Kubernetes for Production:
Scaling & Monitoring

Operating, Scaling, and Observing
Real-World Kubernetes Clusters

Preface

There is a moment every Kubernetes practitioner encounters—sometimes at 2 a.m.,
sometimes during a quarterly review—when the distance between "running Kuber-
netes" and "running Kubernetes well" becomes painfully clear. A deployment that
sailed through staging collapses under real traffic. An autoscaler thrashes instead
of stabilizing. An alert fires, but nobody knows what it means or who should re-
spond. The cluster is working, technically. But it is not production-ready.

This book was written for that moment, and for everything you need to

know to prevent it.

Why This Book Exists

Kubernetes has won. It is the dominant platform for container orchestration, adopt-
ed across startups, enterprises, and everything in between. Yet the vast majority of
Kubernetes resources focus on getting started—deploying your first pod, writing
your first manifest, understanding the basics of Services and Ingress. Far fewer
tackle the harder, messier, and ultimately more consequential challenge: operating
Kubernetes clusters that are reliable, scalable, and observable in production.
Kubernetes for Production: Scaling & Monitoring fills that gap. It is a practition-
er's guide to the operational discipline required to run real-world Kubernetes clus-
ters at scale—clusters where downtime has consequences, where workloads must
grow and shrink with demand, and where teams need clear signals to diagnose

problems before users notice them.

What You Will Find Here

This book is organized around three interconnected pillars of production Kuber-
netes operations:

Scaling — Chapters 3 and 4 dive deep into Horizontal Pod Autoscaling, Vertical
Pod Autoscaling, and cluster-level scaling strategies. You will learn not just how
these mechanisms work, but when to use each one and how to tune them for pre-
dictable behavior under real load.

Resilience — Chapters 5 and 6 address high availability, multi-node and multi-
zone architectures, and the design decisions that determine whether your Kuber-
netes workloads survive the inevitable infrastructure failures. Chapters 11 through
14 extend this into resource management, storage and network performance, ca-
pacity planning, and the often-underestimated discipline of change management
and upgrades.

Observability — Chapters 7 through 10 form the monitoring and incident re-
sponse core of the book, covering metrics collection, centralized logging, alert de-
sign, and structured incident response within Kubernetes environments. These
chapters emphasize actionable observability—not just collecting data, but building
systems that help humans make better decisions faster.

The book opens with foundational context (Chapters 1 and 2) that establishes
what "production-ready” truly means and revisits Kubernetes architecture through
an operational lens. It closes with a candid look at common production anti-pat-
terns (Chapter 15) and a forward-looking chapter on evolving your organization to-
ward SRE and platform engineering practices (Chapter 16).

The appendices provide immediately usable artifacts: a Production Readiness
Checklist, HPA configuration examples, an Incident Response Playbook, moni-

toring and alerting templates, and a learning roadmap for continued growth.

Who This Book Is For

This book is for Kubernetes operators, DevOps engineers, SREs, and platform
teams who have moved past the basics and are now responsible for clusters that
must not fail quietly. Prior experience with Kubernetes concepts is assumed; what
this book provides is the operational depth to put that knowledge to work under

pressure.

Acknowledgments

No book on production systems is written in isolation. This work draws on the col-
lective wisdom of the Kubernetes community—the SREs who have shared their
postmortems, the contributors who have refined the autoscaling APls, and the
countless engineers who have debugged failing pods at ungodly hours and then
written about what they learned. | am grateful to the technical reviewers whose
sharp feedback made every chapter stronger, and to the open-source maintainers
whose tools form the backbone of modern Kubernetes observability.

Production is not a destination. It is a discipline—one that demands continuous
learning, honest assessment, and deliberate practice. My hope is that this book be-
comes a trusted companion on that journey, one you reach for not just when things
break, but long before they do.

Let's build Kubernetes clusters worth trusting.

