Kubernetes Security & Best
Practices

Hardening, Governance, and Secure
Operations in Production Clusters

Preface

Kubernetes has fundamentally transformed how organizations build, deploy, and
scale software. What began as an open-source container orchestration project from
Google has become the de facto standard for running production workloads —
from ambitious startups to the world's largest enterprises. But with this ex-
traordinary power comes an equally extraordinary attack surface.

Kubernetes was designed for agility, not security by default. Its distributed
architecture, declarative configuration model, and vast ecosystem of extensions
create a landscape where a single misconfiguration — an overly permissive RBAC
binding, an unrestricted pod security context, an exposed API| server — can com-
promise an entire cluster. The breaches we've witnessed in recent years confirm a
sobering truth: attackers understand Kubernetes, often better than the teams de-
fending it.

This book exists because securing Kubernetes demands more than surface-lev-
el familiarity. It requires a deep, systematic understanding of how Kubernetes com-
ponents interact, where trust boundaries lie, and how threats propagate across the
layers of a cluster. Kubernetes Security & Best Practices was written to be the com-
prehensive, practitioner-focused guide | wished existed when | first confronted the

challenge of hardening production Kubernetes environments.

What This Book Covers

The scope of this book spans the full lifecycle of Kubernetes security — from foun-

dational concepts to operational maturity.

We begin by establishing why Kubernetes security is fundamentally differ-
ent from traditional infrastructure security and how to threat model Kubernetes
clusters effectively. From there, we move methodically through the critical layers of
defense: APl server hardening and authentication, RBAC and access control,
pod security, namespace isolation, network policies, and ingress protection.
Each chapter provides not just theory but actionable configurations, real-world
scenarios, and battle-tested recommendations.

The middle sections tackle the challenges that keep platform engineers awake
at night — secrets management, policy enforcement at scale, runtime threat de-
tection, and audit logging for compliance. We then shift left into the software
supply chain, covering container image security and secure CI/CD pipelines, ar-
eas where vulnerabilities are often introduced long before a workload reaches a
cluster.

The final chapters address what many security books overlook: the anti-pat-
terns that silently erode your Kubernetes security posture, and the cultural and or-
ganizational shift required to build a true DevSecOps practice around Kubernetes.
Five appendices provide ready-to-use resources — including an RBAC role tem-
plate library, secure pod YAML examples, an incident response playbook tailored

to Kubernetes, and a security learning roadmap for continued growth.

Who This Book Is For

Whether you are a platform engineer hardening clusters, a security professional
extending your expertise into cloud-native environments, a DevOps practitioner
building secure pipelines, or an engineering leader establishing governance

standards — this book meets you where you are and takes you further.

No prior Kubernetes security expertise is assumed, but a working familiarity
with Kubernetes concepts (pods, deployments, services, namespaces) will help you

extract maximum value from every chapter.

How to Read This Book

The chapters are designed to be read sequentially, as each builds upon concepts
introduced earlier. However, experienced practitioners may choose to navigate di-
rectly to specific domains of concern. The appendices are intended as living refer-

ences you'll return to repeatedly in your day-to-day work.

Acknowledgments

This book would not exist without the extraordinary Kubernetes security communi-
ty — the researchers who disclose vulnerabilities responsibly, the open-source
maintainers behind tools like Falco, OPA, Trivy, and Kyverno, and the countless en-
gineers who share their hard-won lessons publicly. | am also deeply grateful to the
technical reviewers whose sharp eyes and honest feedback strengthened every
chapter, and to my family for their patience during the many late nights this work
demanded.

Kubernetes clusters are only as secure as the intention and knowledge behind
their configuration. My hope is that this book gives you both — the clarity to under-
stand what must be secured, and the confidence to secure it well.

Let's begin.

