
1

Kubernetes Security & Best
Practices

Hardening, Governance, and Secure
Operations in Production Clusters

2

Preface

Kubernetes has fundamentally transformed how organizations build, deploy, and

scale software. What began as an open-source container orchestration project from

Google has become the de facto standard for running production workloads —

from ambitious startups to the world's largest enterprises. But with this ex-

traordinary power comes an equally extraordinary attack surface.

Kubernetes was designed for agility, not security by default. Its distributed

architecture, declarative configuration model, and vast ecosystem of extensions

create a landscape where a single misconfiguration — an overly permissive RBAC

binding, an unrestricted pod security context, an exposed API server — can com-

promise an entire cluster. The breaches we've witnessed in recent years confirm a

sobering truth: attackers understand Kubernetes, often better than the teams de-

fending it.

This book exists because securing Kubernetes demands more than surface-lev-

el familiarity. It requires a deep, systematic understanding of how Kubernetes com-

ponents interact, where trust boundaries lie, and how threats propagate across the

layers of a cluster. Kubernetes Security & Best Practices was written to be the com-

prehensive, practitioner-focused guide I wished existed when I first confronted the

challenge of hardening production Kubernetes environments.

What This Book Covers
The scope of this book spans the full lifecycle of Kubernetes security — from foun-

dational concepts to operational maturity.

3

We begin by establishing why Kubernetes security is fundamentally differ-

ent from traditional infrastructure security and how to threat model Kubernetes

clusters effectively. From there, we move methodically through the critical layers of

defense: API server hardening and authentication, RBAC and access control,

pod security, namespace isolation, network policies, and ingress protection.

Each chapter provides not just theory but actionable configurations, real-world

scenarios, and battle-tested recommendations.

The middle sections tackle the challenges that keep platform engineers awake

at night — secrets management, policy enforcement at scale, runtime threat de-

tection, and audit logging for compliance. We then shift left into the software

supply chain, covering container image security and secure CI/CD pipelines, ar-

eas where vulnerabilities are often introduced long before a workload reaches a

cluster.

The final chapters address what many security books overlook: the anti-pat-

terns that silently erode your Kubernetes security posture, and the cultural and or-

ganizational shift required to build a true DevSecOps practice around Kubernetes.

Five appendices provide ready-to-use resources — including an RBAC role tem-

plate library, secure pod YAML examples, an incident response playbook tailored

to Kubernetes, and a security learning roadmap for continued growth.

Who This Book Is For
Whether you are a platform engineer hardening clusters, a security professional

extending your expertise into cloud-native environments, a DevOps practitioner

building secure pipelines, or an engineering leader establishing governance

standards — this book meets you where you are and takes you further.

4

No prior Kubernetes security expertise is assumed, but a working familiarity

with Kubernetes concepts (pods, deployments, services, namespaces) will help you

extract maximum value from every chapter.

How to Read This Book
The chapters are designed to be read sequentially, as each builds upon concepts

introduced earlier. However, experienced practitioners may choose to navigate di-

rectly to specific domains of concern. The appendices are intended as living refer-

ences you'll return to repeatedly in your day-to-day work.

Acknowledgments
This book would not exist without the extraordinary Kubernetes security communi-

ty — the researchers who disclose vulnerabilities responsibly, the open-source

maintainers behind tools like Falco, OPA, Trivy, and Kyverno, and the countless en-

gineers who share their hard-won lessons publicly. I am also deeply grateful to the

technical reviewers whose sharp eyes and honest feedback strengthened every

chapter, and to my family for their patience during the many late nights this work

demanded.

Kubernetes clusters are only as secure as the intention and knowledge behind

their configuration. My hope is that this book gives you both — the clarity to under-

stand what must be secured, and the confidence to secure it well.

Let's begin.

