Linux Disk Management &
RAID Configuration

Designing, Configuring, and Maintain-
ing Reliable Storage Systems on Linux

Preface

Every Linux system, no matter how elegantly its applications are designed or how
carefully its network is secured, ultimately depends on one foundational layer:
storage. Data must be written, read, protected, and recovered — reliably, efficiently,
and predictably. Yet for many Linux administrators and engineers, disk manage-
ment and RAID configuration remain areas of uncertainty, approached with caution
or, worse, with assumptions inherited from outdated practices.

This book was written to change that.

Purpose and Scope

Linux Disk Management & RAID Configuration is a comprehensive, hands-on guide
to designing, configuring, and maintaining reliable storage systems on Linux.
Whether you are a system administrator managing a handful of servers, a DevOps
engineer architecting infrastructure at scale, or a student preparing for a career in
Linux systems engineering, this book provides the knowledge and practical skills
you need to make confident, informed decisions about how data is stored and pro-
tected on Linux platforms.

The scope spans the full lifecycle of Linux storage — from understanding how
the kernel interacts with block devices, through partitioning and filesystem cre-
ation, to building sophisticated storage architectures that combine software RAID
and Logical Volume Management (LVM). Critically, this book doesn't stop at config-

uration. It dedicates significant attention to monitoring, optimization, trou-

bleshooting, and recovery — the skills that separate capable administrators from

exceptional ones.

Key Themes

Several themes run throughout these pages:

- Architecture before action. Every chapter emphasizes understanding
why before learning how. You'll learn to think about Linux storage as a
layered system, making decisions that are deliberate rather than reac-
tive.

- Practical, real-world application. Commands, configurations, and ex-
amples are drawn from production Linux environments. This is not a the-
oretical exercise — it's a working reference.

- Resilience and reliability. From RAID design to backup strategies to
failure recovery playbooks, the book treats data protection not as an af-
terthought but as a core design principle.

- Progressive complexity. The material builds methodically, beginning
with foundational concepts in Linux storage architecture and advancing
through LVM, RAID, combined configurations, and ultimately produc-

tion-grade storage best practices.

How This Book Is Organized

The book is structured in a logical progression across sixteen chapters and five

appendices. Chapters 1-4 establish the fundamentals of Linux storage: architec-

ture, disk layout planning, partitioning, and filesystem management. Chapters 5-6
dive deep into LVM, giving you full command of logical volume creation, resizing,
and management. Chapters 7-10 cover RAID comprehensively — from foundation-
al theory and design considerations to building and monitoring software RAID ar-
rays with mdadm on Linux. Chapter 11 brings these two powerful subsystems to-
gether, showing how RAID and LVM can be combined for maximum flexibility and
resilience. Chapters 12-15 address the operational realities of performance tuning,
backup and recovery, troubleshooting failures, and implementing storage best
practices in production Linux environments. Chapter 16 closes with a forward-look-
ing perspective on evolving from disk management to broader storage architec-
ture thinking.

The appendices serve as lasting references: command cheat sheets, RAID level
comparisons, example storage layouts, a disk failure recovery playbook, and a cu-

rated Linux storage learning roadmap for continued growth.

Who This Book Is For

If you work with Linux — or aspire to — and you want to move beyond surface-level
familiarity with disks and partitions toward genuine mastery of storage systems, this
book is for you. Prior experience with the Linux command line is assumed; exper-

tise in storage is not.

Acknowledgments

This book owes a debt to the broader Linux and open-source community — the ker-

nel developers, the maintainers of tools like mdadm, 1vm2, and parted, and the

countless contributors who have documented, debugged, and improved Linux
storage over decades. | am also grateful to the technical reviewers whose sharp
eyes and honest feedback strengthened every chapter, and to the readers of early
drafts whose questions shaped the book's clarity and direction.

Data is the lifeblood of every system. The storage layer is where that lifeblood is
kept safe. Let's build it right.

