
1

Kubernetes for Production:
Scaling & Monitoring

Operating, Scaling, and Observing
Real-World Kubernetes Clusters

2

Preface

There is a moment every Kubernetes practitioner encounters—sometimes at 2 a.m.,

sometimes during a quarterly review—when the distance between "running Kuber-

netes" and "running Kubernetes well" becomes painfully clear. A deployment that

sailed through staging collapses under real traffic. An autoscaler thrashes instead

of stabilizing. An alert fires, but nobody knows what it means or who should re-

spond. The cluster is working, technically. But it is not production-ready.

This book was written for that moment, and for everything you need to

know to prevent it.

Why This Book Exists
Kubernetes has won. It is the dominant platform for container orchestration, adopt-

ed across startups, enterprises, and everything in between. Yet the vast majority of

Kubernetes resources focus on getting started—deploying your first pod, writing

your first manifest, understanding the basics of Services and Ingress. Far fewer

tackle the harder, messier, and ultimately more consequential challenge: operating

Kubernetes clusters that are reliable, scalable, and observable in production.

Kubernetes for Production: Scaling & Monitoring fills that gap. It is a practition-

er's guide to the operational discipline required to run real-world Kubernetes clus-

ters at scale—clusters where downtime has consequences, where workloads must

grow and shrink with demand, and where teams need clear signals to diagnose

problems before users notice them.

3

What You Will Find Here
This book is organized around three interconnected pillars of production Kuber-

netes operations:

Scaling — Chapters 3 and 4 dive deep into Horizontal Pod Autoscaling, Vertical

Pod Autoscaling, and cluster-level scaling strategies. You will learn not just how

these mechanisms work, but when to use each one and how to tune them for pre-

dictable behavior under real load.

Resilience — Chapters 5 and 6 address high availability, multi-node and multi-

zone architectures, and the design decisions that determine whether your Kuber-

netes workloads survive the inevitable infrastructure failures. Chapters 11 through

14 extend this into resource management, storage and network performance, ca-

pacity planning, and the often-underestimated discipline of change management

and upgrades.

Observability — Chapters 7 through 10 form the monitoring and incident re-

sponse core of the book, covering metrics collection, centralized logging, alert de-

sign, and structured incident response within Kubernetes environments. These

chapters emphasize actionable observability—not just collecting data, but building

systems that help humans make better decisions faster.

The book opens with foundational context (Chapters 1 and 2) that establishes

what "production-ready" truly means and revisits Kubernetes architecture through

an operational lens. It closes with a candid look at common production anti-pat-

terns (Chapter 15) and a forward-looking chapter on evolving your organization to-

ward SRE and platform engineering practices (Chapter 16).

The appendices provide immediately usable artifacts: a Production Readiness

Checklist, HPA configuration examples, an Incident Response Playbook, moni-

toring and alerting templates, and a learning roadmap for continued growth.

4

Who This Book Is For
This book is for Kubernetes operators, DevOps engineers, SREs, and platform

teams who have moved past the basics and are now responsible for clusters that

must not fail quietly. Prior experience with Kubernetes concepts is assumed; what

this book provides is the operational depth to put that knowledge to work under

pressure.

Acknowledgments
No book on production systems is written in isolation. This work draws on the col-

lective wisdom of the Kubernetes community—the SREs who have shared their

postmortems, the contributors who have refined the autoscaling APIs, and the

countless engineers who have debugged failing pods at ungodly hours and then

written about what they learned. I am grateful to the technical reviewers whose

sharp feedback made every chapter stronger, and to the open-source maintainers

whose tools form the backbone of modern Kubernetes observability.

Production is not a destination. It is a discipline—one that demands continuous

learning, honest assessment, and deliberate practice. My hope is that this book be-

comes a trusted companion on that journey, one you reach for not just when things

break, but long before they do.

Let's build Kubernetes clusters worth trusting.