Dorian Thorne

5

Table of Contents

Chapter Title Page

1 Why Kubernetes Security Is Different 6

2 Threat Modeling Kubernetes Clusters 18

3 API Server and Authentication Hardening 30

4 RBAC and Access Control 45

5 Pod Security Best Practices 60

6 Namespace Isolation and Multi-Tenancy 78

7 Network Policies and Segmentation 97

8 Securing Ingress and External Access 115

9 Managing Secrets Securely 136

10 Secure Configuration and Policy Enforcement 152

11 Runtime Security and Detection 169

12 Logging, Auditing, and Compliance 187

13 Securing the Container Supply Chain 210

14 Secure CI/CD Pipelines 224

15 Kubernetes Security Anti-Patterns 244

16 From Secure Cluster to DevSecOps Culture 259

App Kubernetes Security Checklist 272

App RBAC Role Templates 287

App Secure Pod YAML Examples 304

App Incident Response Playbook for Kubernetes 327

App Kubernetes Security Learning Roadmap 342

6

Chapter 1: Why Kubernetes
Security Is Different

Kubernetes has fundamentally transformed how organizations build, deploy, and

manage applications at scale. It provides an extraordinary level of automation, self-

healing capabilities, and declarative infrastructure management that was previous-

ly unimaginable. However, this power comes with a complexity that introduces an

entirely new category of security challenges. If you have spent years securing tradi-

tional servers, virtual machines, or even basic containerized workloads, you will

quickly discover that Kubernetes security operates on a different plane altogether.

The attack surface is broader, the components are more numerous, the interactions

are more dynamic, and the consequences of misconfiguration can be catastrophic.

This chapter sets the foundation for everything that follows in this book by explain-

ing precisely why Kubernetes security demands a fundamentally different mindset,

a different set of tools, and a different operational discipline than what most teams

are accustomed to.

The Shift from Traditional In-
frastructure Security
In a traditional infrastructure model, security teams operated with a relatively stable

and well-understood environment. You had physical or virtual servers, each with a

known IP address, a known operating system, and a known set of running process-

es. Firewalls sat at network boundaries. Intrusion detection systems monitored traf-

7

fic. Configuration management tools ensured that servers remained in a desired

state. The security perimeter was clearly defined, and the number of entities to pro-

tect was manageable and relatively static.

Kubernetes dismantles nearly every one of these assumptions. Instead of long-

lived servers with stable identities, you have ephemeral Pods that can be created,

destroyed, and rescheduled across different nodes in seconds. Instead of a small

number of well-known network endpoints, you have potentially thousands of ser-

vices communicating with each other through a flat network where, by default,

every Pod can reach every other Pod. Instead of a single operating system to hard-

en, you have container images pulled from registries that may or may not be trust-

worthy, running on a shared kernel with varying levels of isolation.

Consider the following comparison to understand the magnitude of this shift:

Security Aspect Traditional Infrastructure Kubernetes Environment

Compute Identity Static servers with fixed IPs
and hostnames

Ephemeral Pods with dy-
namic IPs, scheduled
across nodes

Network Perimeter Well-defined firewall
boundaries between
zones

Flat network by default; all
Pods can communicate
freely

Access Control SSH keys, user accounts on
individual machines

RBAC policies, ServiceAc-
counts, API server authen-
tication

Configuration Manage-
ment

Chef, Puppet, Ansible
managing server state

Declarative YAML mani-
fests, Admission Con-
trollers, GitOps

Attack Surface Operating system, in-
stalled packages, open
ports

API server, etcd, kubelet,
container runtime, images,
secrets, RBAC, network
policies, and more

Lifecycle Servers live for months or
years

Pods may live for seconds
or minutes

8

Secrets Management Files on disk, environment
variables, vault integra-
tions

Kubernetes Secrets
(base64 encoded by de-
fault, not encrypted)

Audit Trail System logs, SSH session
recordings

API server audit logs, con-
tainer stdout/stderr, event
streams

This table is not merely academic. Each row represents a domain where security

teams must completely rethink their approach. The tools, techniques, and mental

models that worked for traditional infrastructure are insufficient for Kubernetes.

