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Preface 

Every Linux system, no matter how elegantly its applications are designed or how 

carefully its network is secured, ultimately depends on one foundational layer: 

storage. Data must be written, read, protected, and recovered — reliably, efficiently, 

and predictably. Yet for many Linux administrators and engineers, disk manage-

ment and RAID configuration remain areas of uncertainty, approached with caution 

or, worse, with assumptions inherited from outdated practices. 

This book was written to change that. 

Purpose and Scope 
Linux Disk Management & RAID Configuration is a comprehensive, hands-on guide 

to designing, configuring, and maintaining reliable storage systems on Linux. 

Whether you are a system administrator managing a handful of servers, a DevOps 

engineer architecting infrastructure at scale, or a student preparing for a career in 

Linux systems engineering, this book provides the knowledge and practical skills 

you need to make confident, informed decisions about how data is stored and pro-

tected on Linux platforms. 

The scope spans the full lifecycle of Linux storage — from understanding how 

the kernel interacts with block devices, through partitioning and filesystem cre-

ation, to building sophisticated storage architectures that combine software RAID 

and Logical Volume Management (LVM). Critically, this book doesn't stop at config-

uration. It dedicates significant attention to monitoring, optimization, trou-
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bleshooting, and recovery — the skills that separate capable administrators from 

exceptional ones. 

Key Themes 
Several themes run throughout these pages: 

-	 Architecture before action. Every chapter emphasizes understanding 

why before learning how. You'll learn to think about Linux storage as a 

layered system, making decisions that are deliberate rather than reac-

tive. 

-	 Practical, real-world application. Commands, configurations, and ex-

amples are drawn from production Linux environments. This is not a the-

oretical exercise — it's a working reference. 

-	 Resilience and reliability. From RAID design to backup strategies to 

failure recovery playbooks, the book treats data protection not as an af-

terthought but as a core design principle. 

-	 Progressive complexity. The material builds methodically, beginning 

with foundational concepts in Linux storage architecture and advancing 

through LVM, RAID, combined configurations, and ultimately produc-

tion-grade storage best practices. 

How This Book Is Organized 
The book is structured in a logical progression across sixteen chapters and five 

appendices. Chapters 1–4 establish the fundamentals of Linux storage: architec-
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ture, disk layout planning, partitioning, and filesystem management. Chapters 5–6 

dive deep into LVM, giving you full command of logical volume creation, resizing, 

and management. Chapters 7–10 cover RAID comprehensively — from foundation-

al theory and design considerations to building and monitoring software RAID ar-

rays with mdadm on Linux. Chapter 11 brings these two powerful subsystems to-

gether, showing how RAID and LVM can be combined for maximum flexibility and 

resilience. Chapters 12–15 address the operational realities of performance tuning, 

backup and recovery, troubleshooting failures, and implementing storage best 

practices in production Linux environments. Chapter 16 closes with a forward-look-

ing perspective on evolving from disk management to broader storage architec-

ture thinking. 

The appendices serve as lasting references: command cheat sheets, RAID level 

comparisons, example storage layouts, a disk failure recovery playbook, and a cu-

rated Linux storage learning roadmap for continued growth. 

Who This Book Is For 
If you work with Linux — or aspire to — and you want to move beyond surface-level 

familiarity with disks and partitions toward genuine mastery of storage systems, this 

book is for you. Prior experience with the Linux command line is assumed; exper-

tise in storage is not. 

Acknowledgments 
This book owes a debt to the broader Linux and open-source community — the ker-

nel developers, the maintainers of tools like mdadm, lvm2, and parted, and the 
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countless contributors who have documented, debugged, and improved Linux 

storage over decades. I am also grateful to the technical reviewers whose sharp 

eyes and honest feedback strengthened every chapter, and to the readers of early 

drafts whose questions shaped the book's clarity and direction. 

--- 

Data is the lifeblood of every system. The storage layer is where that lifeblood is 

kept safe. Let's build it right. 

Bas van den Berg 
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Chapter 1: Understanding 
Linux Storage Architecture 

The foundation of every reliable Linux system rests upon its storage architecture. 

Whether you are managing a single desktop machine or orchestrating a fleet of 

enterprise servers, understanding how Linux perceives, organizes, and interacts 

with storage devices is not merely helpful but essential. This chapter takes you on a 

thorough journey through the layers of Linux storage architecture, from the physi-

cal hardware spinning beneath the chassis to the abstract file systems that present 

data to users and applications. By the end of this chapter, you will possess a mental 

model of storage in Linux that will serve as the bedrock for every advanced topic 

that follows in this book, including partitioning, logical volume management, and 

RAID configuration. 