Bas van den Berg

Table of Contents

Page

Chapter Title Page
1 Understanding Linux Storage Architecture 7

2 Planning Disk Layouts 21
3 Disk Partitioning in Practice 36
4 Creating and Managing Filesystems 49
5 LVM Architecture Explained 65
6 Managing and Resizing LVM Storage 79
7 RAID Fundamentals 94
8 Designing RAID for Real Use Cases 109
9 Creating Software RAID Arrays 124
10 Managing and Monitoring RAID Arrays 141
11 Combining RAID and LVM 157
12 Storage Performance and Optimization 171
13 Backup and Recovery Strategies 188
14 Troubleshooting Disk and RAID Failures 203
15 Storage Best Practices for Production 216
16 From Disk Management to Storage Architecture 231
App Disk and RAID Command Cheat Sheet 243
App RAID Level Comparison Table 261
App Example Storage Layout Designs 275

App
App

Recovery Playbook for Disk Failures

Linux Storage Learning Roadmap

288
301

Chapter 1: Understanding
Linux Storage Architecture

The foundation of every reliable Linux system rests upon its storage architecture.
Whether you are managing a single desktop machine or orchestrating a fleet of
enterprise servers, understanding how Linux perceives, organizes, and interacts
with storage devices is not merely helpful but essential. This chapter takes you on a
thorough journey through the layers of Linux storage architecture, from the physi-
cal hardware spinning beneath the chassis to the abstract file systems that present
data to users and applications. By the end of this chapter, you will possess a mental
model of storage in Linux that will serve as the bedrock for every advanced topic
that follows in this book, including partitioning, logical volume management, and

RAID configuration.

The Physical Layer: How Linux Sees
Hardware

When a storage device is connected to a Linux system, whether it is a traditional
spinning hard disk drive, a solid state drive, or a network attached storage volume,
the Linux kernel must first detect it and make it available to the rest of the operat-
ing system. This process begins at the hardware level and moves upward through a
series of well defined abstractions.

At the lowest level, storage devices communicate with the system through

hardware interfaces. The most common interfaces encountered in modern Linux

environments include SATA (Serial Advanced Technology Attachment), SAS (Serial
Attached SCSI), NVMe (Non-Volatile Memory Express), and USB. Each of these in-
terfaces has distinct characteristics that affect performance, reliability, and how the
kernel interacts with the device.

The following table provides a comprehensive comparison of common storage

interfaces found in Linux systems:

Interface Typical Use Maximum Protocol Kernel Driver
Case Throughput Subsystem

SATAII Desktop and 6 Gbps AHCI libata
consumer stor-
age

SAS Enterprise 12 Gbps (SAS-3) SCSI SCSI midlayer

servers and
storage arrays

NVMe High perfor- 32 Gbps (PCle NVMe over nvme
mance SSDs 4.0 x4) PCle

USB 3.2 External and 20 Gbps (Gen USB Mass Stor- usb-storage /
portable stor- 2x2) age / UAS uas
age

Fibre Channel SAN environ- 128 Gbps FCP SCSI midlayer
ments (64GFC)

iSCSI Network at- Network depen- SCSI over TCP/ SCSI midlayer +
tached block dent IP open-iscsi
storage

When the Linux kernel boots, or when a device is hot-plugged into a running sys-
tem, the kernel's device discovery mechanism springs into action. The kernel
probes the hardware buses, identifies connected devices, loads the appropriate
driver modules, and creates device nodes in the /dev directory. This entire process
is facilitated by the udev subsystem, which is the userspace device manager re-

sponsible for dynamically creating and removing device nodes.

You can observe this process in real time by monitoring the kernel ring buffer.
When you connect a new SATA drive, for example, you might see output like the

following:

dmesg | tail -20

A typical output might include:

[234.567890] ata3: SATA link up 6.0 Gbps (SStatus 133 SControl

300)
[234.568012] ata3.00: ATA-9: Samsung SSD 870 EVO 1TB, SVTO02B6Q,

max UDMA/133

[234.568234] ata3.00: 1953525168 sectors, multi 1: LBA48 NCQ
(depth 32), AA

[234.569456] ata3.00: configured for UDMA/133

[234.569789] scsi 2:0:0:0: Direct-Access ATA Samsung
SSD 870 02B6 PQ: 0 ANSI: 5

[234.570123] sd 2:0:0:0: [sdb] 1953525168 512-byte logical
sectors (1.00 TB/931 GiB)

[234.570456] sd 2:0:0:0: [sdb] Write Protect is Off

[234.570789] sd 2:0:0:0: [sdb] Write cache: enabled, read
cache: enabled, doesn't support DPO or FUA

[234.571234] sd 2:0:0:0: [sdb] Attached SCSI disk

This output reveals the entire chain of discovery. The kernel detects the SATA link,
identifies the device model and capabilities, assigns it to the SCSI subsystem (since
Linux treats most block devices through a unified SCSI layer), and finally creates the
block device node /dev/sdb.

Note: Even SATA and NVMe devices pass through the SCSI layer in Linux. This
is a deliberate design choice that provides a unified interface for block device op-
erations. NVMe devices, however, receive their own naming convention (/dev/
nvmeOnl instead of /dev/sdx) because they use a dedicated driver subsystem

that bypasses the traditional SCSI midlayer for performance reasons.