They are not wrong, but they are incomplete.

Understanding the Kubernetes Attack
Surface
To appreciate why Kubernetes security is different, you must first understand the

sheer breadth of the Kubernetes attack surface. A Kubernetes cluster is not a single

system. It is a distributed system composed of multiple interacting components,

each of which can be targeted, misconfigured, or exploited.

The control plane is the brain of the cluster. It consists of the API server, etcd,

the scheduler, and the controller manager. The API server is the single point of en-

try for all cluster operations. Every kubectl command, every controller reconcilia-

tion loop, every kubelet heartbeat passes through the API server. If an attacker

gains unauthorized access to the API server, they effectively own the entire cluster.

They can create Pods, read Secrets, modify RBAC policies, and exfiltrate data. The

API server must be protected with strong authentication, robust authorization poli-

cies, and comprehensive audit logging.

The etcd datastore is arguably the most sensitive component in the entire clus-

ter. It stores all cluster state, including Secrets, ConfigMaps, RBAC policies, and

9

workload definitions. If etcd is compromised, the attacker has access to everything.

In many default installations, etcd communication is not encrypted, and access

controls are minimal. This is one of the most critical hardening priorities for any

production cluster.

The kubelet runs on every worker node and is responsible for managing Pods

on that node. It exposes an API that, if left unsecured, allows an attacker to execute

commands inside containers, read logs, and even escalate privileges to the host.

Historically, the kubelet API has been a frequent target in real-world Kubernetes at-

tacks.

The container runtime, whether it is containerd, CRI-O, or another implementa-

tion, is responsible for actually running containers. Vulnerabilities in the container

runtime can allow container escapes, where an attacker breaks out of the container

sandbox and gains access to the underlying host operating system.

Beyond these core components, the attack surface extends to:

Component Security Risk Example Threat

API Server Unauthorized access, privi-
lege escalation

Anonymous authentication
enabled, overly permissive
RBAC

etcd Data exfiltration, cluster
takeover

Unencrypted etcd communi-
cation, no client certificate
auth

Kubelet Remote code execution, con-
tainer escape

Unauthenticated kubelet API,
host path mounts

Container Images Malware, vulnerabilities, sup-
ply chain attacks

Pulling unverified images
from public registries

Kubernetes Secrets Credential theft Secrets stored as base64 (not
encrypted at rest)

Network Lateral movement, data inter-
ception

No NetworkPolicies, unen-
crypted Pod-to-Pod traffic

10

RBAC Privilege escalation Wildcard permissions, clus-
ter-admin bound to default
SA

Admission Controllers Policy bypass No Pod Security enforce-
ment, no image validation

Service Accounts Token theft, API abuse Auto-mounted SA tokens in
Pods that do not need API
access

Persistent Volumes Data leakage Sensitive data on volumes
accessible to multiple Pods

This is not an exhaustive list, but it illustrates a critical point: Kubernetes security is

not about securing one thing. It is about securing an entire ecosystem of interact-

ing components, each with its own threat model.

The Default Configuration Problem
One of the most dangerous aspects of Kubernetes security is that the default con-

figuration of most Kubernetes distributions is optimized for ease of use, not for se-

curity. This design philosophy makes sense from an adoption perspective. Kuber-

netes is already complex enough without requiring security expertise to run a sim-

ple workload. However, it means that a freshly installed cluster is almost certainly

insecure for production use.

Let us examine some of the most significant default behaviors that create secu-

rity risks:

By default, Kubernetes does not enforce any NetworkPolicies. This means that

every Pod in the cluster can communicate with every other Pod, regardless of

namespace. An attacker who compromises a single Pod can potentially reach the

database, the payment service, the internal API, and any other workload running in

11

the cluster. This flat network model is the Kubernetes equivalent of having no fire-

wall at all.