Dorian Thorne

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Why Kubernetes Security Is Different
Threat Modeling Kubernetes Clusters
API Server and Authentication Hardening
RBAC and Access Control

Pod Security Best Practices

Namespace Isolation and Multi-Tenancy
Network Policies and Segmentation
Securing Ingress and External Access

Managing Secrets Securely

Page

6
18
30
45
60
78
97
115
136

Secure Configuration and Policy Enforcement 152

Runtime Security and Detection

Logging, Auditing, and Compliance
Securing the Container Supply Chain
Secure CI/CD Pipelines

Kubernetes Security Anti-Patterns

From Secure Cluster to DevSecOps Culture
Kubernetes Security Checklist

RBAC Role Templates

Secure Pod YAML Examples

Incident Response Playbook for Kubernetes

Kubernetes Security Learning Roadmap

169
187
210
224
244
259
272
287
304
327
342

Chapter 1: Why Kubernetes
Security Is Different

Kubernetes has fundamentally transformed how organizations build, deploy, and
manage applications at scale. It provides an extraordinary level of automation, self-
healing capabilities, and declarative infrastructure management that was previous-
ly unimaginable. However, this power comes with a complexity that introduces an
entirely new category of security challenges. If you have spent years securing tradi-
tional servers, virtual machines, or even basic containerized workloads, you will
quickly discover that Kubernetes security operates on a different plane altogether.
The attack surface is broader, the components are more numerous, the interactions
are more dynamic, and the consequences of misconfiguration can be catastrophic.
This chapter sets the foundation for everything that follows in this book by explain-
ing precisely why Kubernetes security demands a fundamentally different mindset,
a different set of tools, and a different operational discipline than what most teams

are accustomed to.

The Shift from Traditional In-
frastructure Security

In a traditional infrastructure model, security teams operated with a relatively stable
and well-understood environment. You had physical or virtual servers, each with a
known IP address, a known operating system, and a known set of running process-

es. Firewalls sat at network boundaries. Intrusion detection systems monitored traf-

fic. Configuration management tools ensured that servers remained in a desired
state. The security perimeter was clearly defined, and the number of entities to pro-
tect was manageable and relatively static.

Kubernetes dismantles nearly every one of these assumptions. Instead of long-
lived servers with stable identities, you have ephemeral Pods that can be created,
destroyed, and rescheduled across different nodes in seconds. Instead of a small
number of well-known network endpoints, you have potentially thousands of ser-
vices communicating with each other through a flat network where, by default,
every Pod can reach every other Pod. Instead of a single operating system to hard-
en, you have container images pulled from registries that may or may not be trust-
worthy, running on a shared kernel with varying levels of isolation.

Consider the following comparison to understand the magnitude of this shift:

Security Aspect Traditional Infrastructure Kubernetes Environment
Compute Identity Static servers with fixed IPs Ephemeral Pods with dy-
and hostnames namic IPs, scheduled

across nodes

Network Perimeter Well-defined firewall Flat network by default; all
boundaries between Pods can communicate
zones freely

Access Control SSH keys, user accounts on RBAC policies, ServiceAc-
individual machines counts, APl server authen-

tication

Configuration Manage- Chef, Puppet, Ansible Declarative YAML mani-

ment managing server state fests, Admission Con-

trollers, GitOps

Attack Surface Operating system, in- APl server, etcd, kubelet,
stalled packages, open container runtime, images,
ports secrets, RBAC, network

policies, and more

Lifecycle Servers live for months or Pods may live for seconds
years or minutes

Secrets Management Files on disk, environment Kubernetes Secrets

variables, vault integra- (baseb64 encoded by de-
tions fault, not encrypted)
Audit Trail System logs, SSH session APl server audit logs, con-
recordings tainer stdout/stderr, event
streams

This table is not merely academic. Each row represents a domain where security
teams must completely rethink their approach. The tools, techniques, and mental
models that worked for traditional infrastructure are insufficient for Kubernetes.

They are not wrong, but they are incomplete.