Dorian Thorne

5

Table of Contents

Chapter Title Page

1 What Makes Kubernetes “Production-Ready” 6

2 Kubernetes Architecture Revisited 21

3 Horizontal Pod Autoscaling (HPA) 33

4 Vertical and Cluster Scaling 48

5 Designing Highly Available Workloads 64

6 Multi-Node and Multi-Zone Resilience 79

7 Metrics and Monitoring Fundamentals 94

8 Logging in Production Clusters 110

9 Designing Effective Alerts 128

10 Incident Response in Kubernetes 146

11 Resource Management Best Practices 162

12 Storage and Network Performance 174

13 Capacity Planning and Forecasting 190

14 Change Management and Upgrades 205

15 Production Anti-Patterns 221

16 Evolving Toward SRE and Platform Engineering 239

App Production Readiness Checklist 259

App HPA and Scaling Configuration Examples 274

App Incident Response Playbook 286

App Monitoring and Alerting Templates 301

App Kubernetes Production Learning Roadmap 321

6

Chapter 1: What Makes Ku-
bernetes "Production-
Ready"

Running Kubernetes in a development environment and running it in production

are two fundamentally different challenges. In development, you might spin up a

single-node cluster with Minikube, deploy a few pods, and call it a day. In produc-

tion, however, the stakes are dramatically higher. Real users depend on your ap-

plications. Downtime translates directly into lost revenue, damaged reputation, and

broken trust. The infrastructure must handle unpredictable traffic spikes, recover

gracefully from hardware failures, and provide operators with deep visibility into

every layer of the system.

This chapter establishes the foundation for everything that follows in this book.

Before we dive into the mechanics of scaling, monitoring, alerting, and observabili-

ty, we need to understand what "production-ready" actually means in the context

of Kubernetes. We need to draw a clear line between a cluster that works and a

cluster that is truly ready to serve real workloads with confidence.

The Gap Between Development and
Production
When engineers first begin working with Kubernetes, they typically start with a lo-

cal development setup. They install Minikube or kind (Kubernetes in Docker), run

7

kubectl apply on a few manifest files, and watch their containers come to life.

The experience feels magical. Kubernetes abstracts away so much complexity that

it can create a false sense of readiness. The application runs, the pods are healthy,

and everything seems fine.

But consider what happens when you move that same setup into a production

environment. Suddenly, you need to answer questions that never arose during de-

velopment. What happens when a node fails at 3 AM? How do you ensure that a

deployment rollout does not cause downtime for your users? How do you prevent

one misbehaving application from consuming all the CPU and memory on a

shared cluster? How do you know when something is going wrong before your

customers notice?

The gap between development and production Kubernetes is not just about

scale. It is about reliability, security, observability, and operational maturity. A pro-

duction-ready Kubernetes cluster is one that has been deliberately configured,

hardened, and instrumented to handle the realities of serving real traffic in an un-

predictable world.

Let us examine a simple comparison to illustrate the differences:

Aspect Development Cluster Production Cluster

Number of Nodes 1 (single node) 3 or more (multi-node with
high availability)

Control Plane Single instance, no redun-
dancy

Multiple replicas across
availability zones

etcd Single instance, no
backups

Clustered, encrypted, with
automated backups

Resource Requests and
Limits

Often omitted Mandatory for all work-
loads

Network Policies Usually absent Enforced to restrict pod-
to-pod communication

8

RBAC Permissive or disabled Strictly configured with
least-privilege access

Monitoring None or basic kubectl
commands

Full observability stack
(metrics, logs, traces)

Autoscaling Not configured Horizontal Pod Autoscaler
and Cluster Autoscaler ac-
tive

Ingress and TLS HTTP with port-forwarding Production-grade ingress
controller with TLS termi-
nation

Secrets Management Plain text in manifests Encrypted at rest, man-
aged through external se-
cret stores

Disaster Recovery No plan Documented runbooks,
tested backup and restore
procedures

This table is not exhaustive, but it captures the essential truth: production Kuber-

netes requires deliberate effort across every dimension of the system.

The Pillars of Production Readiness
Production readiness for Kubernetes does not emerge from a single configuration

change or a single tool. It is the result of disciplined attention to several intercon-

nected pillars. Each pillar represents a critical area that must be addressed before a

cluster can be considered truly production-grade.