The Physical Layer: How Linux Sees 
Hardware 
When a storage device is connected to a Linux system, whether it is a traditional 

spinning hard disk drive, a solid state drive, or a network attached storage volume, 

the Linux kernel must first detect it and make it available to the rest of the operat-

ing system. This process begins at the hardware level and moves upward through a 

series of well defined abstractions. 

At the lowest level, storage devices communicate with the system through 

hardware interfaces. The most common interfaces encountered in modern Linux 
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environments include SATA (Serial Advanced Technology Attachment), SAS (Serial 

Attached SCSI), NVMe (Non-Volatile Memory Express), and USB. Each of these in-

terfaces has distinct characteristics that affect performance, reliability, and how the 

kernel interacts with the device. 

The following table provides a comprehensive comparison of common storage 

interfaces found in Linux systems: 

Interface Typical Use 
Case

Maximum 
Throughput

Protocol Kernel Driver 
Subsystem

SATA III Desktop and 
consumer stor-
age

6 Gbps AHCI libata

SAS Enterprise 
servers and 
storage arrays

12 Gbps (SAS-3) SCSI SCSI midlayer

NVMe High perfor-
mance SSDs

32 Gbps (PCIe 
4.0 x4)

NVMe over 
PCIe

nvme

USB 3.2 External and 
portable stor-
age

20 Gbps (Gen 
2x2)

USB Mass Stor-
age / UAS

usb-storage / 
uas

Fibre Channel SAN environ-
ments

128 Gbps 
(64GFC)

FCP SCSI midlayer

iSCSI Network at-
tached block 
storage

Network depen-
dent

SCSI over TCP/
IP

SCSI midlayer + 
open-iscsi

When the Linux kernel boots, or when a device is hot-plugged into a running sys-

tem, the kernel's device discovery mechanism springs into action. The kernel 

probes the hardware buses, identifies connected devices, loads the appropriate 

driver modules, and creates device nodes in the /dev directory. This entire process 

is facilitated by the udev subsystem, which is the userspace device manager re-

sponsible for dynamically creating and removing device nodes. 
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You can observe this process in real time by monitoring the kernel ring buffer. 

When you connect a new SATA drive, for example, you might see output like the 

following: 

dmesg | tail -20 

A typical output might include: 

[  234.567890] ata3: SATA link up 6.0 Gbps (SStatus 133 SControl 

300) 

[  234.568012] ata3.00: ATA-9: Samsung SSD 870 EVO 1TB, SVT02B6Q, 

max UDMA/133 

[  234.568234] ata3.00: 1953525168 sectors, multi 1: LBA48 NCQ 

(depth 32), AA 

[  234.569456] ata3.00: configured for UDMA/133 

[  234.569789] scsi 2:0:0:0: Direct-Access     ATA      Samsung 

SSD 870  02B6 PQ: 0 ANSI: 5 

[  234.570123] sd 2:0:0:0: [sdb] 1953525168 512-byte logical 

sectors (1.00 TB/931 GiB) 

[  234.570456] sd 2:0:0:0: [sdb] Write Protect is Off 

[  234.570789] sd 2:0:0:0: [sdb] Write cache: enabled, read 

cache: enabled, doesn't support DPO or FUA 

[  234.571234] sd 2:0:0:0: [sdb] Attached SCSI disk 

This output reveals the entire chain of discovery. The kernel detects the SATA link, 

identifies the device model and capabilities, assigns it to the SCSI subsystem (since 

Linux treats most block devices through a unified SCSI layer), and finally creates the 

block device node /dev/sdb. 

Note: Even SATA and NVMe devices pass through the SCSI layer in Linux. This 

is a deliberate design choice that provides a unified interface for block device op-

erations. NVMe devices, however, receive their own naming convention (/dev/

nvme0n1 instead of /dev/sdX) because they use a dedicated driver subsystem 

that bypasses the traditional SCSI midlayer for performance reasons. 
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Block Devices and Device Naming 
Conventions 
In Linux, storage devices are represented as block devices. A block device is a type 

of device file that provides buffered access to hardware, reading and writing data 

in fixed-size blocks rather than as a continuous stream of bytes. This is in contrast to 

character devices, such as serial ports or terminals, which handle data one byte at a 

time. 

Every block device in Linux appears as a special file under the /dev directory. 

The naming conventions for these devices follow predictable patterns that, once 

understood, make it straightforward to identify what type of device you are work-

ing with. 

