannot be bolt-

ed on after deployment. It must be embedded in the development workflow, in the

CI/CD pipeline, and in the image build process. The concept of "shifting security

left," moving security practices earlier in the development lifecycle, is not just a

best practice in Docker environments. It is a necessity.

Traditional Security Docker Security

Infrastructure team manages OS harden-
ing

Developers define OS in Dockerfile

Security team configures firewalls Network policies defined in Docker
Compose or orchestrator

Operations team manages runtime secu-
rity

Runtime security defined in container
start commands

Patching managed by sysadmins Base image updates managed by devel-
opment teams

Clear separation of duties Shared responsibility across all teams

Real-World Consequences and Case
Studies
The theoretical differences between container security and traditional security be-

come starkly concrete when we examine real-world incidents.

14

In 2018, researchers discovered that thousands of Docker daemons were ex-

posed to the internet with no authentication. Attackers were using these exposed

daemons to deploy cryptocurrency mining containers. The attack was trivially sim-

ple: the Docker daemon API was accessible on port 2375 without TLS or authenti-

cation, and attackers simply issued API calls to pull and run mining containers. The

host owners bore the cost of the compute resources while attackers collected the

cryptocurrency.

You can check whether your Docker daemon is exposed with a simple com-

mand:

Check if Docker daemon is listening on a TCP port

sudo netstat -tlnp | grep dockerd

If you see dockerd listening on 0.0.0.0:2375, your daemon is

exposed

The secure configuration uses TLS on port 2376 or Unix socket

only

The Docker daemon should never be exposed on an unauthenticated TCP port.

The default configuration uses a Unix socket, which is inherently more secure be-

cause access is controlled by filesystem permissions. If remote access is required,

TLS mutual authentication must be configured.

Another significant incident involved the discovery of malicious images on

Docker Hub. In 2018, researchers found 17 Docker images that had been up-

loaded to Docker Hub containing backdoors and cryptocurrency miners. These im-

ages had been downloaded millions of times. Organizations that pulled these im-

ages and deployed them in production unknowingly ran malicious code in their

environments.

This highlights a critical difference from traditional software deployment. In a

traditional model, software is downloaded from known vendors, verified with

checksums or signatures, and installed by administrators. In the Docker ecosystem,

15

pulling an image from a public registry is so easy and so fast that it can become

routine, even careless. The command docker pull is deceptively simple, but it

downloads and trusts an entire filesystem that will run on your infrastructure.

Before pulling any image, verify its source and check for known

vulnerabilities

Use Docker Content Trust to enforce image signing

export DOCKER_CONTENT_TRUST=1

Now pulling an unsigned image will fail

docker pull untrusted/image:latest

Error: remote trust data does not exist

Only signed, verified images will be pulled

docker pull docker/trusteddimage:latest

Building the Security Mindset for
Docker
Understanding why container security is different is the first step toward building a

security-first approach to Docker deployments. The key principles that emerge

from this understanding form the foundation for every subsequent chapter in this

book.

First, defense in depth is not optional. Because the isolation boundary between

containers and the host is thinner than the boundary provided by a hypervisor, you

cannot rely on a single layer of defense. You need security at the image level, the

runtime level, the network level, the host level, and the orchestration level.

Second, immutability is your ally. Containers are designed to be ephemeral

and immutable. A running container should never be modified; instead, a new im-

16

age should be built and deployed. This immutability, when enforced, eliminates

entire categories of attacks that rely on modifying running systems.

Third, least privilege must be the default. Every container should run with the

minimum permissions required to function. This means non-root users, dropped

capabilities, read-only filesystems where possible, and restricted network access.

Fourth, trust must be verified, not assumed. Every image, every base layer,

every dependency, and every configuration should be verified. Image scanning,

content trust, and supply chain verification are not optional extras; they are funda-

mental requirements.

Fifth, visibility is essential. You cannot secure what you cannot see. Container

environments are dynamic, with containers starting and stopping constantly. Log-

ging, monitoring, and auditing must be designed for this dynamic nature.