Understanding the Kubernetes Attack
Surface

To appreciate why Kubernetes security is different, you must first understand the
sheer breadth of the Kubernetes attack surface. A Kubernetes cluster is not a single
system. It is a distributed system composed of multiple interacting components,
each of which can be targeted, misconfigured, or exploited.

The control plane is the brain of the cluster. It consists of the API server, etcd,
the scheduler, and the controller manager. The APl server is the single point of en-
try for all cluster operations. Every kubectl command, every controller reconcilia-
tion loop, every kubelet heartbeat passes through the APl server. If an attacker
gains unauthorized access to the APl server, they effectively own the entire cluster.
They can create Pods, read Secrets, modify RBAC policies, and exfiltrate data. The
APl server must be protected with strong authentication, robust authorization poli-
cies, and comprehensive audit logging.

The etcd datastore is arguably the most sensitive component in the entire clus-

ter. It stores all cluster state, including Secrets, ConfigMaps, RBAC policies, and

workload definitions. If etcd is compromised, the attacker has access to everything.
In many default installations, etcd communication is not encrypted, and access
controls are minimal. This is one of the most critical hardening priorities for any
production cluster.

The kubelet runs on every worker node and is responsible for managing Pods
on that node. It exposes an API that, if left unsecured, allows an attacker to execute
commands inside containers, read logs, and even escalate privileges to the host.
Historically, the kubelet API has been a frequent target in real-world Kubernetes at-
tacks.

The container runtime, whether it is containerd, CRI-O, or another implementa-
tion, is responsible for actually running containers. Vulnerabilities in the container
runtime can allow container escapes, where an attacker breaks out of the container
sandbox and gains access to the underlying host operating system.

Beyond these core components, the attack surface extends to:

Component Security Risk Example Threat
API Server Unauthorized access, privi- Anonymous authentication
lege escalation enabled, overly permissive
RBAC
etcd Data exfiltration, cluster Unencrypted etcd communi-
takeover cation, no client certificate
auth
Kubelet Remote code execution, con- Unauthenticated kubelet API,
tainer escape host path mounts
Container Images Malware, vulnerabilities, sup- Pulling unverified images
ply chain attacks from public registries
Kubernetes Secrets Credential theft Secrets stored as basebé4 (not

encrypted at rest)

Network Lateral movement, data inter- No NetworkPolicies, unen-
ception crypted Pod-to-Pod traffic

RBAC Privilege escalation Wildcard permissions, clus-
ter-admin bound to default
SA

Admission Controllers Policy bypass No Pod Security enforce-
ment, no image validation

Service Accounts Token theft, APl abuse Auto-mounted SA tokens in
Pods that do not need API
access

Persistent Volumes Data leakage Sensitive data on volumes

accessible to multiple Pods

This is not an exhaustive list, but it illustrates a critical point: Kubernetes security is
not about securing one thing. It is about securing an entire ecosystem of interact-

ing components, each with its own threat model.

The Default Configuration Problem

One of the most dangerous aspects of Kubernetes security is that the default con-
figuration of most Kubernetes distributions is optimized for ease of use, not for se-
curity. This design philosophy makes sense from an adoption perspective. Kuber-
netes is already complex enough without requiring security expertise to run a sim-
ple workload. However, it means that a freshly installed cluster is almost certainly
insecure for production use.

Let us examine some of the most significant default behaviors that create secu-
rity risks:

By default, Kubernetes does not enforce any NetworkPolicies. This means that
every Pod in the cluster can communicate with every other Pod, regardless of
namespace. An attacker who compromises a single Pod can potentially reach the

database, the payment service, the internal API, and any other workload running in

10

the cluster. This flat network model is the Kubernetes equivalent of having no fire-
wall at all.