Dorian Thorne

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

What Makes Kubernetes “Production-Ready”

Kubernetes Architecture Revisited
Horizontal Pod Autoscaling (HPA)
Vertical and Cluster Scaling

Designing Highly Available Workloads
Multi-Node and Multi-Zone Resilience
Metrics and Monitoring Fundamentals
Logging in Production Clusters
Designing Effective Alerts

Incident Response in Kubernetes
Resource Management Best Practices
Storage and Network Performance
Capacity Planning and Forecasting
Change Management and Upgrades

Production Anti-Patterns

Page

6

21
33
48
64
79
94
110
128
146
162
174
190
205
221

Evolving Toward SRE and Platform Engineering 239

Production Readiness Checklist

HPA and Scaling Configuration Examples

Incident Response Playbook

Monitoring and Alerting Templates

Kubernetes Production Learning Roadmap

259
274
286
301
321

Chapter 1: What Makes Ku-
bernetes "Production-
Ready"

Running Kubernetes in a development environment and running it in production
are two fundamentally different challenges. In development, you might spin up a
single-node cluster with Minikube, deploy a few pods, and call it a day. In produc-
tion, however, the stakes are dramatically higher. Real users depend on your ap-
plications. Downtime translates directly into lost revenue, damaged reputation, and
broken trust. The infrastructure must handle unpredictable traffic spikes, recover
gracefully from hardware failures, and provide operators with deep visibility into
every layer of the system.

This chapter establishes the foundation for everything that follows in this book.
Before we dive into the mechanics of scaling, monitoring, alerting, and observabili-
ty, we need to understand what "production-ready" actually means in the context
of Kubernetes. We need to draw a clear line between a cluster that works and a

cluster that is truly ready to serve real workloads with confidence.

The Gap Between Development and
Production

When engineers first begin working with Kubernetes, they typically start with a lo-

cal development setup. They install Minikube or kind (Kubernetes in Docker), run

kubectl apply on a few manifest files, and watch their containers come to life.
The experience feels magical. Kubernetes abstracts away so much complexity that
it can create a false sense of readiness. The application runs, the pods are healthy,
and everything seems fine.

But consider what happens when you move that same setup into a production
environment. Suddenly, you need to answer questions that never arose during de-
velopment. What happens when a node fails at 3 AM? How do you ensure that a
deployment rollout does not cause downtime for your users? How do you prevent
one misbehaving application from consuming all the CPU and memory on a
shared cluster? How do you know when something is going wrong before your
customers notice?

The gap between development and production Kubernetes is not just about
scale. It is about reliability, security, observability, and operational maturity. A pro-
duction-ready Kubernetes cluster is one that has been deliberately configured,
hardened, and instrumented to handle the realities of serving real traffic in an un-
predictable world.

Let us examine a simple comparison to illustrate the differences:

Aspect Development Cluster Production Cluster

Number of Nodes 1 (single node) 3 or more (multi-node with
high availability)

Control Plane Single instance, no redun- Multiple replicas across
dancy availability zones

etcd Single instance, no Clustered, encrypted, with
backups automated backups

Resource Requests and Often omitted Mandatory for all work-

Limits loads

Network Policies Usually absent Enforced to restrict pod-

to-pod communication

RBAC Permissive or disabled Strictly configured with
least-privilege access

Monitoring None or basic kubectl Full observability stack
commands (metrics, logs, traces)

Autoscaling Not configured Horizontal Pod Autoscaler
and Cluster Autoscaler ac-
tive

Ingress and TLS HTTP with port-forwarding Production-grade ingress
controller with TLS termi-
nation

Secrets Management Plain text in manifests Encrypted at rest, man-

aged through external se-
cret stores

Disaster Recovery No plan Documented runbooks,
tested backup and restore
procedures

This table is not exhaustive, but it captures the essential truth: production Kuber-

netes requires deliberate effort across every dimension of the system.

The Pillars of Production Readiness

Production readiness for Kubernetes does not emerge from a single configuration
change or a single tool. It is the result of disciplined attention to several intercon-
nected pillars. Each pillar represents a critical area that must be addressed before a
cluster can be considered truly production-grade.