By default, Kubernetes automatically mounts a ServiceAccount token into every

Pod. This token grants the Pod the ability to authenticate to the Kubernetes API

server. If the ServiceAccount has been granted excessive permissions through

RBAC, a compromised Pod can use this token to query the API, read Secrets, or

even create new workloads. Many organizations do not realize that their Pods have

this capability until an incident occurs.

By default, Kubernetes Secrets are stored in etcd as base64-encoded values,

not encrypted values. Base64 is an encoding scheme, not an encryption scheme.

Anyone with read access to etcd, or with the appropriate RBAC permissions to

read Secrets, can decode them trivially. Encryption at rest must be explicitly config-

ured.

By default, Pods can run as root, can mount host paths, can use host network-

ing, and can access the host PID namespace. These capabilities are enormously

powerful and enormously dangerous. A Pod running as root with a host path

mount can read and write any file on the node. A Pod with host networking can

sniff traffic from other Pods on the same node. A Pod with access to the host PID

namespace can see and potentially interact with processes running on the host.

The following example demonstrates how a seemingly innocent Pod specifica-

tion can create a severe security risk:

apiVersion: v1

kind: Pod

metadata:

 name: dangerous-pod

 namespace: default

spec:

 hostNetwork: true

 hostPID: true

 containers:

12

 - name: attacker

 image: ubuntu:latest

 securityContext:

 privileged: true

 volumeMounts:

 - name: host-root

 mountPath: /host

 volumes:

 - name: host-root

 hostPath:

 path: /

This Pod specification requests privileged mode, host networking, host PID name-

space access, and mounts the entire host filesystem. If deployed, this Pod effective-

ly has root access to the underlying node. In a default Kubernetes installation, noth-

ing prevents this Pod from being created. There is no admission controller blocking

it, no policy engine rejecting it, and no warning alerting the operator.

This is why understanding the defaults is the first step in Kubernetes security.

You cannot secure what you do not understand, and you cannot protect against

threats you do not know exist.

Note: Starting with Kubernetes 1.25, the Pod Security Admission controller re-

placed the deprecated PodSecurityPolicy. This built-in admission controller can en-

force security standards at the namespace level, but it must be explicitly config-

ured. It does not block dangerous Pods by default in all configurations.

The Shared Responsibility Model
Kubernetes security is not solely the responsibility of any single team or any single

tool. It follows a shared responsibility model that spans multiple layers and multiple

stakeholders.

13

If you are using a managed Kubernetes service such as Amazon EKS, Google

GKE, or Azure AKS, the cloud provider is responsible for securing the control plane

components. They manage the API server, etcd, the scheduler, and the controller

manager. They handle patching, high availability, and network security for these

components. However, everything else is your responsibility. You are responsible

for securing your workloads, your container images, your RBAC policies, your net-

work policies, your secrets management, and your node configuration.

If you are running a self-managed Kubernetes cluster using tools like kubeadm,

kops, or Kubespray, you are responsible for everything. You must secure the con-

trol plane, the worker nodes, the network, the storage, and the workloads. This is a

significantly larger burden and requires deep expertise.

The following table clarifies this division:

Responsibility Managed Kubernetes
(EKS, GKE, AKS)

Self-Managed Kuber-
netes

Control Plane Security Cloud Provider Your Team

etcd Encryption and
Backup

Cloud Provider Your Team

API Server Authentication Shared (provider config-
ures, you manage identi-
ties)

Your Team

Worker Node OS Patching Your Team Your Team

Container Image Security Your Team Your Team

RBAC Configuration Your Team Your Team

Network Policies Your Team Your Team

Secrets Management Your Team Your Team

Pod Security Standards Your Team Your Team

14

Audit Logging Configura-
tion

Shared (provider provides,
you configure and analyze)

Your Team

Ingress and Egress Securi-
ty

Your Team Your Team

Regardless of the deployment model, the majority of security responsibilities fall

on the team operating the cluster. This is a sobering reality that many organizations

underestimate.