By default, Kubernetes automatically mounts a ServiceAccount token into every
Pod. This token grants the Pod the ability to authenticate to the Kubernetes API
server. If the ServiceAccount has been granted excessive permissions through
RBAC, a compromised Pod can use this token to query the API, read Secrets, or
even create new workloads. Many organizations do not realize that their Pods have
this capability until an incident occurs.

By default, Kubernetes Secrets are stored in etcd as baseé4-encoded values,
not encrypted values. Baseb4 is an encoding scheme, not an encryption scheme.
Anyone with read access to etcd, or with the appropriate RBAC permissions to
read Secrets, can decode them trivially. Encryption at rest must be explicitly config-
ured.

By default, Pods can run as root, can mount host paths, can use host network-
ing, and can access the host PID namespace. These capabilities are enormously
powerful and enormously dangerous. A Pod running as root with a host path
mount can read and write any file on the node. A Pod with host networking can
sniff traffic from other Pods on the same node. A Pod with access to the host PID
namespace can see and potentially interact with processes running on the host.

The following example demonstrates how a seemingly innocent Pod specifica-
tion can create a severe security risk:
apiVersion: vl
kind: Pod
metadata:

name: dangerous-pod

namespace: default
spec:

hostNetwork: true

hostPID: true

containers:

11

- name: attacker
image: ubuntu:latest
securityContext:

privileged: true
volumeMounts:
- name: host-root
mountPath: /host
volumes:

- name: host-root

hostPath:
path: /

This Pod specification requests privileged mode, host networking, host PID name-
space access, and mounts the entire host filesystem. If deployed, this Pod effective-
ly has root access to the underlying node. In a default Kubernetes installation, noth-
ing prevents this Pod from being created. There is no admission controller blocking
it, no policy engine rejecting it, and no warning alerting the operator.

This is why understanding the defaults is the first step in Kubernetes security.
You cannot secure what you do not understand, and you cannot protect against
threats you do not know exist.

Note: Starting with Kubernetes 1.25, the Pod Security Admission controller re-
placed the deprecated PodSecurityPolicy. This built-in admission controller can en-
force security standards at the namespace level, but it must be explicitly config-

ured. It does not block dangerous Pods by default in all configurations.

The Shared Responsibility Model

Kubernetes security is not solely the responsibility of any single team or any single
tool. It follows a shared responsibility model that spans multiple layers and multiple

stakeholders.

12

If you are using a managed Kubernetes service such as Amazon EKS, Google
GKE, or Azure AKS, the cloud provider is responsible for securing the control plane
components. They manage the API server, etcd, the scheduler, and the controller
manager. They handle patching, high availability, and network security for these
components. However, everything else is your responsibility. You are responsible
for securing your workloads, your container images, your RBAC policies, your net-
work policies, your secrets management, and your node configuration.

If you are running a self-managed Kubernetes cluster using tools like kubeadm,
kops, or Kubespray, you are responsible for everything. You must secure the con-
trol plane, the worker nodes, the network, the storage, and the workloads. This is a
significantly larger burden and requires deep expertise.

The following table clarifies this division:

Responsibility Managed Kubernetes Self-Managed Kuber-
(EKS, GKE, AKS) netes

Control Plane Security Cloud Provider Your Team

etcd Encryption and Cloud Provider Your Team

Backup

APl Server Authentication Shared (provider config- Your Team
ures, you manage identi-

ties)
Worker Node OS Patching Your Team Your Team
Container Image Security Your Team Your Team
RBAC Configuration Your Team Your Team
Network Policies Your Team Your Team
Secrets Management Your Team Your Team
Pod Security Standards Your Team Your Team

13

Audit Logging Configura- Shared (provider provides, Your Team

tion you configure and analyze)
Ingress and Egress Securi- Your Team Your Team
ty

Regardless of the deployment model, the majority of security responsibilities fall
on the team operating the cluster. This is a sobering reality that many organizations

underestimate.

Thinking in Layers: Defense in Depth
for Kubernetes

Effective Kubernetes security requires a defense-in-depth strategy. No single con-
trol is sufficient. You must implement security measures at every layer of the stack,
so that if one layer is breached, the next layer provides protection.