High Availability and Resilience

The first and most fundamental pillar is high availability. In production, no sin-
gle component should be a single point of failure. This applies to the Kubernetes
control plane itself, to the applications running on the cluster, and to the underly-

ing infrastructure.

For the control plane, this means running multiple replicas of the API server,
the scheduler, and the controller manager. It means deploying etcd as a clustered,
replicated datastore rather than a single instance. Many managed Kubernetes ser-
vices such as Amazon EKS, Google GKE, and Azure AKS handle control plane high
availability automatically, but if you are running a self-managed cluster, this is your
responsibility.

For applications, high availability means running multiple replicas of each
workload, spreading those replicas across multiple nodes and availability zones us-
ing pod anti-affinity rules, and configuring proper health checks so that Kubernetes
can automatically restart or replace unhealthy pods.

Consider this example of a Deployment manifest that incorporates several pro-

duction-readiness practices:

apiVersion: apps/vl
kind: Deployment
metadata:
name: web-application
namespace: production
labels:
app: web-application
environment: production
spec:
replicas: 3
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
maxSurge: 1
selector:
matchLabels:
app: web-application
template:
metadata:
labels:
app: web-application

environment: production

spec:
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: app
operator: In
values:
- web-application
topologyKey: kubernetes.io/hostname
containers:
- name: web
image: myregistry.example.com/web-application:vl.2.3
ports:
- containerPort: 8080
resources:
requests:
cpu: "250m"
memory: "256Mi"
limits:
cpu: "500m"
memory: "512Mi"
livenessProbe:
httpGet:
path: /healthz
port: 8080
initialDelaySeconds: 15
periodSeconds: 10
failureThreshold: 3
readinessProbe:
httpGet:
path: /ready
port: 8080
initialDelaySeconds: 5
periodSeconds: 5
failureThreshold: 3
startupProbe:
httpGet:
path: /healthz

10

port:

8080

initialDelaySeconds:

10

periodSeconds: 5

failureThreshold:

30

Let us walk through the key production-readiness features in this manifest:

Configuration Element

replicas: 3

strategy: RollingUp-

date

maxUnavailable: 1

podAntiAffinity

resources. requests

resources.limits

livenessProbe

readinessProbe

startupProbe

Purpose

Runs three instances of the
application

Gradually replaces old
pods with new ones dur-
ing updates

Allows at most one pod to
be unavailable during roll-
out

Spreads pods across dif-
ferent nodes

Declares minimum CPU
and memory the pod
needs

Declares maximum CPU
and memory the pod can
consume

Checks if the application is
still running

Checks if the application is
ready to serve traffic

Checks if the application
has finished starting up

Why It Matters in Produc-
tion

Ensures availability even if
one or two pods fail

Prevents downtime during
deployments

Maintains minimum capac-
ity during updates

Prevents all replicas from
being lost if a single node
fails

Enables the scheduler to
make intelligent place-
ment decisions

Prevents a single pod from
starving other workloads

Kubernetes restarts the
pod if the probe fails

Removes the pod from ser-
vice endpoints if it is not
ready

Prevents liveness probes
from killing slow-starting
applications

11

Note: The distinction between liveness, readiness, and startup probes is
critical in production. A common mistake is to use only a liveness probe,
which can cause Kubernetes to restart pods that are simply slow to start. The
startup probe was introduced specifically to address this issue, giving ap-

plications a generous window to initialize before liveness checks begin.

Resource Management and Isolation

In a production cluster, multiple teams and applications typically share the
same infrastructure. Without proper resource management, a single misbehaving
application can consume all available CPU or memory on a node, causing other
applications to be evicted or degraded.

Kubernetes provides several mechanisms for resource management. Resource
requests and limits on individual containers are the first line of defense. Beyond
that, Kubernetes offers LimitRange objects to set default and maximum resource
constraints for a namespace, and ResourceQuota objects to cap the total resources
that a namespace can consume.