Thinking in Layers: Defense in Depth
for Kubernetes
Effective Kubernetes security requires a defense-in-depth strategy. No single con-

trol is sufficient. You must implement security measures at every layer of the stack,

so that if one layer is breached, the next layer provides protection.

The layers of Kubernetes security can be conceptualized as follows:

The Cluster Layer encompasses the security of the control plane and the in-

frastructure on which the cluster runs. This includes securing the API server with

strong authentication and authorization, encrypting etcd at rest and in transit, re-

stricting access to the kubelet API, and ensuring that the underlying nodes are

hardened and patched.

The Namespace Layer provides logical isolation within the cluster. Name-

spaces should be used to separate workloads by team, environment, or sensitivity

level. RBAC policies should be scoped to namespaces to limit what users and Ser-

viceAccounts can do. Resource quotas and limit ranges should be applied to pre-

vent resource exhaustion.

The Network Layer controls communication between Pods, between name-

spaces, and between the cluster and the outside world. NetworkPolicies should be

15

used to implement a default-deny posture, where Pods can only communicate with

explicitly allowed destinations. Service meshes can provide mutual TLS for encrypt-

ing Pod-to-Pod traffic.

The Workload Layer addresses the security of the Pods themselves. This in-

cludes enforcing Pod Security Standards to prevent privileged containers, scanning

container images for vulnerabilities, using read-only root filesystems, dropping un-

necessary Linux capabilities, and running containers as non-root users.

The Application Layer is the security of the code running inside the contain-

ers. This includes secure coding practices, dependency management, input valida-

tion, and proper handling of credentials and sensitive data.

Each layer reinforces the others. A vulnerability at one layer may be mitigated

by controls at another layer. This is the essence of defense in depth, and it is partic-

ularly important in Kubernetes because the system is so dynamic and complex.

Practical Exercise: Assessing Your Clus-
ter's Default Security Posture
To ground these concepts in practice, perform the following exercise on a test clus-

ter. Do not perform this on a production cluster without proper authorization.

First, check whether anonymous authentication is enabled on the API server:

kubectl auth can-i --list --as=system:anonymous

If this command returns a list of permissions rather than an error, anonymous au-

thentication is enabled and may allow unauthorized access.

Next, check whether any ClusterRoleBindings grant excessive permissions:

kubectl get clusterrolebindings -o json | jq '.items[] |

select(.roleRef.name == "cluster-admin") | .metadata.name'

16

This command lists all ClusterRoleBindings that reference the cluster-admin role.

Each of these bindings grants full administrative access to the cluster. Review each

one carefully and remove any that are unnecessary.

Check whether Pods in the default namespace have ServiceAccount tokens au-

tomatically mounted:

kubectl get pods -n default -o json | jq '.items[] |

{name: .metadata.name,

automountServiceAccountToken: .spec.automountServiceAccountToken}

'

If the automountServiceAccountToken field is null or true, the Pod has a Kuber-

netes API token mounted that it may not need.

Finally, check whether any NetworkPolicies exist in your namespaces:

kubectl get networkpolicies --all-namespaces

If this command returns no results, your cluster has no network segmentation what-

soever. Every Pod can communicate with every other Pod.

Note: These checks represent only the beginning of a comprehensive security

assessment. Tools such as kube-bench (which checks against the CIS Kubernetes

Benchmark), kubeaudit, and Trivy can automate much of this assessment process.

We will explore these tools in detail in later chapters.

Setting the Stage for What Follows
This chapter has established a critical foundation. Kubernetes security is different

because the platform itself is different. It is more dynamic, more distributed, more

complex, and more powerful than traditional infrastructure. The default configura-

tions are permissive. The attack surface is vast. The shared responsibility model

17

places the majority of the burden on the team operating the cluster. And effective

security requires a layered, defense-in-depth approach that addresses every com-

ponent from the control plane to the application code.