The layers of Kubernetes security can be conceptualized as follows:

The Cluster Layer encompasses the security of the control plane and the in-
frastructure on which the cluster runs. This includes securing the API server with
strong authentication and authorization, encrypting etcd at rest and in transit, re-
stricting access to the kubelet API, and ensuring that the underlying nodes are
hardened and patched.

The Namespace Layer provides logical isolation within the cluster. Name-
spaces should be used to separate workloads by team, environment, or sensitivity
level. RBAC policies should be scoped to namespaces to limit what users and Ser-
viceAccounts can do. Resource quotas and limit ranges should be applied to pre-
vent resource exhaustion.

The Network Layer controls communication between Pods, between name-

spaces, and between the cluster and the outside world. NetworkPolicies should be

14

used to implement a default-deny posture, where Pods can only communicate with
explicitly allowed destinations. Service meshes can provide mutual TLS for encrypt-
ing Pod-to-Pod traffic.

The Workload Layer addresses the security of the Pods themselves. This in-
cludes enforcing Pod Security Standards to prevent privileged containers, scanning
container images for vulnerabilities, using read-only root filesystems, dropping un-
necessary Linux capabilities, and running containers as non-root users.

The Application Layer is the security of the code running inside the contain-
ers. This includes secure coding practices, dependency management, input valida-
tion, and proper handling of credentials and sensitive data.

Each layer reinforces the others. A vulnerability at one layer may be mitigated
by controls at another layer. This is the essence of defense in depth, and it is partic-

ularly important in Kubernetes because the system is so dynamic and complex.

Practical Exercise: Assessing Your Clus-
ter's Default Security Posture

To ground these concepts in practice, perform the following exercise on a test clus-
ter. Do not perform this on a production cluster without proper authorization.

First, check whether anonymous authentication is enabled on the APl server:

kubectl auth can-i --list --as=system:anonymous

If this command returns a list of permissions rather than an error, anonymous au-
thentication is enabled and may allow unauthorized access.

Next, check whether any ClusterRoleBindings grant excessive permissions:

kubectl get clusterrolebindings -o json | jg '.items[] |

select (.roleRef.name == "cluster-admin") | .metadata.name'

15

This command lists all ClusterRoleBindings that reference the cluster-admin role.
Each of these bindings grants full administrative access to the cluster. Review each
one carefully and remove any that are unnecessary.

Check whether Pods in the default namespace have ServiceAccount tokens au-

tomatically mounted:

kubectl get pods -n default -o json | jg '.items[] |
{name: .metadata.name,

automountServiceAccountToken: .spec.automountServiceAccountToken}

Al

If the automountServiceAccountToken field is null or true, the Pod has a Kuber-
netes APl token mounted that it may not need.

Finally, check whether any NetworkPolicies exist in your namespaces:

kubectl get networkpolicies --all-namespaces

If this command returns no results, your cluster has no network segmentation what-
soever. Every Pod can communicate with every other Pod.

Note: These checks represent only the beginning of a comprehensive security
assessment. Tools such as kube-bench (which checks against the CIS Kubernetes
Benchmark), kubeaudit, and Trivy can automate much of this assessment process.

We will explore these tools in detail in later chapters.

Setting the Stage for What Follows

This chapter has established a critical foundation. Kubernetes security is different
because the platform itself is different. It is more dynamic, more distributed, more
complex, and more powerful than traditional infrastructure. The default configura-

tions are permissive. The attack surface is vast. The shared responsibility model

16

places the majority of the burden on the team operating the cluster. And effective
security requires a layered, defense-in-depth approach that addresses every com-
ponent from the control plane to the application code.