Here is an example of a ResourceQuota that limits the total resources available
in @a namespace:
apiVersion: vl
kind: ResourceQuota
metadata:

name: production-gquota
namespace: team-alpha
spec:
hard:
requests.cpu: "10"

requests.memory: "20Gi"

limits.cpu: "20"

limits.memory: "40Gi"

pods: "50"

services: "10"
persistentvolumeclaims: "20"

12

And a corresponding LimitRange that sets default values for containers that do not

specify their own:

apiVersion: vl
kind: LimitRange
metadata:

name: default-limits

namespace: team-alpha

spec:
limits:
- default:
cpu: "500m"
memory: "512Mi"
defaultRequest:
cpu: "250m"

memory: "256Mi"

type: Container

These objects work together to ensure that no single team or application can mo-
nopolize cluster resources. In production, this kind of guardrail is not optional. It is
essential.

Security Hardening

A production Kubernetes cluster is an attractive target for attackers. It typically
runs critical business applications, has access to sensitive data, and is connected to
internal networks. Security must be treated as a first-class concern, not an af-
terthought.

At a minimum, production clusters should implement the following security
measures:

Role-Based Access Control (RBAC) should be enabled and configured with the
principle of least privilege. Every user and service account should have only the
permissions they need and nothing more.
apiVersion: rbac.authorization.k8s.io/vl

kind: Role

metadata:

13

namespace: team-alpha

name: deployment-manager

rules:
- apiGroups: ["apps"]
resources: ["deployments"]
verbs: ["get", "list", "watch", "create", "update", "patch"]
- apiGroups: [""]
resources: ["pods", "pods/log"]
verbs: ["get", "list", "watch"]

Network Policies should be used to restrict pod-to-pod communication. By default,
all pods in a Kubernetes cluster can communicate with each other. In production,

this is a significant security risk.

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: allow-only-frontend
namespace: production
spec:
podSelector:
matchLabels:
app: backend-api
policyTypes:
- Ingress
ingress:
- from:
- podSelector:
matchLabels:
app: frontend

ports:
- protocol: TCP
port: 8080

This NetworkPolicy ensures that the backend API pods only accept incoming traffic

from pods labeled as the frontend application. All other ingress traffic is denied.

Note: Network Policies require a CNI (Container Network Interface) plugin

that supports them. Not all CNI plugins enforce Network Policies. Calico,

14

Cilium, and Weave Net are popular choices that provide full Network Policy
support. If your CNI does not support Network Policies, the objects will be

created but will have no effect, which is a dangerous false sense of security.

Observability

You cannot manage what you cannot see. Observability is the pillar that con-
nects all the others. Without metrics, logs, and traces, you are flying blind. You will
not know when resources are running low, when applications are failing, or when
security incidents are occurring.

Production-ready Kubernetes clusters require a comprehensive observability
stack that typically includes metrics collection with Prometheus, log aggregation
with a solution like Fluentd or Fluent Bit feeding into Elasticsearch or Loki, and dis-
tributed tracing with Jaeger or Zipkin. We will explore each of these in great depth
throughout this book, but it is important to establish now that observability is not a
nice-to-have feature. It is a fundamental requirement for production operations.

The following kubectl commands are essential tools for basic cluster health

assessment, but they are not a substitute for a proper monitoring stack:

Check the status of all nodes in the cluster

kubectl get nodes -o wide

View resource utilization across nodes (requires metrics-
server)

kubectl top nodes

Check the status of all pods across all namespaces

kubectl get pods —--all-namespaces

View resource utilization of pods in a specific namespace

kubectl top pods -n production
Describe a specific node to see conditions, capacity, and

allocatable resources

kubectl describe node worker-node-01

15

Check for any events that might indicate problems

kubectl get events --sort-by='.lastTimestamp'