A practical starting point: audit your current Docker security

posture

Check Docker daemon configuration

docker info --format '{{.SecurityOptions}}'

List all running containers and their security-relevant

settings

docker ps --format "table {{.ID}}\t{{.Names}}\t{{.Status}}"

Check if any containers are running as privileged

docker inspect --format='{{.HostConfig.Privileged}}' $(docker ps

-q)

Check if any containers are running as root

docker inspect --format='{{.Config.User}}' $(docker ps -q)

These commands provide an immediate snapshot of your container security pos-

ture. If any container returns true for privileged mode or an empty string for user

(indicating root), those are immediate areas for improvement.

The journey through Docker security begins with this fundamental understand-

ing: containers are not virtual machines, the attack surface is broader and more nu-

17

anced than traditional infrastructure, security responsibilities are shared across

teams, and real-world consequences are severe and well-documented. With this

foundation in place, we are prepared to move into the practical work of securing

Docker images, hardening runtime configurations, and building production envi-

ronments that are resilient against attack.

Every chapter that follows builds on the principles established here. The tech-

niques will become more specific, the configurations more detailed, and the tools

more specialized. But the underlying truth remains constant: container security is

different because containers are different, and treating them otherwise is the most

dangerous assumption an organization can make.

Note: Throughout this book, all commands and configurations are tested

against Docker Engine version 24.x and later. While the core security principles ap-

ply to all versions, specific command syntax and available features may vary. Al-

ways consult the official Docker documentation for your specific version.

Principle Description Implementation Starting
Point

Defense in depth Multiple overlapping security
layers

Secure images, runtime, net-
work, and host

Immutability Containers are not modified
after deployment

Enforce read-only filesystems,
rebuild for changes

Least privilege Minimum permissions for
functionality

Non-root users, dropped ca-
pabilities, restricted mounts

Verified trust All components are verified
before use

Image signing, vulnerability
scanning, base image audit-
ing

Continuous visibility Monitor and audit dynamic
container environments

Centralized logging, runtime
monitoring, security auditing

18

Chapter 2: Threat Modeling
Docker Environments

When organizations adopt Docker, they often focus on the speed of deployment,

the convenience of containerization, and the consistency it brings across develop-

ment and production environments. What frequently gets overlooked, however, is

the systematic process of understanding where threats exist within a Docker envi-

ronment. Threat modeling is not merely an academic exercise or a checkbox on a

compliance form. It is a fundamental practice that allows teams to identify, catego-

rize, and prioritize the security risks that exist across every layer of a Docker de-

ployment. Without it, security becomes reactive rather than proactive, and organi-

zations find themselves patching vulnerabilities after they have already been ex-

ploited.

This chapter walks through the complete process of threat modeling as it ap-

plies specifically to Docker environments. We will examine the Docker attack sur-

face in detail, apply established threat modeling frameworks to containerized ar-

chitectures, identify the most common threat vectors, build practical threat models

for real Docker deployments, and establish a foundation for the security hardening

practices covered in subsequent chapters.

19

Understanding the Docker Attack Sur-
face
Before you can model threats, you must first understand what you are protecting.

The Docker attack surface is considerably broader than many engineers initially as-

sume. A Docker environment is not a single monolithic system. It is a layered archi-

tecture where each layer introduces its own set of potential vulnerabilities.

At the foundation sits the host operating system. Docker containers share the

host kernel, which means that a vulnerability in the kernel can potentially be ex-

ploited from within a container to gain access to the host system or other contain-

ers. This is fundamentally different from virtual machines, which each run their own

kernel. The shared kernel model is one of Docker's greatest strengths for perfor-

mance and efficiency, but it is also one of its most significant security considera-

tions.

Above the host sits the Docker daemon, which runs as root by default. The

daemon is responsible for building, running, and managing containers. It listens on

a Unix socket, and if that socket is exposed improperly, whether through network

exposure or by mounting it into a container, an attacker can gain full control over

the Docker host. The Docker daemon is, in many ways, the crown jewel of a Docker

environment from an attacker's perspective.

The container runtime, typically containerd and runc, handles the actual cre-

ation and execution of containers. Vulnerabilities in these components, such as the

infamous CVE-2019-5736 in runc, can allow container escapes where a malicious

process inside a container overwrites the host runc binary and gains root access on

the host.