In the chapters that follow, we will systematically address each layer of this se-
curity model. We will begin with hardening the control plane and securing cluster
infrastructure. We will then move to RBAC design, network policy implementation,
secrets management, image security, runtime protection, audit logging, and gover-
nance frameworks. Each chapter will build on the concepts introduced here, pro-
viding practical, actionable guidance for securing Kubernetes clusters in produc-
tion.

The journey toward a secure Kubernetes environment is not a single action but
a continuous process. It requires vigilance, discipline, and a willingness to under-
stand the platform at a deep level. This book is designed to guide you through that

process, one layer at a time.

17

Chapter 2: Threat Modeling
Kubernetes Clusters

Understanding the security posture of a Kubernetes cluster begins long before the
first pod is deployed. It starts with a disciplined, methodical process of identifying
what could go wrong, who might exploit weaknesses, and where the most critical
vulnerabilities reside. This process is known as threat modeling, and when applied
to Kubernetes, it becomes one of the most powerful exercises a platform team can
undertake. Kubernetes, by its very nature, is a complex distributed system with a
vast attack surface. The API server, etcd, kubelet, container runtimes, networking
layers, and the supply chain of container images all present distinct categories of
risk. In this chapter, we will walk through the full practice of threat modeling a Ku-
bernetes cluster, from understanding the attack surface to building a structured

threat model that can guide hardening decisions for months and years to come.

Why Threat Modeling Matters for Ku-
bernetes

Every organization running Kubernetes in production faces a fundamental ques-
tion: what are we protecting, and from whom? Without answering this question ex-
plicitly, security efforts become reactive and fragmented. Teams patch vulnerabili-
ties as they appear, apply security policies inconsistently, and fail to prioritize the
controls that would have the greatest impact. Threat modeling reverses this dy-

namic. It forces teams to think like an attacker, to trace the paths an adversary

18

might follow from initial access to full cluster compromise, and to place controls at
the points where they matter most.

Kubernetes is particularly well suited to threat modeling because its architec-
ture is well documented and its components interact through clearly defined inter-
faces. The Kubernetes API server, for example, is the central control plane compo-
nent through which nearly all operations flow. An attacker who gains access to the
API server with sufficient privileges can create pods, read secrets, modify RBAC
policies, and effectively own the entire cluster. Understanding this single fact
shapes dozens of security decisions, from how authentication is configured to how
network policies restrict access to the APl server endpoint.

Threat modeling is not a one-time activity. As clusters evolve, as new workloads
are deployed, and as the broader threat landscape shifts, the model must be revis-
ited and updated. The goal is not perfection but rather a living document that cap-

tures the team's best understanding of risk at any given point in time.

Understanding the Kubernetes Attack
Surface

Before building a threat model, it is essential to have a thorough understanding of
the Kubernetes attack surface. The attack surface is the sum of all points where an
unauthorized user or process could attempt to interact with the system. In Kuber-
netes, this surface is broad and multi-layered.

The following table describes the primary components of a Kubernetes cluster

and the security concerns associated with each.

19

Component

APl Server

etcd

Kubelet

Container Runtime

Networking (CNI)

Scheduler

Controller Manager

Description

The central management
endpoint for all cluster op-
erations. All kubectl com-
mands, controller actions,
and scheduler decisions
pass through the API
server.

The distributed key-value
store that holds all cluster
state, including secrets,
configuration, and RBAC
policies.

Security Concerns

Unauthorized access, privi-
lege escalation through
RBAC misconfiguration,
unauthenticated end-
points, token theft

Direct access to etcd by-
passes all Kubernetes au-
thorization. Data is stored
in base64 encoding by de-
fault, not encrypted.

The agent running on each The kubelet APl can be ex-

node that manages pod
lifecycle and communi-
cates with the APl server.

The software responsible
for running containers,
such as containerd or CRI-

O.

The Container Network In-
terface plugin that pro-
vides pod-to-pod commu-
nication.

The component that as-

ploited if anonymous au-
thentication is enabled.
Node-level compromise
gives access to all pods on
that node.