-n production

Command

kubectl get nodes -o
wide

kubectl top nodes

kubectl get pods --
all-namespaces

kubectl top pods -n
production

kubectl describe
node

kubectl get events

What It Shows

Node status, IP addresses,
OS, kernel version, con-
tainer runtime

Current CPU and memory
usage per node

Status of all pods across
the entire cluster

CPU and memory con-
sumption per pod

Detailed node information
including conditions and
events

Recent cluster events sort-
ed by time

When to Use It

Quick cluster health check

Identifying resource pres-
sure on nodes

Broad overview of work-
load health

Finding resource-hungry
pods

Diagnosing node-level is-
sues

Investigating recent prob-
lems or failures

Note: The kubectl top commands require the Metrics Server to be in-

stalled in your cluster. In managed Kubernetes services, this is often pre-in-

stalled, but in self-managed clusters, you need to deploy it yourself. Without

Metrics Server, these commands will return an error, and more importantly,

the Horizontal Pod Autoscaler will not function.

A Production Readiness Checklist

To bring together everything we have discussed, here is a comprehensive checklist

that you can use to evaluate whether your Kubernetes cluster is ready for produc-

16

tion workloads. This checklist will serve as a roadmap for the remaining chapters of

this book, where we will dive deep into each of these areas.

Category

High Availability
High Availability
High Availability
High Availability

High Availability

Requirement

Status

Control plane components are replicated Required

etcd is clustered with at least 3 members
Workloads run with multiple replicas

Pod anti-affinity rules distribute pods
across nodes

Nodes span multiple availability zones

Required
Required

Recommended

Recommended

Resource Management All containers have resource requests and Required

limits

Resource Management Namespaces have ResourceQuotas

Resource Management LimitRanges set sensible defaults

Resource Management Horizontal Pod Autoscaler is configured

for variable workloads

Recommended
Recommended

Recommended

Resource Management Cluster Autoscaler is configured for node Recommended

Security

Security

Security
Security

Security

Security

Observability

Observability

scaling

RBAC is enabled and configured with
least privilege

Required

Network Policies restrict pod-to-pod com- Required

munication
Secrets are encrypted at rest

Pod Security Standards are enforced

Required
Required

Container images are scanned for vulnera- Recommended

bilities

APl server audit logging is enabled

Recommended

Metrics collection is in place (Prometheus Required

or equivalent)

Log aggregation is configured

Required

17

Observability

Observability

Observability

Operations

Operations

Operations

Operations

Alerting rules are defined for critical con-
ditions

Dashboards provide visibility into cluster
and application health

Distributed tracing is available for mi-
croservices

Backup and restore procedures for etcd
are tested

Required

Recommended

Recommended

Required

Disaster recovery plan is documented and Required

tested

Runbooks exist for common failure scenar- Recommended

I0S

CI/CD pipelines handle deployments (not Recommended

manual kubectl)

Practical Exercise: Evaluating Your

Cluster

To put this chapter into practice, perform the following exercise on an existing Ku-

bernetes cluster. If you do not have one available, you can create a multi-node

cluster using kind with the following configuration:

kind-production-like.yaml

kind: Cluster

apiVersion: kind.x-k8s.io/vlalpha4

nodes:

- role: control-plane

- role: worker
- role: worker

- role: worker

Create the cluster with:

18

kind create cluster --config kind-production-like.yaml --name

production-eval

Once your cluster is running, execute the following commands and record the re-

sults:

Step 1: Check how many nodes are available

kubectl get nodes

Step 2: Verify that RBAC is enabled

kubectl api-versions | grep rbac

Step 3: Check if metrics-server is installed

kubectl get deployment metrics-server -n kube-system

Step 4: Look for any pods without resource limits

kubectl get pods --all-namespaces -o json | \
Jjg '.items|[] | select(.spec.containers|].resources.limits ==
null) | .metadata.name'

Step 5: Check if any Network Policies exist

kubectl get networkpolicies --all-namespaces

Step 6: Verify etcd health (for self-managed clusters)
kubectl get pods -n kube-system -1 component=etcd

For each check, ask yourself: would this cluster survive a node failure at 3 AM with-
out human intervention? Would you know about it within minutes? Could you diag-
nose and resolve the issue using the tools and information available to you?