High Availability and Resilience

The first and most fundamental pillar is high availability. In production, no sin-

gle component should be a single point of failure. This applies to the Kubernetes

control plane itself, to the applications running on the cluster, and to the underly-

ing infrastructure.

9

For the control plane, this means running multiple replicas of the API server,

the scheduler, and the controller manager. It means deploying etcd as a clustered,

replicated datastore rather than a single instance. Many managed Kubernetes ser-

vices such as Amazon EKS, Google GKE, and Azure AKS handle control plane high

availability automatically, but if you are running a self-managed cluster, this is your

responsibility.

For applications, high availability means running multiple replicas of each

workload, spreading those replicas across multiple nodes and availability zones us-

ing pod anti-affinity rules, and configuring proper health checks so that Kubernetes

can automatically restart or replace unhealthy pods.

Consider this example of a Deployment manifest that incorporates several pro-

duction-readiness practices:

apiVersion: apps/v1

kind: Deployment

metadata:

 name: web-application

 namespace: production

 labels:

 app: web-application

 environment: production

spec:

 replicas: 3

 strategy:

 type: RollingUpdate

 rollingUpdate:

 maxUnavailable: 1

 maxSurge: 1

 selector:

 matchLabels:

 app: web-application

 template:

 metadata:

 labels:

 app: web-application

 environment: production

10

 spec:

 affinity:

 podAntiAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 100

 podAffinityTerm:

 labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values:

 - web-application

 topologyKey: kubernetes.io/hostname

 containers:

 - name: web

 image: myregistry.example.com/web-application:v1.2.3

 ports:

 - containerPort: 8080

 resources:

 requests:

 cpu: "250m"

 memory: "256Mi"

 limits:

 cpu: "500m"

 memory: "512Mi"

 livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 initialDelaySeconds: 15

 periodSeconds: 10

 failureThreshold: 3

 readinessProbe:

 httpGet:

 path: /ready

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 5

 failureThreshold: 3

 startupProbe:

 httpGet:

 path: /healthz

11

 port: 8080

 initialDelaySeconds: 10

 periodSeconds: 5

 failureThreshold: 30

Let us walk through the key production-readiness features in this manifest:

Configuration Element Purpose Why It Matters in Produc-
tion

replicas: 3 Runs three instances of the
application

Ensures availability even if
one or two pods fail

strategy: RollingUp-
date

Gradually replaces old
pods with new ones dur-
ing updates

Prevents downtime during
deployments

maxUnavailable: 1 Allows at most one pod to
be unavailable during roll-
out

Maintains minimum capac-
ity during updates

podAntiAffinity Spreads pods across dif-
ferent nodes

Prevents all replicas from
being lost if a single node
fails

resources.requests Declares minimum CPU
and memory the pod
needs

Enables the scheduler to
make intelligent place-
ment decisions

resources.limits Declares maximum CPU
and memory the pod can
consume

Prevents a single pod from
starving other workloads

livenessProbe Checks if the application is
still running

Kubernetes restarts the
pod if the probe fails

readinessProbe Checks if the application is
ready to serve traffic

Removes the pod from ser-
vice endpoints if it is not
ready

startupProbe Checks if the application
has finished starting up

Prevents liveness probes
from killing slow-starting
applications

12

Note: The distinction between liveness, readiness, and startup probes is

critical in production. A common mistake is to use only a liveness probe,

which can cause Kubernetes to restart pods that are simply slow to start. The

startup probe was introduced specifically to address this issue, giving ap-

plications a generous window to initialize before liveness checks begin.

Resource Management and Isolation

In a production cluster, multiple teams and applications typically share the

same infrastructure. Without proper resource management, a single misbehaving

application can consume all available CPU or memory on a node, causing other

applications to be evicted or degraded.