The following table explains the naming conventions used by the Linux kernel 

for different types of storage devices: 

Device Pattern Description Example Partition Notation

/dev/sd[a-z] SCSI, SATA, SAS, and 
USB disks

/dev/sda /dev/sda1, /dev/
sda2

/dev/
nvme[0-9]n[0-9]

NVMe solid state dri-
ves

/dev/nvme0n1 /dev/nvme0n1p1, /
dev/nvme0n1p2

/dev/vd[a-z] Virtio disks in virtual 
machines

/dev/vda /dev/vda1, /dev/
vda2

/dev/xvd[a-z] Xen virtual block de-
vices

/dev/xvda /dev/xvda1, /dev/
xvda2

/dev/hd[a-d] Legacy IDE/PATA 
disks (rare today)

/dev/hda /dev/hda1, /dev/
hda2

/dev/md[0-9] Software RAID arrays /dev/md0 /dev/md0p1 (if parti-
tioned)
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/dev/dm-[0-9] Device mapper de-
vices (LVM, LUKS)

/dev/dm-0 Accessed via mapper 
names

/dev/loop[0-9] Loop devices (files as 
block devices)

/dev/loop0 /dev/loop0p1

To list all block devices currently recognized by the system, the lsblk command is 

invaluable: 

lsblk 

A sample output might look like this: 

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT 

sda           8:0    0 465.8G  0 disk  

├─sda1        8:1    0   512M  0 part /boot/efi 

├─sda2        8:2    0     1G  0 part /boot 

└─sda3        8:3    0 464.3G  0 part  

  ├─vg0-root 253:0    0    50G  0 lvm  / 

  ├─vg0-swap 253:1    0     8G  0 lvm  [SWAP] 

  └─vg0-home 253:2    0 406.3G  0 lvm  /home 

sdb           8:16   0 931.5G  0 disk  

nvme0n1     259:0    0 476.9G  0 disk  

├─nvme0n1p1 259:1    0   512M  0 part  

└─nvme0n1p2 259:2    0 476.4G  0 part  

This output demonstrates several important concepts simultaneously. You can see 

a SATA disk (sda) that has been partitioned and further divided using LVM (Logical 

Volume Manager). A second SATA disk (sdb) appears with no partitions, meaning it 

is either new or has been wiped. An NVMe drive (nvme0n1) is also present with two 

partitions. The hierarchical relationship between disks, partitions, and logical vol-

umes is immediately visible. 

For more detailed information about block devices, including their UUIDs, file 

system types, and labels, you can use the blkid command: 

sudo blkid 
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/dev/sda1: UUID="A1B2-C3D4" TYPE="vfat" PARTLABEL="EFI System 

Partition" PARTUUID="12345678-abcd-efgh-ijkl-123456789abc" 

/dev/sda2: UUID="abcdef01-2345-6789-abcd-ef0123456789" 

TYPE="ext4" PARTUUID="23456789-bcde-fghi-jklm-234567890bcd" 

/dev/sda3: UUID="bcdef012-3456-789a-bcde-f01234567890" 

TYPE="LVM2_member" PARTUUID="34567890-cdef-ghij-

klmn-345678901cde" 

/dev/mapper/vg0-root: UUID="cdef0123-4567-89ab-cdef-012345678901" 

TYPE="ext4" 

/dev/mapper/vg0-swap: UUID="def01234-5678-9abc-def0-123456789012" 

TYPE="swap" 

/dev/mapper/vg0-home: UUID="ef012345-6789-abcd-ef01-234567890123" 

TYPE="xfs" 

Note: The UUID (Universally Unique Identifier) is critically important in Linux stor-

age management. Unlike device names such as /dev/sda which can change be-

tween boots depending on detection order, UUIDs remain constant. This is why 

modern Linux distributions use UUIDs in /etc/fstab for mounting file systems 

rather than device names. 

The Linux Storage Stack: From Hard-
ware to File System 
Understanding the Linux storage stack requires appreciating that data passes 

through multiple layers between the application and the physical disk. Each layer 

adds functionality, abstraction, or both. Grasping this layered architecture is crucial 

because problems at any layer can affect the layers above it, and performance tun-

ing often requires adjustments at specific layers. 

The storage stack in Linux, from top to bottom, consists of the following layers: 
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Layer Component Purpose Key Tools

Application Layer User applications 
and services

Read and write files Any application

VFS Layer Virtual File System Provides unified in-
terface for all file 
systems

N/A (kernel internal)

File System Layer ext4, XFS, Btrfs, ZFS, 
etc.