10

Block Devices and Device Naming
Conventions

In Linux, storage devices are represented as block devices. A block device is a type
of device file that provides buffered access to hardware, reading and writing data
in fixed-size blocks rather than as a continuous stream of bytes. This is in contrast to
character devices, such as serial ports or terminals, which handle data one byte at a
time.

Every block device in Linux appears as a special file under the /dev directory.
The naming conventions for these devices follow predictable patterns that, once
understood, make it straightforward to identify what type of device you are work-
ing with.

The following table explains the naming conventions used by the Linux kernel

for different types of storage devices:

Device Pattern Description Example Partition Notation
/dev/sd[a-z] SCSI, SATA, SAS, and /dev/sda /dev/sdal, /dev/
USB disks sda2
/dev/ NVMe solid state dri- /dev/nvme0Onl /dev/nvmeOnlpl, /
nvme [0-9]n[0-9] ves dev/nvmeOnlp?2
/dev/vd[a-z] Virtio disks in virtual /dev/vda /dev/vdal, /dev/
machines vda?2
/dev/xvd[a-z] Xen virtual block de- /dev/xvda /dev/xvdal, /dev/
vices xvda?2
/dev/hd[a-d] Legacy IDE/PATA /dev/hda /dev/hdal, /dev/
disks (rare today) hda?2
/dev/md[0-9] Software RAID arrays /dev/md0 /dev/md0pl (if parti-
tioned)

11

/dev/dm-[0-9] Device mapperde- /dev/dm-0 Accessed via mapper
vices (LVM, LUKS) names

/dev/loop[0-9] Loop devices (files as /dev/loop0 /dev/loopOpl
block devices)

To list all block devices currently recognized by the system, the 1sbl1k command is

invaluable:

1sblk

A sample output might look like this:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 465.8G 0 disk
F-sdal 8:1 0 512M 0 part /boot/efi
F—sdaZ 8:2 0 1G 0 part /boot
L_sda3 8:3 0 464.3G 0 part
Fvg0-root 253:0 0 506 0 lvm /
F—ng—swap 253:1 0 8G 0 lvm [SWAP]
L vg0-home 253:2 0 406.3G 0 lvm /home
sdb 8:16 0 931.5G 0 disk
nvmeOnl 259:0 0 476.9G 0 disk
F—nvmeOnlpl 259:1 0 512M 0 part
LnvmeOnlp2 259:2 0 476.4G 0 part

This output demonstrates several important concepts simultaneously. You can see
a SATA disk (sda) that has been partitioned and further divided using LVM (Logical
Volume Manager). A second SATA disk (sdb) appears with no partitions, meaning it
is either new or has been wiped. An NVMe drive (nvmeOn1) is also present with two
partitions. The hierarchical relationship between disks, partitions, and logical vol-
umes is immediately visible.

For more detailed information about block devices, including their UUIDs, file

system types, and labels, you can use the bl1kid command:

sudo blkid

12

/dev/sdal: UUID="A1B2-C3D4" TYPE="vfat" PARTLABEL="EFI System
Partition" PARTUUID="12345678-abcd-efgh-1jk1-12345678%abc"
/dev/sda2: UUID="abcdef01-2345-6789-abcd-ef0123456789"
TYPE="ext4" PARTUUID="23456789-bcde-fghi-jklm-234567890bcd"
/dev/sda3: UUID="bcdef012-3456-78%a-bcde-£01234567890"
TYPE="LVMZ member" PARTUUID="34567890-cdef-ghij-
klmn-345678901cde"

/dev/mapper/vg0-root: UUID="cdef0123-4567-89%ab-cdef-012345678901"
TYPE="ext4"

/dev/mapper/vg0-swap: UUID="def(01234-5678-9%9abc-def(0-123456789012"
TYPE="swap"

/dev/mapper/vg0-home: UUID="ef012345-6789-abcd-ef01-234567890123"
TYPE="xfs"

Note: The UUID (Universally Unique Identifier) is critically important in Linux stor-
age management. Unlike device names such as /dev/sda which can change be-
tween boots depending on detection order, UUIDs remain constant. This is why
modern Linux distributions use UUIDs in /etc/fstab for mounting file systems

rather than device names.

The Linux Storage Stack: From Hard-
ware to File System

Understanding the Linux storage stack requires appreciating that data passes
through multiple layers between the application and the physical disk. Each layer
adds functionality, abstraction, or both. Grasping this layered architecture is crucial
because problems at any layer can affect the layers above it, and performance tun-
ing often requires adjustments at specific layers.