Kubernetes provides several mechanisms for resource management. Resource

requests and limits on individual containers are the first line of defense. Beyond

that, Kubernetes offers LimitRange objects to set default and maximum resource

constraints for a namespace, and ResourceQuota objects to cap the total resources

that a namespace can consume.

Here is an example of a ResourceQuota that limits the total resources available

in a namespace:

apiVersion: v1

kind: ResourceQuota

metadata:

 name: production-quota

 namespace: team-alpha

spec:

 hard:

 requests.cpu: "10"

 requests.memory: "20Gi"

 limits.cpu: "20"

 limits.memory: "40Gi"

 pods: "50"

 services: "10"

 persistentvolumeclaims: "20"

13

And a corresponding LimitRange that sets default values for containers that do not

specify their own:

apiVersion: v1

kind: LimitRange

metadata:

 name: default-limits

 namespace: team-alpha

spec:

 limits:

 - default:

 cpu: "500m"

 memory: "512Mi"

 defaultRequest:

 cpu: "250m"

 memory: "256Mi"

 type: Container

These objects work together to ensure that no single team or application can mo-

nopolize cluster resources. In production, this kind of guardrail is not optional. It is

essential.

Security Hardening

A production Kubernetes cluster is an attractive target for attackers. It typically

runs critical business applications, has access to sensitive data, and is connected to

internal networks. Security must be treated as a first-class concern, not an af-

terthought.

At a minimum, production clusters should implement the following security

measures:

Role-Based Access Control (RBAC) should be enabled and configured with the

principle of least privilege. Every user and service account should have only the

permissions they need and nothing more.

apiVersion: rbac.authorization.k8s.io/v1

kind: Role

metadata:

14

 namespace: team-alpha

 name: deployment-manager

rules:

 - apiGroups: ["apps"]

 resources: ["deployments"]

 verbs: ["get", "list", "watch", "create", "update", "patch"]

 - apiGroups: [""]

 resources: ["pods", "pods/log"]

 verbs: ["get", "list", "watch"]

Network Policies should be used to restrict pod-to-pod communication. By default,

all pods in a Kubernetes cluster can communicate with each other. In production,

this is a significant security risk.

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: allow-only-frontend

 namespace: production

spec:

 podSelector:

 matchLabels:

 app: backend-api

 policyTypes:

 - Ingress

 ingress:

 - from:

 - podSelector:

 matchLabels:

 app: frontend

 ports:

 - protocol: TCP

 port: 8080

This NetworkPolicy ensures that the backend API pods only accept incoming traffic

from pods labeled as the frontend application. All other ingress traffic is denied.

Note: Network Policies require a CNI (Container Network Interface) plugin

that supports them. Not all CNI plugins enforce Network Policies. Calico,

15

Cilium, and Weave Net are popular choices that provide full Network Policy

support. If your CNI does not support Network Policies, the objects will be

created but will have no effect, which is a dangerous false sense of security.

Observability

You cannot manage what you cannot see. Observability is the pillar that con-

nects all the others. Without metrics, logs, and traces, you are flying blind. You will

not know when resources are running low, when applications are failing, or when

security incidents are occurring.

Production-ready Kubernetes clusters require a comprehensive observability

stack that typically includes metrics collection with Prometheus, log aggregation

with a solution like Fluentd or Fluent Bit feeding into Elasticsearch or Loki, and dis-

tributed tracing with Jaeger or Zipkin. We will explore each of these in great depth

throughout this book, but it is important to establish now that observability is not a

nice-to-have feature. It is a fundamental requirement for production operations.

The following kubectl commands are essential tools for basic cluster health

assessment, but they are not a substitute for a proper monitoring stack:

Check the status of all nodes in the cluster

kubectl get nodes -o wide

View resource utilization across nodes (requires metrics-

server)

kubectl top nodes

Check the status of all pods across all namespaces

kubectl get pods --all-namespaces

View resource utilization of pods in a specific namespace

kubectl top pods -n production

Describe a specific node to see conditions, capacity, and

allocatable resources

kubectl describe node worker-node-01

16

Check for any events that might indicate problems

kubectl get events --sort-by='.lastTimestamp' -n production

Command What It Shows When to Use It

kubectl get nodes -o
wide

Node status, IP addresses,
OS, kernel version, con-
tainer runtime

Quick cluster health check

kubectl top nodes Current CPU and memory
usage per node

Identifying resource pres-
sure on nodes

kubectl get pods --
all-namespaces

Status of all pods across
the entire cluster

Broad overview of work-
load health

kubectl top pods -n
production

CPU and memory con-
sumption per pod

Finding resource-hungry
pods

kubectl describe
node

Detailed node information
including conditions and
events

Diagnosing node-level is-
sues

kubectl get events Recent cluster events sort-
ed by time

Investigating recent prob-
lems or failures

Note: The kubectl top commands require the Metrics Server to be in-

stalled in your cluster. In managed Kubernetes services, this is often pre-in-

stalled, but in self-managed clusters, you need to deploy it yourself. Without

Metrics Server, these commands will return an error, and more importantly,

the Horizontal Pod Autoscaler will not function.

A Production Readiness Checklist
To bring together everything we have discussed, here is a comprehensive checklist

that you can use to evaluate whether your Kubernetes cluster is ready for produc-

17

tion workloads. This checklist will serve as a roadmap for the remaining chapters of

this book, where we will dive deep into each of these areas.

Category Requirement Status

High Availability Control plane components are replicated Required

High Availability etcd is clustered with at least 3 members Required

High Availability Workloads run with multiple replicas Required

High Availability Pod anti-affinity rules distribute pods
across nodes

Recommended

High Availability Nodes span multiple availability zones Recommended

Resource Management All containers have resource requests and
limits

Required

Resource Management Namespaces have ResourceQuotas Recommended

Resource Management LimitRanges set sensible defaults Recommended

Resource Management Horizontal Pod Autoscaler is configured
for variable workloads

Recommended

Resource Management Cluster Autoscaler is configured for node
scaling

Recommended

Security RBAC is enabled and configured with
least privilege

Required

Security Network Policies restrict pod-to-pod com-
munication

Required

Security Secrets are encrypted at rest Required

Security Pod Security Standards are enforced Required

Security Container images are scanned for vulnera-
bilities

Recommended

Security API server audit logging is enabled Recommended

Observability Metrics collection is in place (Prometheus
or equivalent)

Required

Observability Log aggregation is configured Required

18

Observability Alerting rules are defined for critical con-
ditions

Required

Observability Dashboards provide visibility into cluster
and application health

Recommended

Observability Distributed tracing is available for mi-
croservices

Recommended

Operations Backup and restore procedures for etcd
are tested

Required

Operations Disaster recovery plan is documented and
tested

Required

Operations Runbooks exist for common failure scenar-
ios

Recommended

Operations CI/CD pipelines handle deployments (not
manual kubectl)

Recommended

Practical Exercise: Evaluating Your
Cluster
To put this chapter into practice, perform the following exercise on an existing Ku-

bernetes cluster. If you do not have one available, you can create a multi-node

cluster using kind with the following configuration:

kind-production-like.yaml

kind: Cluster

apiVersion: kind.x-k8s.io/v1alpha4

nodes:

 - role: control-plane

 - role: worker

 - role: worker

 - role: worker

Create the cluster with:

19

kind create cluster --config kind-production-like.yaml --name

production-eval

Once your cluster is running, execute the following commands and record the re-

sults:

Step 1: Check how many nodes are available

kubectl get nodes

Step 2: Verify that RBAC is enabled

kubectl api-versions | grep rbac

Step 3: Check if metrics-server is installed

kubectl get deployment metrics-server -n kube-system

Step 4: Look for any pods without resource limits

kubectl get pods --all-namespaces -o json | \

 jq '.items[] | select(.spec.containers[].resources.limits ==

null) | .metadata.name'

Step 5: Check if any Network Policies exist

kubectl get networkpolicies --all-namespaces

Step 6: Verify etcd health (for self-managed clusters)

kubectl get pods -n kube-system -l component=etcd

For each check, ask yourself: would this cluster survive a node failure at 3 AM with-

out human intervention? Would you know about it within minutes? Could you diag-

nose and resolve the issue using the tools and information available to you?