Organizes data into 
files and directories

mkfs, tune2fs, xf-
s_info

Page Cache Kernel memory 
management

Caches frequently 
accessed data in 
RAM

vmstat, free, /proc/
meminfo

Block Layer I/O scheduler, block 
device interface

Manages and opti-
mizes I/O requests

iostat, blktrace, /sys/
block

Device Mapper LVM, dm-crypt, dm-
raid, multipath

Provides virtual 
block devices

dmsetup, lvm, 
cryptsetup

SCSI / NVMe Layer SCSI midlayer, 
NVMe driver

Communicates with 
storage controllers

sg_inq, nvme-cli

Hardware Layer Physical disks, con-
trollers, interfaces

Stores data persis-
tently

smartctl, hdparm

Let us walk through what happens when an application writes data to a file. Sup-

pose a database process issues a write call. The request first passes through the 

Virtual File System (VFS), which is the kernel's abstraction layer that allows Linux to 

support dozens of different file systems through a single, consistent API. The VFS 

determines which file system the target file resides on and dispatches the request 

to the appropriate file system driver. 

The file system driver, whether it is ext4, XFS, or Btrfs, translates the file-level 

operation into block-level operations. It determines which blocks on the disk need 

to be written, updates metadata structures such as inodes and allocation bitmaps, 

and submits the block I/O requests to the block layer. 
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Before reaching the disk, the block layer's I/O scheduler may reorder, merge, 

or prioritize the requests to optimize throughput and latency. For traditional spin-

ning disks, schedulers like mq-deadline attempt to minimize seek time by group-

ing nearby requests. For SSDs and NVMe devices, the none (noop) scheduler is of-

ten preferred since these devices have no mechanical seek penalty. 

You can check and change the I/O scheduler for a device using the sysfs inter-

face: 

# Check the current scheduler for sda 

cat /sys/block/sda/queue/scheduler 

[mq-deadline] kyber bfq none 

# Change the scheduler to bfq 

echo bfq > /sys/block/sda/queue/scheduler 

If Device Mapper is involved, such as when LVM or disk encryption is in use, there 

is an additional layer of translation. The Device Mapper takes virtual block address-

es and maps them to physical block addresses on one or more underlying devices. 

This is what allows LVM to span a logical volume across multiple physical disks, or 

LUKS encryption to transparently encrypt all data before it reaches the disk. 

The sysfs and procfs Interfaces for 
Storage 
Linux exposes an extraordinary amount of information about storage devices 

through its virtual file systems, particularly /sys (sysfs) and /proc (procfs). These 

interfaces are not mere diagnostic tools; they are the primary mechanism through 
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which administrators and automation scripts query and configure storage behavior 

at runtime. 

The /sys/block/ directory contains a subdirectory for each block device rec-

ognized by the kernel. Within each device directory, you will find a wealth of infor-

mation: 

# List all recognized block devices 

ls /sys/block/ 

sda  sdb  nvme0n1  dm-0  dm-1  dm-2  loop0 

# View the size of sda in 512-byte sectors 

cat /sys/block/sda/size 

976773168 

# View the device model 

cat /sys/block/sda/device/model 

Samsung SSD 870 

# View the rotation flag (0 = SSD, 1 = HDD) 

cat /sys/block/sda/queue/rotational 

0 

This last command is particularly useful in scripts that need to apply different con-

figurations based on whether a device is a spinning disk or a solid state drive. 

Many system tuning tools, including the tuned daemon, use this flag to automati-

cally select appropriate I/O schedulers and read-ahead values. 

The /proc/partitions file provides a quick summary of all partitions known 

to the kernel: 
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cat /proc/partitions 

major minor  #blocks  name 

 

   8        0  488386584 sda 

   8        1     524288 sda1 

   8        2    1048576 sda2 

   8        3  486813720 sda3 

   8       16  976762584 sdb 

 259        0  500107608 nvme0n1 

 259        1     524288 nvme0n1p1 

 259        2  499583320 nvme0n1p2 

 253        0   52428800 dm-0 

 253        1    8388608 dm-1 

 253        2  425996312 dm-2 

The major and minor numbers shown here are the kernel's internal identifiers for 

block devices. The major number identifies the driver responsible for the device (8 

for SCSI/SATA devices, 259 for NVMe, 253 for device mapper), while the minor 

number identifies the specific device or partition within that driver's domain. 

Practical Exploration: Mapping Your 
System's Storage 
Now that you understand the theoretical foundations, it is time to put this knowl-

edge into practice. The following exercise walks you through a comprehensive ex-

ploration of your own Linux system's storage architecture. 