The storage stack in Linux, from top to bottom, consists of the following layers:

13

Layer Component Purpose Key Tools

Application Layer User applications Read and write files Any application
and services

VFS Layer Virtual File System Provides unified in- N/A (kernel internal)
terface for all file
systems

File System Layer ext4, XFS, Btrfs, ZFS, Organizes data into mkfs, tune2fs, xf-

etc. files and directories s_info

Page Cache Kernel memory Caches frequently vmstat, free, /proc/
management accessed data in meminfo

RAM

Block Layer I/O scheduler, block Manages and opti- iostat, blktrace, /sys/
device interface mizes /O requests block

Device Mapper LVM, dm-crypt, dm- Provides virtual dmsetup, Ivm,
raid, multipath block devices cryptsetup

SCSI/ NVMe Layer SCSI midlayer, Communicates with sg_ing, nvme-cli
NVMe driver storage controllers

Hardware Layer Physical disks, con- Stores data persis- smartctl, hdparm
trollers, interfaces tently

Let us walk through what happens when an application writes data to a file. Sup-
pose a database process issues a write call. The request first passes through the
Virtual File System (VFS), which is the kernel's abstraction layer that allows Linux to
support dozens of different file systems through a single, consistent API. The VFS
determines which file system the target file resides on and dispatches the request
to the appropriate file system driver.

The file system driver, whether it is ext4, XFS, or Btrfs, translates the file-level
operation into block-level operations. It determines which blocks on the disk need
to be written, updates metadata structures such as inodes and allocation bitmaps,

and submits the block I/O requests to the block layer.

14

Before reaching the disk, the block layer's I/O scheduler may reorder, merge,
or prioritize the requests to optimize throughput and latency. For traditional spin-
ning disks, schedulers like mg-deadline attempt to minimize seek time by group-
ing nearby requests. For SSDs and NVMe devices, the none (noop) scheduler is of-
ten preferred since these devices have no mechanical seek penalty.

You can check and change the I/O scheduler for a device using the sysfs inter-

face:
Check the current scheduler for sda
cat /sys/block/sda/queue/scheduler

[mg-deadline] kyber bfg none

Change the scheduler to bfg
echo bfg > /sys/block/sda/queue/scheduler

If Device Mapper is involved, such as when LVM or disk encryption is in use, there
is an additional layer of translation. The Device Mapper takes virtual block address-
es and maps them to physical block addresses on one or more underlying devices.
This is what allows LVM to span a logical volume across multiple physical disks, or

LUKS encryption to transparently encrypt all data before it reaches the disk.

The sysfs and procfs Interfaces for
Storage

Linux exposes an extraordinary amount of information about storage devices
through its virtual file systems, particularly /sys (sysfs) and /proc (procfs). These

interfaces are not mere diagnostic tools; they are the primary mechanism through

15

which administrators and automation scripts query and configure storage behavior
at runtime.

The /sys/block/ directory contains a subdirectory for each block device rec-
ognized by the kernel. Within each device directory, you will find a wealth of infor-

mation:

List all recognized block devices
ls /sys/block/

sda sdb nvmeOnl dm-0 dm-1 dm-2 loopO0

View the size of sda in 512-byte sectors

cat /sys/block/sda/size

976773168

View the device model
cat /sys/block/sda/device/model

Samsung SSD 870

View the rotation flag (0 = SSD, 1 = HDD)
cat /sys/block/sda/queue/rotational

This last command is particularly useful in scripts that need to apply different con-
figurations based on whether a device is a spinning disk or a solid state drive.
Many system tuning tools, including the tuned daemon, use this flag to automati-
cally select appropriate I/O schedulers and read-ahead values.

The /proc/partitions file provides a quick summary of all partitions known

to the kernel:

16

cat /proc/partitions

major minor #blocks name

488386584 sda
524288 sdal
1048576 sdaZ2
486813720 sda3
8 1 976762584 sdb

8 0
8 1
8 2
8 3
6
259 0 500107608 nvmeOnl
1
2
0
1
2

259 524288 nvmelOnlpl
259 499583320 nvmeOnlp?2
253 52428800 dm-0
253 8388608 dm-1
253 425996312 dm-2

The major and minor numbers shown here are the kernel's internal identifiers for
block devices. The major number identifies the driver responsible for the device (8
for SCSI/SATA devices, 259 for NVMe, 253 for device mapper), while the minor

number identifies the specific device or partition within that driver's domain.