Container escape vulnera-
bilities allow attackers to
break out of the container
and access the host oper-
ating system.

By default, all pods can
communicate with all other
pods. Lack of network poli-
cies allows lateral move-
ment.

Manipulating scheduling

signs pods to nodes based decisions can place mali-

on resource requirements
and constraints.

Runs controllers that regu-
late the state of the cluster,
such as the ReplicaSet and
Namespace controllers.

cious pods on sensitive
nodes.

Compromise of the con-
troller manager allows ma-
nipulation of cluster state
at a fundamental level.

20

Cloud Provider Integration Integrations with cloud Overly permissive cloud

APIs for load balancers, IAM roles attached to
storage, and identity. nodes or pods can allow
cloud account compro-
mise.
Container Images The software artifacts de- Vulnerable or malicious
ployed as containers within base images, unpatched
the cluster. dependencies, embedded

secrets in image layers.

Secrets Management Kubernetes native secrets Secrets are baseb4 encod-
stored in etcd and mount- ed, not encrypted by de-
ed into pods. fault. Any pod with the cor-

rect RBAC or service ac-
count can read them.

This table is not exhaustive, but it captures the most critical areas where threats
emerge. Each component represents a potential entry point or escalation path for

an attacker.

Identifying Threat Actors and Their
Motivations

A threat model is incomplete without a clear understanding of who the adversaries
are. In the context of Kubernetes, threat actors can be categorized into several
groups, each with different capabilities, motivations, and levels of access.

External Attackers are individuals or groups with no initial access to the clus-
ter. Their goal is typically to gain a foothold through exposed services, vulnerable
applications, or misconfigured ingress points. An external attacker might scan for
publicly exposed Kubernetes dashboards, unprotected APl servers, or applications

with known vulnerabilities running inside the cluster.

21

Malicious Insiders are individuals who already have some level of legitimate
access to the cluster. This could be a developer with namespace-scoped permis-
sions who attempts to escalate privileges, or an operations engineer who abuses
their broad access for unauthorized purposes. Insider threats are particularly dan-
gerous in Kubernetes because the RBAC system, while powerful, is frequently mis-
configured to grant overly broad permissions.

Compromised Workloads represent a scenario where a legitimate application
running in the cluster is exploited by an external attacker. Once inside the pod, the
attacker can attempt to access the Kubernetes API using the pod's service account
token, read mounted secrets, communicate with other pods, or attempt a container
escape to reach the underlying node.

Supply Chain Attackers target the software supply chain rather than the clus-
ter directly. They might inject malicious code into a base image, compromise a Cl/
CD pipeline, or tamper with Helm charts or Kubernetes manifests before they
reach the cluster.

Understanding these threat actors helps prioritize controls. For example, if the
primary concern is compromised workloads, then runtime security, network poli-
cies, and restrictive pod security standards become the highest priority. If supply
chain attacks are the primary concern, then image signing, admission control, and

pipeline security take precedence.

Applying the STRIDE Framework to
Kubernetes

STRIDE is a well-established threat modeling framework developed by Microsoft

that categorizes threats into six types: Spoofing, Tampering, Repudiation, Informa-

22

tion Disclosure, Denial of Service, and Elevation of Privilege. Applying STRIDE to

Kubernetes provides a structured way to identify threats across the entire cluster.

STRIDE Category Kubernetes Example Mitigation Strategy
Spoofing An attacker uses a stolen ser- Enable short-lived, projected
vice account token to au- service account tokens. Ro-
thenticate to the APl server tate tokens regularly. Use
as a legitimate workload. OIDC for human authentica-
tion.
Tampering An attacker modifies a Con- Use RBAC to restrict write ac-

figMap or Secret to change cess. Enable admission con-
application behavior or inject trollers to validate changes.

malicious configuration. Use GitOps to detect drift.