If the answer to any of these questions is no, then you have identified an area

that needs improvement before the cluster is production-ready.

20

Setting the Stage for What Comes
Next
This chapter has established the conceptual framework for production-ready Ku-

bernetes. We have examined the gap between development and production clus-

ters, explored the pillars of production readiness, and provided concrete examples

of the configurations and practices that separate a hobby cluster from one that is

ready to serve real users.

In the chapters that follow, we will systematically work through each of these

areas in depth. We will build a complete observability stack with Prometheus,

Grafana, and alerting. We will configure autoscaling at both the pod and cluster

level. We will implement security hardening measures and establish operational

procedures for day-two operations.

The journey from a working Kubernetes cluster to a production-ready one is

not trivial, but it is well-defined. The tools exist, the patterns are proven, and the

community has accumulated years of hard-won knowledge about what works and

what does not. This book distills that knowledge into a practical, hands-on guide

that will take you from understanding the principles to implementing them with

confidence.

Production readiness is not a destination. It is a continuous practice of improve-

ment, measurement, and adaptation. The cluster you build today will need to

evolve as your applications grow, as your traffic patterns change, and as new

threats emerge. What matters is that you start with a solid foundation and build de-

liberately from there. That foundation begins with understanding what production-

ready truly means, and now you do.

21

Chapter 2: Kubernetes Archi-
tecture Revisited

When you first learned Kubernetes, you likely encountered its architecture as a dia-

gram with boxes and arrows connecting control plane components to worker

nodes. That initial understanding served you well for deploying your first ap-

plications and getting comfortable with kubectl commands. But running Kuber-

netes in production demands a much deeper comprehension of how these com-

ponents interact, fail, recover, and scale. This chapter takes you back to the archi-

tectural foundations of Kubernetes, not to repeat what you already know, but to ex-

amine each component through the lens of production operations, scaling chal-

lenges, and observability requirements.

Understanding the architecture at this depth is not an academic exercise.

When your cluster experiences a sudden spike in API server latency at three in the

morning, or when etcd starts consuming unexpected amounts of disk I/O, or when

the scheduler seems to be making poor placement decisions under load, your

ability to diagnose and resolve these issues depends entirely on how well you un-

derstand what each component does, how it communicates with other compo-

nents, and what its failure modes look like.

The Control Plane in Depth
The control plane is the brain of every Kubernetes cluster. It is responsible for

maintaining the desired state of the entire system, making scheduling decisions,

22

responding to events, and exposing the API that every user and component inter-

acts with. In production, the control plane must be treated as the most critical piece

of infrastructure in your container orchestration strategy.

The API Server: The Central Nervous System

The kube-apiserver is the only component in the entire Kubernetes architecture

that directly communicates with etcd. Every other component, whether it is the

scheduler, the controller manager, the kubelet on each node, or your kubectl com-

mands, interacts with the cluster state exclusively through the API server. This de-

sign decision has profound implications for production operations.

The API server performs several critical functions beyond simply serving REST

requests. It handles authentication, determining who is making a request. It han-

dles authorization, determining whether that identity is allowed to perform the re-

quested action. It runs admission controllers, which can mutate or validate requests

before they are persisted. And it manages the serialization and deserialization of

objects between their internal representation and the stored format in etcd.

In production environments, the API server is typically run as multiple replicas

behind a load balancer. This is not merely for high availability but also for handling

the sheer volume of requests that a busy cluster generates. Consider a cluster with

200 nodes, each running a kubelet that watches for pod updates, a kube-proxy that

watches for service and endpoint changes, and potentially dozens of controllers

and operators, each maintaining their own watches. The number of concurrent

watch connections alone can reach into the thousands.