Container images represent another critical part of the attack surface. Images

pulled from public registries may contain outdated software with known vulnerabil-

20

ities, embedded malware, or misconfigured services. Even trusted base images

can introduce risk if they are not regularly scanned and updated.

Networking within Docker introduces its own set of concerns. By default, con-

tainers on the same Docker network can communicate freely with one another. If

an attacker compromises one container, they can potentially pivot to others on the

same network. Docker's default bridge network, overlay networks, and exposed

ports all present potential entry points.

Finally, volumes and persistent storage create pathways between the container

filesystem and the host filesystem. Improperly configured volume mounts can ex-

pose sensitive host files to containers or allow containers to write malicious data to

the host.

The following table provides a comprehensive overview of the Docker attack

surface layers and their associated risks:

Attack Surface Lay-
er

Description Primary Risk Example Scenario

Host Kernel Shared kernel be-
tween host and all
containers

Kernel exploits
leading to contain-
er escape

Dirty COW vulnera-
bility exploited from
within a container

Docker Daemon Central manage-
ment process run-
ning as root

Full host compro-
mise if daemon ac-
cess is obtained

Docker socket
mounted inside a
container allowing
arbitrary container
creation

Container Runtime containerd and
runc handling con-
tainer lifecycle

Container escape
through runtime
vulnerabilities

CVE-2019-5736 al-
lowing runc binary
overwrite

Container Images Base images, appli-
cation layers, and
dependencies

Vulnerable soft-
ware, embedded
malware, secrets in
layers

Public image con-
taining a cryptocur-
rency miner in a
hidden layer

21

Docker Networking Bridge networks,
overlay networks,
port mappings

Lateral movement,
network sniffing,
service exposure

Attacker pivoting
from compromised
web container to
database container

Volumes and Stor-
age

Bind mounts,
named volumes,
tmpfs mounts

Host filesystem ac-
cess, data exfiltra-
tion

Bind mount of /etc
allowing container
to read host shad-
ow file

Docker Registry Image storage and
distribution

Supply chain at-
tacks, image tam-
pering

Compromised reg-
istry serving back-
doored images

Orchestration Layer Docker Compose,
Docker Swarm con-
figurations

Misconfiguration,
secret exposure,
privilege escalation

Swarm join tokens
exposed in environ-
ment variables

Understanding each of these layers is a prerequisite for effective threat modeling.

You cannot protect what you do not understand, and in Docker environments, the

interconnected nature of these layers means that a weakness in one area can cas-

cade into a compromise across the entire system.

Applying the STRIDE Framework to
Docker
STRIDE is a well-established threat modeling framework developed at Microsoft

that categorizes threats into six types: Spoofing, Tampering, Repudiation, Informa-

tion Disclosure, Denial of Service, and Elevation of Privilege. Applying STRIDE to

Docker environments provides a structured approach to identifying threats across

every component.

Spoofing in a Docker context involves an attacker impersonating a legitimate

entity. This could manifest as a compromised Docker registry serving malicious im-

ages that appear to be legitimate, or an attacker spoofing a container's identity

22

within a Docker network. Consider a scenario where an attacker pushes a malicious

image to a public registry using a name that closely resembles a popular official

image. When a developer pulls what they believe is the legitimate image, they un-

knowingly deploy a compromised container.

To check the provenance of Docker images and guard against spoofing, you

should always use Docker Content Trust:

export DOCKER_CONTENT_TRUST=1

docker pull nginx:latest

When Docker Content Trust is enabled, Docker will only pull images that have

been signed by the publisher. If the signature does not match or is absent, the pull

operation will fail.

Tampering refers to unauthorized modification of data or code. In Docker, this

includes modifying container images after they have been built, altering container

configurations at runtime, or tampering with data in shared volumes. An attacker

who gains access to a Docker host could modify running containers, inject mali-

cious processes, or alter the Dockerfile used in a CI/CD pipeline.