If the answer to any of these questions is no, then you have identified an area

that needs improvement before the cluster is production-ready.

19

Setting the Stage for What Comes
Next

This chapter has established the conceptual framework for production-ready Ku-
bernetes. We have examined the gap between development and production clus-
ters, explored the pillars of production readiness, and provided concrete examples
of the configurations and practices that separate a hobby cluster from one that is
ready to serve real users.

In the chapters that follow, we will systematically work through each of these
areas in depth. We will build a complete observability stack with Prometheus,
Grafana, and alerting. We will configure autoscaling at both the pod and cluster
level. We will implement security hardening measures and establish operational
procedures for day-two operations.

The journey from a working Kubernetes cluster to a production-ready one is
not trivial, but it is well-defined. The tools exist, the patterns are proven, and the
community has accumulated years of hard-won knowledge about what works and
what does not. This book distills that knowledge into a practical, hands-on guide
that will take you from understanding the principles to implementing them with
confidence.

Production readiness is not a destination. It is a continuous practice of improve-
ment, measurement, and adaptation. The cluster you build today will need to
evolve as your applications grow, as your traffic patterns change, and as new
threats emerge. What matters is that you start with a solid foundation and build de-
liberately from there. That foundation begins with understanding what production-

ready truly means, and now you do.

20

Chapter 2: Kubernetes Archi-
tecture Revisited

When you first learned Kubernetes, you likely encountered its architecture as a dia-
gram with boxes and arrows connecting control plane components to worker
nodes. That initial understanding served you well for deploying your first ap-
plications and getting comfortable with kubectl commands. But running Kuber-
netes in production demands a much deeper comprehension of how these com-
ponents interact, fail, recover, and scale. This chapter takes you back to the archi-
tectural foundations of Kubernetes, not to repeat what you already know, but to ex-
amine each component through the lens of production operations, scaling chal-
lenges, and observability requirements.

Understanding the architecture at this depth is not an academic exercise.
When your cluster experiences a sudden spike in APl server latency at three in the
morning, or when etcd starts consuming unexpected amounts of disk I/O, or when
the scheduler seems to be making poor placement decisions under load, your
ability to diagnose and resolve these issues depends entirely on how well you un-
derstand what each component does, how it communicates with other compo-

nents, and what its failure modes look like.

The Control Plane in Depth

The control plane is the brain of every Kubernetes cluster. It is responsible for

maintaining the desired state of the entire system, making scheduling decisions,

21

responding to events, and exposing the API that every user and component inter-
acts with. In production, the control plane must be treated as the most critical piece

of infrastructure in your container orchestration strategy.

The API Server: The Central Nervous System

The kube-apiserver is the only component in the entire Kubernetes architecture
that directly communicates with etcd. Every other component, whether it is the
scheduler, the controller manager, the kubelet on each node, or your kubectl com-
mands, interacts with the cluster state exclusively through the API server. This de-
sign decision has profound implications for production operations.

The API server performs several critical functions beyond simply serving REST
requests. It handles authentication, determining who is making a request. It han-
dles authorization, determining whether that identity is allowed to perform the re-
quested action. It runs admission controllers, which can mutate or validate requests
before they are persisted. And it manages the serialization and deserialization of
objects between their internal representation and the stored format in etcd.

In production environments, the API server is typically run as multiple replicas
behind a load balancer. This is not merely for high availability but also for handling
the sheer volume of requests that a busy cluster generates. Consider a cluster with
200 nodes, each running a kubelet that watches for pod updates, a kube-proxy that
watches for service and endpoint changes, and potentially dozens of controllers
and operators, each maintaining their own watches. The number of concurrent
watch connections alone can reach into the thousands.