The following table describes the key configuration parameters that affect API

server performance in production:

23

Parameter Description Production Considera-
tion

max-requests-inflight Maximum number of non-
mutating requests in flight

Default of 400 may be in-
sufficient for large clusters.
Monitor 429 responses to
determine if this needs in-
creasing.

max-mutating-requests-in-
flight

Maximum number of mu-
tating requests in flight

Default of 200. Mutating
requests are more expen-
sive because they involve
etcd writes.

watch-cache-sizes Size of the watch cache for
each resource type

Larger caches reduce the
load on etcd but consume
more memory in the API
server process.

etcd-servers Endpoints for etcd cluster Should use dedicated etcd
endpoints with proper TLS
configuration. Consider
separate etcd clusters for
events.

audit-log-path Path for audit log output Essential for security and
debugging, but can im-
pact performance if the
logging backend is slow.

enable-admission-plugins List of admission con-
trollers to enable

Each admission controller
adds latency to API re-
quests. Order matters for
performance.

request-timeout Default timeout for API re-
quests

Default of 60 seconds.
Long-running requests like
watches have their own
timeout handling.

You can inspect the current API server configuration on a kubeadm-based cluster

by examining the static pod manifest:

24

cat /etc/kubernetes/manifests/kube-apiserver.yaml

To check the current health and responsiveness of your API server, use the follow-

ing commands:

Check API server health endpoints

kubectl get --raw /healthz

kubectl get --raw /livez

kubectl get --raw /readyz

Detailed health check showing individual component status

kubectl get --raw '/readyz?verbose'

Measure API server response latency

kubectl get --raw /api/v1/namespaces/default -v=6

Note: In production, you should always monitor the API server request latency his-

togram, the rate of 429 (Too Many Requests) responses, and the number of active

watch connections. These metrics are exposed through the /metrics endpoint and

are critical indicators of control plane health.

etcd: The Source of Truth

etcd is a distributed, consistent key-value store that serves as the single source of

truth for all cluster state. Every Kubernetes object, whether it is a Pod, a Service, a

ConfigMap, a Secret, or a Custom Resource, is stored as a key-value pair in etcd.

Understanding etcd's behavior is essential for production Kubernetes operations

because etcd performance directly constrains the performance of the entire clus-

ter.

etcd uses the Raft consensus algorithm to maintain consistency across its clus-

ter members. In a typical production deployment, etcd runs as a cluster of three or

five members. Three members can tolerate the failure of one member, while five

members can tolerate the failure of two. Running more than five members is gener-

25

ally not recommended because each additional member increases the time re-

quired to reach consensus on writes without providing proportional benefit.

The performance characteristics of etcd are heavily dependent on disk I/O la-

tency. etcd must persist every write to its write-ahead log (WAL) before acknowl-

edging the write to the API server. If the disk is slow, every create, update, and

delete operation in your Kubernetes cluster will be slow. This is why production

etcd deployments should always use dedicated SSD storage, ideally with low-la-

tency NVMe drives.

You can check etcd health and performance using the etcdctl command:

Set etcd environment variables

export ETCDCTL_API=3

export ETCDCTL_ENDPOINTS=https://127.0.0.1:2379

export ETCDCTL_CACERT=/etc/kubernetes/pki/etcd/ca.crt

export ETCDCTL_CERT=/etc/kubernetes/pki/etcd/server.crt

export ETCDCTL_KEY=/etc/kubernetes/pki/etcd/server.key

Check cluster health

etcdctl endpoint health --write-out=table

Check cluster status including database size and raft index

etcdctl endpoint status --write-out=table

Check for slow disk performance by examining WAL sync duration

This metric is available from etcd's /metrics endpoint

curl -s https://127.0.0.1:2379/metrics --cacert /etc/kubernetes/

pki/etcd/ca.crt \

 --cert /etc/kubernetes/pki/etcd/server.crt \

 --key /etc/kubernetes/pki/etcd/server.key | grep wal_fsync

Note: The etcd database has a default storage limit of 2 GB, which can be in-

creased to a maximum of 8 GB. If your database approaches this limit, you need to

investigate what is consuming the space. Common culprits include excessive

events, large ConfigMaps or Secrets, and Custom Resources that are not being