In the chapters that follow, we will systematically address each layer of this se-

curity model. We will begin with hardening the control plane and securing cluster

infrastructure. We will then move to RBAC design, network policy implementation,

secrets management, image security, runtime protection, audit logging, and gover-

nance frameworks. Each chapter will build on the concepts introduced here, pro-

viding practical, actionable guidance for securing Kubernetes clusters in produc-

tion.

The journey toward a secure Kubernetes environment is not a single action but

a continuous process. It requires vigilance, discipline, and a willingness to under-

stand the platform at a deep level. This book is designed to guide you through that

process, one layer at a time.

18

Chapter 2: Threat Modeling
Kubernetes Clusters

Understanding the security posture of a Kubernetes cluster begins long before the

first pod is deployed. It starts with a disciplined, methodical process of identifying

what could go wrong, who might exploit weaknesses, and where the most critical

vulnerabilities reside. This process is known as threat modeling, and when applied

to Kubernetes, it becomes one of the most powerful exercises a platform team can

undertake. Kubernetes, by its very nature, is a complex distributed system with a

vast attack surface. The API server, etcd, kubelet, container runtimes, networking

layers, and the supply chain of container images all present distinct categories of

risk. In this chapter, we will walk through the full practice of threat modeling a Ku-

bernetes cluster, from understanding the attack surface to building a structured

threat model that can guide hardening decisions for months and years to come.

Why Threat Modeling Matters for Ku-
bernetes
Every organization running Kubernetes in production faces a fundamental ques-

tion: what are we protecting, and from whom? Without answering this question ex-

plicitly, security efforts become reactive and fragmented. Teams patch vulnerabili-

ties as they appear, apply security policies inconsistently, and fail to prioritize the

controls that would have the greatest impact. Threat modeling reverses this dy-

namic. It forces teams to think like an attacker, to trace the paths an adversary

19

might follow from initial access to full cluster compromise, and to place controls at

the points where they matter most.

Kubernetes is particularly well suited to threat modeling because its architec-

ture is well documented and its components interact through clearly defined inter-

faces. The Kubernetes API server, for example, is the central control plane compo-

nent through which nearly all operations flow. An attacker who gains access to the

API server with sufficient privileges can create pods, read secrets, modify RBAC

policies, and effectively own the entire cluster. Understanding this single fact

shapes dozens of security decisions, from how authentication is configured to how

network policies restrict access to the API server endpoint.

Threat modeling is not a one-time activity. As clusters evolve, as new workloads

are deployed, and as the broader threat landscape shifts, the model must be revis-

ited and updated. The goal is not perfection but rather a living document that cap-

tures the team's best understanding of risk at any given point in time.

Understanding the Kubernetes Attack
Surface
Before building a threat model, it is essential to have a thorough understanding of

the Kubernetes attack surface. The attack surface is the sum of all points where an

unauthorized user or process could attempt to interact with the system. In Kuber-

netes, this surface is broad and multi-layered.

The following table describes the primary components of a Kubernetes cluster

and the security concerns associated with each.

20

Component Description Security Concerns

API Server The central management
endpoint for all cluster op-
erations. All kubectl com-
mands, controller actions,
and scheduler decisions
pass through the API
server.

Unauthorized access, privi-
lege escalation through
RBAC misconfiguration,
unauthenticated end-
points, token theft

etcd The distributed key-value
store that holds all cluster
state, including secrets,
configuration, and RBAC
policies.

Direct access to etcd by-
passes all Kubernetes au-
thorization. Data is stored
in base64 encoding by de-
fault, not encrypted.

Kubelet The agent running on each
node that manages pod
lifecycle and communi-
cates with the API server.

The kubelet API can be ex-
ploited if anonymous au-
thentication is enabled.
Node-level compromise
gives access to all pods on
that node.

Container Runtime The software responsible
for running containers,
such as containerd or CRI-
O.

Container escape vulnera-
bilities allow attackers to
break out of the container
and access the host oper-
ating system.