You can verify the integrity of a Docker image by checking its digest:

docker images --digests

docker pull

nginx@sha256:a8281ce42034b078dc7d88a5bfe6cb63e918f8e65e7b3c

tried4b0a86e81e2d4f

Repudiation involves the ability of an attacker to deny their actions. Docker envi-

ronments that lack proper logging and auditing are vulnerable to repudiation

threats. If container activity is not logged, an attacker can compromise a container,

exfiltrate data, and leave no trace of their actions.

Configuring the Docker daemon to use a logging driver that sends logs to a

centralized system is essential:

23

{

 "log-driver": "syslog",

 "log-opts": {

 "syslog-address": "tcp://logserver:514",

 "tag": "docker/{{.Name}}"

 }

}

This configuration in the Docker daemon configuration file (typically located at /

etc/docker/daemon.json) ensures that all container logs are forwarded to a

centralized syslog server where they can be monitored and retained.

Information Disclosure is one of the most prevalent threats in Docker environ-

ments. Secrets hardcoded in Dockerfiles, environment variables containing data-

base credentials, and sensitive configuration files baked into images are all com-

mon vectors for information leakage. Every layer of a Docker image is stored and

can be inspected, which means that even if a secret is deleted in a later layer, it re-

mains accessible in the image history.

To demonstrate how easily secrets can be extracted from image layers:

docker history --no-trunc myapp:latest

docker inspect myapp:latest

docker save myapp:latest -o myapp.tar

tar -xf myapp.tar

Each of these commands reveals different aspects of the image, and any secrets

embedded during the build process will be visible.

Denial of Service in Docker can take many forms. A container without re-

source limits can consume all available CPU, memory, or disk I/O on the host, effec-

tively denying service to other containers. Fork bombs, memory leaks, and disk-fill-

ing attacks within containers can all impact the host and neighboring containers.

Setting resource constraints is a critical defense:

docker run -d \

 --name webapp \

24

 --memory="512m" \

 --memory-swap="512m" \

 --cpus="1.0" \

 --pids-limit=100 \

 nginx:latest

This command limits the container to 512 megabytes of memory with no swap,

one CPU core, and a maximum of 100 processes, preventing it from consuming ex-

cessive host resources.

Elevation of Privilege is the most severe category of threat in Docker environ-

ments. Running containers as root, granting excessive Linux capabilities, using priv-

ileged mode, and mounting the Docker socket into containers are all pathways to

privilege escalation. An attacker who achieves elevation of privilege can break out

of the container and gain root access on the host.

The following table maps each STRIDE category to specific Docker threats and

recommended mitigations:

STRIDE Category Docker Threat Mitigation

Spoofing Malicious images imperson-
ating legitimate ones

Enable Docker Content Trust,
use private registries, verify
image digests

Tampering Modification of images or
running containers

Use read-only filesystems,
sign images, implement in-
tegrity monitoring

Repudiation Untracked container activity Centralized logging, audit
daemon events, enable
Docker audit rules

Information Disclosure Secrets in image layers, ex-
posed environment variables

Use Docker secrets, multi-
stage builds, secret manage-
ment tools

25

Denial of Service Resource exhaustion by con-
tainers

Set memory, CPU, and PID
limits on all containers

Elevation of Privilege Container escape, root ac-
cess

Run as non-root, drop capa-
bilities, never use privileged
mode

Common Docker Threat Vectors in Pro-
duction
Moving beyond the theoretical framework, it is important to examine the specific

threat vectors that attackers exploit in real production Docker environments. These

are not hypothetical scenarios. They are patterns observed in actual security inci-

dents.

The first and most commonly exploited vector is the exposed Docker daemon.

When the Docker daemon is configured to listen on a TCP port without TLS au-

thentication, anyone who can reach that port has full control over the Docker host.

This is equivalent to giving root SSH access without a password. Attackers routinely

scan the internet for exposed Docker daemons on port 2375 (unencrypted) and

port 2376 (TLS).

DANGEROUS: Never do this in production

dockerd -H tcp://0.0.0.0:2375

CORRECT: Use TLS authentication

dockerd --tlsverify \

 --tlscacert=/etc/docker/tls/ca.pem \

 --tlscert=/etc/docker/tls/server-cert.pem \

 --tlskey=/etc/docker/tls/server-key.pem \

 -H tcp://0.0.0.0:2376