Exercise 1: Complete Storage Inventory 

Begin by creating a complete inventory of all storage devices on your system. 

Execute each command and record the results. 

Step 1: List all block devices with full detail. 
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lsblk -o NAME,TYPE,SIZE,FSTYPE,MOUNTPOINT,MODEL,SERIAL,ROTA,DISC-

MAX 

This command displays the device name, type, size, file system type, mount point, 

hardware model, serial number, whether it is rotational, and the maximum discard 

(TRIM) size. The ROTA column is particularly important: a value of 1 indicates a 

spinning hard drive, while 0 indicates a solid state drive. The DISC-MAX column 

shows whether the device supports TRIM operations, which is essential for SSD 

health and performance. 

Step 2: Examine the kernel's view of storage controllers. 

lspci | grep -i -E "storage|sata|nvme|scsi|raid" 

This command queries the PCI bus for all storage-related controllers. You might 

see output like: 

00:17.0 SATA controller: Intel Corporation Cannon Lake PCH SATA 

AHCI Controller (rev 10) 

01:00.0 Non-Volatile memory controller: Samsung Electronics Co 

Ltd NVMe SSD Controller SM981/PM981/PM983 

Step 3: Verify that the correct kernel modules are loaded for your storage devices. 

lsmod | grep -i -E "ahci|nvme|scsi|sd_mod|dm_mod" 

nvme                   45056  2 

nvme_core              98304  5 nvme 

ahci                   40960  1 

libahci                32768  1 ahci 

sd_mod                 57344  5 

scsi_mod              253952  5 sd_mod,libata,sg,sr_mod,ahci 

dm_mod                155648  9 

Step 4: Examine the device mapper table if LVM or encryption is in use. 

sudo dmsetup ls --tree 
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This command displays the device mapper hierarchy in a tree format, showing how 

virtual devices map to physical devices. 

Step 5: Check the health of your storage devices using SMART data. 

sudo smartctl -a /dev/sda 

The SMART (Self-Monitoring, Analysis, and Reporting Technology) data provides 

insight into the physical health of the drive, including temperature, error counts, 

power-on hours, and predictive failure indicators. If smartctl is not installed, you 

can install it from the smartmontools package: 

# On Debian/Ubuntu 

sudo apt install smartmontools 

 

# On RHEL/CentOS/Fedora 

sudo dnf install smartmontools 

Exercise 2: Understanding Device Relationships 

This exercise helps you understand how devices, partitions, and logical vol-

umes relate to each other. 

Step 1: Create a visual map of your storage hierarchy. 

lsblk -f 

Step 2: For each mounted file system, identify the complete chain from mount 

point to physical device. 

# Find the device behind a mount point 

df -h /home 

 

# If it is an LVM volume, find the physical device 

sudo lvs -o +devices 

 

# If it is a RAID array, find the member devices 

cat /proc/mdstat 
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Step 3: Document the UUIDs of all your storage devices and verify they match your 

/etc/fstab entries. 

sudo blkid 

cat /etc/fstab 

Compare the UUIDs from blkid with those referenced in /etc/fstab. Any mis-

match could prevent your system from booting correctly or mounting file systems 

at startup. 

Note: Always keep a backup of your /etc/fstab file before making changes. 

An incorrect fstab entry can render your system unbootable. If this happens, you 

can boot from a live USB and correct the file. 

Key Concepts to Carry Forward 
Before proceeding to the next chapter, ensure that you have internalized the fol-

lowing concepts, as they will be referenced repeatedly throughout this book: 

Concept Why It Matters

Block devices are accessed through /
dev

All disk operations in Linux target device 
files

Device names can change between 
boots

Always use UUIDs or labels for persistent 
identification

The storage stack has multiple layers Performance issues and failures can orig-
inate at any layer

The kernel provides rich introspection 
via sysfs

You can query and tune storage behav-
ior at runtime without rebooting

Device Mapper provides virtualization LVM, encryption, and software RAID all 
depend on this subsystem
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I/O schedulers affect performance Different workloads and device types 
benefit from different schedulers

SMART monitoring detects failing drives Proactive monitoring prevents data loss

This chapter has established the vocabulary and mental model you need to work 

effectively with Linux storage. You now understand how the kernel discovers and 

represents storage hardware, how data flows through the storage stack, and how 

to interrogate your system to understand its current storage configuration. In the 

next chapter, we will build upon this foundation by exploring disk partitioning in 

depth, covering both the legacy MBR partitioning scheme and the modern GPT 

standard, along with the tools Linux provides for creating and managing partition 

layouts. 