Networking (CNI) The Container Network In-
terface plugin that pro-
vides pod-to-pod commu-
nication.

By default, all pods can
communicate with all other
pods. Lack of network poli-
cies allows lateral move-
ment.

Scheduler The component that as-
signs pods to nodes based
on resource requirements
and constraints.

Manipulating scheduling
decisions can place mali-
cious pods on sensitive
nodes.

Controller Manager Runs controllers that regu-
late the state of the cluster,
such as the ReplicaSet and
Namespace controllers.

Compromise of the con-
troller manager allows ma-
nipulation of cluster state
at a fundamental level.

21

Cloud Provider Integration Integrations with cloud
APIs for load balancers,
storage, and identity.

Overly permissive cloud
IAM roles attached to
nodes or pods can allow
cloud account compro-
mise.

Container Images The software artifacts de-
ployed as containers within
the cluster.

Vulnerable or malicious
base images, unpatched
dependencies, embedded
secrets in image layers.

Secrets Management Kubernetes native secrets
stored in etcd and mount-
ed into pods.

Secrets are base64 encod-
ed, not encrypted by de-
fault. Any pod with the cor-
rect RBAC or service ac-
count can read them.

This table is not exhaustive, but it captures the most critical areas where threats

emerge. Each component represents a potential entry point or escalation path for

an attacker.

Identifying Threat Actors and Their
Motivations
A threat model is incomplete without a clear understanding of who the adversaries

are. In the context of Kubernetes, threat actors can be categorized into several

groups, each with different capabilities, motivations, and levels of access.

External Attackers are individuals or groups with no initial access to the clus-

ter. Their goal is typically to gain a foothold through exposed services, vulnerable

applications, or misconfigured ingress points. An external attacker might scan for

publicly exposed Kubernetes dashboards, unprotected API servers, or applications

with known vulnerabilities running inside the cluster.

22

Malicious Insiders are individuals who already have some level of legitimate

access to the cluster. This could be a developer with namespace-scoped permis-

sions who attempts to escalate privileges, or an operations engineer who abuses

their broad access for unauthorized purposes. Insider threats are particularly dan-

gerous in Kubernetes because the RBAC system, while powerful, is frequently mis-

configured to grant overly broad permissions.

Compromised Workloads represent a scenario where a legitimate application

running in the cluster is exploited by an external attacker. Once inside the pod, the

attacker can attempt to access the Kubernetes API using the pod's service account

token, read mounted secrets, communicate with other pods, or attempt a container

escape to reach the underlying node.

Supply Chain Attackers target the software supply chain rather than the clus-

ter directly. They might inject malicious code into a base image, compromise a CI/

CD pipeline, or tamper with Helm charts or Kubernetes manifests before they

reach the cluster.

Understanding these threat actors helps prioritize controls. For example, if the

primary concern is compromised workloads, then runtime security, network poli-

cies, and restrictive pod security standards become the highest priority. If supply

chain attacks are the primary concern, then image signing, admission control, and

pipeline security take precedence.

Applying the STRIDE Framework to
Kubernetes
STRIDE is a well-established threat modeling framework developed by Microsoft

that categorizes threats into six types: Spoofing, Tampering, Repudiation, Informa-

23

tion Disclosure, Denial of Service, and Elevation of Privilege. Applying STRIDE to

Kubernetes provides a structured way to identify threats across the entire cluster.

STRIDE Category Kubernetes Example Mitigation Strategy

Spoofing An attacker uses a stolen ser-
vice account token to au-
thenticate to the API server
as a legitimate workload.

Enable short-lived, projected
service account tokens. Ro-
tate tokens regularly. Use
OIDC for human authentica-
tion.

Tampering An attacker modifies a Con-
figMap or Secret to change
application behavior or inject
malicious configuration.

Use RBAC to restrict write ac-
cess. Enable admission con-
trollers to validate changes.
Use GitOps to detect drift.