The following table describes the key configuration parameters that affect API

server performance in production:

22

Parameter

max-requests-inflight

max-mutating-requests-in-
flight

watch-cache-sizes

etcd-servers

audit-log-path

enable-admission-plugins

request-timeout

Description

Maximum number of non-
mutating requests in flight

Maximum number of mu-
tating requests in flight

Size of the watch cache for
each resource type

Endpoints for etcd cluster

Path for audit log output

List of admission con-
trollers to enable

Default timeout for APl re-
quests

Production Considera-
tion

Default of 400 may be in-
sufficient for large clusters.
Monitor 429 responses to
determine if this needs in-
creasing.

Default of 200. Mutating
requests are more expen-
sive because they involve
etcd writes.

Larger caches reduce the
load on etcd but consume
more memory in the API
server process.

Should use dedicated etcd
endpoints with proper TLS
configuration. Consider
separate etcd clusters for
events.

Essential for security and
debugging, but can im-
pact performance if the
logging backend is slow.

Each admission controller
adds latency to APl re-
quests. Order matters for
performance.

Default of 60 seconds.
Long-running requests like
watches have their own
timeout handling.

You can inspect the current APl server configuration on a kubeadm-based cluster

by examining the static pod manifest:

23

cat /etc/kubernetes/manifests/kube-apiserver.yaml

To check the current health and responsiveness of your API server, use the follow-

ing commands:

Check API server health endpoints
kubectl get --raw /healthz
kubectl get --raw /livez

kubectl get --raw /readyz

Detailed health check showing individual component status

kubectl get --raw '/readyz?verbose'

Measure API server response latency

kubectl get --raw /api/vl/namespaces/default -v=6

Note: In production, you should always monitor the API server request latency his-
togram, the rate of 429 (Too Many Requests) responses, and the number of active
watch connections. These metrics are exposed through the /metrics endpoint and

are critical indicators of control plane health.

etcd: The Source of Truth

etcd is a distributed, consistent key-value store that serves as the single source of
truth for all cluster state. Every Kubernetes object, whether it is a Pod, a Service, a
ConfigMap, a Secret, or a Custom Resource, is stored as a key-value pair in etcd.
Understanding etcd's behavior is essential for production Kubernetes operations
because etcd performance directly constrains the performance of the entire clus-
ter.

etcd uses the Raft consensus algorithm to maintain consistency across its clus-
ter members. In a typical production deployment, etcd runs as a cluster of three or
five members. Three members can tolerate the failure of one member, while five

members can tolerate the failure of two. Running more than five members is gener-

24

ally not recommended because each additional member increases the time re-
quired to reach consensus on writes without providing proportional benefit.

The performance characteristics of etcd are heavily dependent on disk I/0 la-
tency. etcd must persist every write to its write-ahead log (WAL) before acknowl-
edging the write to the API server. If the disk is slow, every create, update, and
delete operation in your Kubernetes cluster will be slow. This is why production
etcd deployments should always use dedicated SSD storage, ideally with low-la-
tency NVMe drives.

You can check etcd health and performance using the etcdctl command:

Set etcd environment variables

export ETCDCTL_API=3

export ETCDCTL ENDPOINTS=https: //127.0.0.1:2379

export ETCDCTL CACERT=/etc/kubernetes/pki/etcd/ca.crt
export ETCDCTL CERT=/etc/kubernetes/pki/etcd/server.crt
export ETCDCTL KEY=/etc/kubernetes/pki/etcd/server.key

Check cluster health
etcdctl endpoint health --write-out=table

Check cluster status including database size and raft index

etcdctl endpoint status --write-out=table

Check for slow disk performance by examining WAL sync duration
This metric is available from etcd's /metrics endpoint
curl -s https://127.0.0.1:2379/metrics —--cacert /etc/kubernetes/
pki/etcd/ca.crt \

--cert /etc/kubernetes/pki/etcd/server.crt \

--key /etc/kubernetes/pki/etcd/server.key | grep wal fsync

Note: The etcd database has a default storage limit of 2 GB, which can be in-
creased to a maximum of 8 GB. If your database approaches this limit, you need to
investigate what is consuming the space. Common culprits include excessive

events, large ConfigMaps or Secrets, and Custom Resources that are not being

25