Repudiation A user deletes critical re- Enable Kubernetes audit log-
sources and there is no audit ging. Forward audit logs to a
trail to identify who per- centralized, immutable log-
formed the action. ging system.

Information Disclosure Secrets mounted into pods Use volume-mounted secrets
are readable by any process instead of environment vari-
in the container. Environ- ables. Enable etcd encryp-
ment variables expose sensi- tion at rest. Use external se-
tive data in process listings. cret managers.

Denial of Service A pod without resource limits Enforce resource requests
consumes all CPU and mem- and limits through Limit-
ory on a node, causing other Range and ResourceQuota
pods to be evicted. objects. Use Pod Priority and

Preemption.

Elevation of Privilege A pod running as root with a Enforce Pod Security Stan-
privileged security context dards. Use seccomp and Ap-
escapes the containerand pArmor profiles. Disable
gains access to the host. privileged containers

through admission control.

This framework provides a repeatable, comprehensive approach to identifying
threats. Each category prompts specific questions about the cluster's configuration

and the controls in place.

23

Building a Kubernetes Threat Model
Step by Step

Building a threat model for a Kubernetes cluster is a collaborative exercise that
should involve platform engineers, security teams, application developers, and op-
erations staff. The following process provides a practical, repeatable approach.

Step 1: Define the Scope. Begin by defining what is being modeled. This
might be the entire cluster, a specific namespace, or a particular workload. For a
first threat model, it is often most productive to focus on the control plane and a
single representative workload.

Step 2: Create a Data Flow Diagram. Map how data flows through the sys-
tem. In Kubernetes, this includes the flow of APl requests from users and con-
trollers to the APl server, the flow of secrets from etcd to pods, the flow of contain-
er images from registries to nodes, and the flow of network traffic between pods. A
clear data flow diagram reveals the trust boundaries in the system, which are the
points where data crosses from one security domain to another.

Consider the following simplified data flow for a typical Kubernetes deploy-

ment:

Developer —--> kubectl --> API Server --> etcd
--> Scheduler --> Kubelet -->
Container Runtime --> Pod

--> Controller Manager
Pod --> Kubernetes API (via Service Account Token)
Pod --> Other Pods (via CNI Network)

Pod --> External Services (via Egress)

CI/CD Pipeline --> Container Registry --> Kubelet (Image Pull)

Each arrow in this diagram represents a potential attack vector. The connection be-

tween the developer and the APl server must be authenticated and encrypted. The

24

connection between the pod and the Kubernetes APl must be restricted by RBAC.
The connection between the CI/CD pipeline and the container registry must be
protected against tampering.

Step 3: Identify Threats. Using the STRIDE framework and the data flow dia-
gram, systematically identify threats at each trust boundary. For each arrow in the
diagram, ask: Can this communication be spoofed? Can the data be tampered
with? Is there an audit trail? Could sensitive data be disclosed? Could this be used
for denial of service? Could this lead to privilege escalation?

Step 4: Assess Risk. Not all threats are equally likely or equally impactful. As-
sess each threat based on its likelihood and potential impact. A useful approach is

to use a simple risk matrix:

Likelihood / Impact Low Impact Medium Impact High Impact
High Likelihood Medium Risk High Risk Critical Risk
Medium Likelihood Low Risk Medium Risk High Risk
Low Likelihood Low Risk Low Risk Medium Risk

For example, a container escape vulnerability in an unpatched runtime has high
impact (full node compromise) and medium likelihood (requires specific condi-
tions), making it a high risk item. An unauthenticated kubelet API, on the other
hand, has high impact and high likelihood if exposed, making it a critical risk.

Step 5: Define Mitigations. For each identified threat, define specific, action-
able mitigations. These should be tied to Kubernetes configuration, policy, or archi-

tecture decisions. For example:

Example: Enforcing a restricted Pod Security Standard at the
namespace level

apiVersion: vl

kind: Namespace

metadata:

name: production

25