Repudiation A user deletes critical re-
sources and there is no audit
trail to identify who per-
formed the action.

Enable Kubernetes audit log-
ging. Forward audit logs to a
centralized, immutable log-
ging system.

Information Disclosure Secrets mounted into pods
are readable by any process
in the container. Environ-
ment variables expose sensi-
tive data in process listings.

Use volume-mounted secrets
instead of environment vari-
ables. Enable etcd encryp-
tion at rest. Use external se-
cret managers.

Denial of Service A pod without resource limits
consumes all CPU and mem-
ory on a node, causing other
pods to be evicted.

Enforce resource requests
and limits through Limit-
Range and ResourceQuota
objects. Use Pod Priority and
Preemption.

Elevation of Privilege A pod running as root with a
privileged security context
escapes the container and
gains access to the host.

Enforce Pod Security Stan-
dards. Use seccomp and Ap-
pArmor profiles. Disable
privileged containers
through admission control.

This framework provides a repeatable, comprehensive approach to identifying

threats. Each category prompts specific questions about the cluster's configuration

and the controls in place.

24

Building a Kubernetes Threat Model
Step by Step
Building a threat model for a Kubernetes cluster is a collaborative exercise that

should involve platform engineers, security teams, application developers, and op-

erations staff. The following process provides a practical, repeatable approach.

Step 1: Define the Scope. Begin by defining what is being modeled. This

might be the entire cluster, a specific namespace, or a particular workload. For a

first threat model, it is often most productive to focus on the control plane and a

single representative workload.

Step 2: Create a Data Flow Diagram. Map how data flows through the sys-

tem. In Kubernetes, this includes the flow of API requests from users and con-

trollers to the API server, the flow of secrets from etcd to pods, the flow of contain-

er images from registries to nodes, and the flow of network traffic between pods. A

clear data flow diagram reveals the trust boundaries in the system, which are the

points where data crosses from one security domain to another.

Consider the following simplified data flow for a typical Kubernetes deploy-

ment:

Developer --> kubectl --> API Server --> etcd

 --> Scheduler --> Kubelet -->

Container Runtime --> Pod

 --> Controller Manager

Pod --> Kubernetes API (via Service Account Token)

Pod --> Other Pods (via CNI Network)

Pod --> External Services (via Egress)

CI/CD Pipeline --> Container Registry --> Kubelet (Image Pull)

Each arrow in this diagram represents a potential attack vector. The connection be-

tween the developer and the API server must be authenticated and encrypted. The

25

connection between the pod and the Kubernetes API must be restricted by RBAC.

The connection between the CI/CD pipeline and the container registry must be

protected against tampering.

Step 3: Identify Threats. Using the STRIDE framework and the data flow dia-

gram, systematically identify threats at each trust boundary. For each arrow in the

diagram, ask: Can this communication be spoofed? Can the data be tampered

with? Is there an audit trail? Could sensitive data be disclosed? Could this be used

for denial of service? Could this lead to privilege escalation?

Step 4: Assess Risk. Not all threats are equally likely or equally impactful. As-

sess each threat based on its likelihood and potential impact. A useful approach is

to use a simple risk matrix:

Likelihood / Impact Low Impact Medium Impact High Impact

High Likelihood Medium Risk High Risk Critical Risk

Medium Likelihood Low Risk Medium Risk High Risk

Low Likelihood Low Risk Low Risk Medium Risk

For example, a container escape vulnerability in an unpatched runtime has high

impact (full node compromise) and medium likelihood (requires specific condi-

tions), making it a high risk item. An unauthenticated kubelet API, on the other

hand, has high impact and high likelihood if exposed, making it a critical risk.

Step 5: Define Mitigations. For each identified threat, define specific, action-

able mitigations. These should be tied to Kubernetes configuration, policy, or archi-

tecture decisions. For example:

Example: Enforcing a restricted Pod Security Standard at the

namespace level

apiVersion: v1

kind: Namespace

metadata:

 name: production