Practical Exploration: Mapping Your
System's Storage

Now that you understand the theoretical foundations, it is time to put this knowl-
edge into practice. The following exercise walks you through a comprehensive ex-
ploration of your own Linux system's storage architecture.

Exercise 1: Complete Storage Inventory

Begin by creating a complete inventory of all storage devices on your system.
Execute each command and record the results.

Step 1: List all block devices with full detail.

17

lsblk -o NAME,TYPE,SIZE,FSTYPE,MOUNTPOINT,MODEL, SERIAL,ROTA,DISC-
MAX

This command displays the device name, type, size, file system type, mount point,
hardware model, serial number, whether it is rotational, and the maximum discard
(TRIM) size. The ROTA column is particularly important: a value of 1 indicates a
spinning hard drive, while 0 indicates a solid state drive. The DISC-MAX column
shows whether the device supports TRIM operations, which is essential for SSD
health and performance.

Step 2: Examine the kernel's view of storage controllers.
lspci | grep -i -E "storage|sata|nvme|scsi|raid"
This command queries the PCl bus for all storage-related controllers. You might
see output like:

00:17.0 SATA controller: Intel Corporation Cannon Lake PCH SATA
AHCI Controller (rev 10)

01:00.0 Non-Volatile memory controller: Samsung Electronics Co
Ltd NVMe SSD Controller SM981/PM981/PM983

Step 3: Verify that the correct kernel modules are loaded for your storage devices.

lsmod | grep -i -E "ahci|nvmel|scsi|sd mod|dm mod"

nvme 45056 2

nvme core 98304 5 nvme

ahci 40960 1

libahci 32768 1 ahci

sd mod 57344 5

scsi mod 253952 5 sd mod,libata, sg,sr mod, ahci
dm mod 155648 9

Step 4: Examine the device mapper table if LVM or encryption is in use.

sudo dmsetup ls —--tree

18

This command displays the device mapper hierarchy in a tree format, showing how
virtual devices map to physical devices.

Step 5: Check the health of your storage devices using SMART data.

sudo smartctl -a /dev/sda

The SMART (Self-Monitoring, Analysis, and Reporting Technology) data provides
insight into the physical health of the drive, including temperature, error counts,
power-on hours, and predictive failure indicators. If smartctl is not installed, you

can install it from the smartmontools package:

On Debian/Ubuntu

sudo apt install smartmontools

On RHEL/CentOS/Fedora

sudo dnf install smartmontools

Exercise 2: Understanding Device Relationships
This exercise helps you understand how devices, partitions, and logical vol-
umes relate to each other.

Step 1: Create a visual map of your storage hierarchy.
lsblk -f
Step 2: For each mounted file system, identify the complete chain from mount
point to physical device.

Find the device behind a mount point
df -h /home

If it is an LVM volume, find the physical device

sudo lvs -o +devices

If it is a RAID array, find the member devices

cat /proc/mdstat

19

Step 3: Document the UUIDs of all your storage devices and verify they match your

/etc/fstab entries.

sudo blkid
cat /etc/fstab

Compare the UUIDs from blkid with those referenced in /etc/fstab. Any mis-
match could prevent your system from booting correctly or mounting file systems
at startup.

Note: Always keep a backup of your /etc/fstab file before making changes.
An incorrect fstab entry can render your system unbootable. If this happens, you

can boot from a live USB and correct the file.

Key Concepts to Carry Forward

Before proceeding to the next chapter, ensure that you have internalized the fol-

lowing concepts, as they will be referenced repeatedly throughout this book:

Concept Why It Matters

Block devices are accessed through / All disk operations in Linux target device

dev files

Device names can change between Always use UUIDs or labels for persistent
boots identification

The storage stack has multiple layers Performance issues and failures can orig-

inate at any layer

The kernel provides rich introspection You can query and tune storage behav-
via sysfs ior at runtime without rebooting

Device Mapper provides virtualization ~ LVM, encryption, and software RAID all
depend on this subsystem

20

I/O schedulers affect performance Different workloads and device types
benefit from different schedulers

SMART monitoring detects failing drives Proactive monitoring prevents data loss

This chapter has established the vocabulary and mental model you need to work
effectively with Linux storage. You now understand how the kernel discovers and
represents storage hardware, how data flows through the storage stack, and how
to interrogate your system to understand its current storage configuration. In the
next chapter, we will build upon this foundation by exploring disk partitioning in
depth, covering both the legacy MBR partitioning scheme and the modern GPT
standard, along with the tools Linux provides for creating and managing partition

layouts.

21

