
1

Linux Permissions

Understanding Ownership, Access
Control, and Security on Linux Systems

2

Preface

Every file on a Linux system has a gatekeeper. Every directory, every script, every

configuration file, every socket — all of them are governed by a quiet but unyield-

ing system of rules that determines who can read, who can write, and who can exe-

cute. This system is the Linux permissions model, and it is one of the most funda-

mental pillars of Linux security.

Yet for many Linux users and administrators, permissions remain a source of

confusion, frustration, and — too often — costly mistakes. A web application fails

silently because a directory isn't executable. A cron job breaks after a routine de-

ployment. A well-meaning administrator runs chmod 777 to "fix" a problem and

unknowingly opens a door that should have stayed locked. These scenarios play

out every day on Linux systems around the world.

This book exists to make sure they don't play out on yours.

What This Book Covers
Linux Permissions: Understanding Ownership, Access Control, and Security on Lin-

ux Systems is a comprehensive, practical guide to how Linux controls access to

files, directories, and system resources. It is written for system administrators, de-

velopers, DevOps engineers, and anyone who works with Linux and wants to move

beyond guesswork toward genuine understanding.

We begin with the foundations — why permissions matter on Linux, how users

and groups form the basis of ownership, and what read, write, and execute actually

mean in practice. From there, we explore both symbolic and numeric (octal) modes

3

for setting permissions, and we examine the distinct behaviors that permissions ex-

hibit on files versus directories.

The middle chapters take you deeper into the Linux permissions landscape.

You'll learn about special permission bits — SUID, SGID, and the sticky bit — and

understand when they're essential and when they're dangerous. You'll master

umask to control default permissions, and you'll work with Access Control Lists

(ACLs) for the fine-grained access control that standard Linux permissions alone

cannot provide.

The later chapters are where theory meets the real world. We tackle permis-

sion troubleshooting with systematic approaches, examine best practices for web

servers and system services running on Linux, and introduce auditing tech-

niques to verify that your permissions reflect your security intentions. We also pro-

vide an accessible introduction to SELinux, showing how mandatory access con-

trols extend beyond traditional Linux permissions. A dedicated chapter on permis-

sion anti-patterns catalogs the most common mistakes so you can recognize and

avoid them. The final chapter steps back to frame Linux permissions within the

broader context of security architecture, pointing you toward a more holistic un-

derstanding.

Five appendices provide quick-reference material — cheat sheets for chmod

and chown, an octal permission reference table, ACL command summaries, a trou-

bleshooting checklist, and a Linux security learning roadmap for continuing your

journey.

How to Use This Book
If you're new to Linux permissions, read the chapters in order. Each one builds on

the last. If you're an experienced administrator looking to fill specific gaps, the

4

chapters are self-contained enough to serve as targeted references. Either way, the

appendices are designed to stay open on your desk — or your second monitor —

while you work.

A Note of Thanks
This book was shaped by years of conversations with Linux administrators who

learned permissions the hard way: through broken deployments, security inci-

dents, and late-night troubleshooting sessions. Their experiences — and their will-

ingness to share what went wrong — made this a better, more honest book. I'm also

grateful to the broader Linux and open-source community, whose documentation,

forum posts, and tireless knowledge-sharing form the bedrock on which any book

like this is built.

The Goal
Linux permissions are not merely a technical detail. They are the first line of de-

fense on every Linux system you manage. My goal is that by the final page, you

won't just know how to set permissions — you'll understand why you're setting

them, what could go wrong if you don't, and how to verify that your systems are as

secure as you believe them to be.

Let's begin.

Bas van den Berg

5

Table of Contents

Chapter Title Page

1 Why Permissions Matter 6

2 Users, Groups, and Ownership 20

3 Understanding Read, Write, and Execute 33

4 Symbolic and Numeric Modes 48

5 Managing File Permissions 60

6 Managing Directory Permissions 76

7 SUID, SGID, and Sticky Bit 89

8 Default Permissions and umask 104

9 Access Control Lists (ACLs) 118

10 Permission Troubleshooting 132

11 Permissions for Web Servers 146

12 Permissions for System Services 160

13 Auditing Permissions 177

14 Permissions and SELinux Basics 192

15 Permission Anti-Patterns 206

16 From Permission Basics to Security Architecture 219

App chmod and chown Cheat Sheet 237

App Octal Permission Reference Table 252

App ACL Command Reference 261

App Permission Troubleshooting Checklist 274

App Linux Security Learning Roadmap 287

6

Chapter 1: Why Permissions
Matter

Linux is, at its very core, a multi-user operating system. From the moment it was

conceived as a reimagining of Unix principles, Linux was designed with the as-

sumption that more than one person would be using the same machine, accessing

the same resources, and running programs simultaneously. This fundamental de-

sign philosophy gave rise to one of the most critical and elegant subsystems in all

of computing: the Linux permissions model. Before we dive into the technical me-

chanics of how permissions work, how to read them, and how to change them, it is

essential that we first understand why they exist, what problems they solve, and

what would happen in a world without them. This chapter lays the philosophical

and practical groundwork for everything that follows in this book.

The Multi-User Nature of Linux
To truly appreciate why permissions matter, you must first understand the environ-

ment in which Linux operates. Unlike some operating systems that were originally

designed for a single user sitting at a single desk, Linux inherited its DNA from

Unix, which was born in the shared computing environments of Bell Labs in the

early 1970s. In those days, a single powerful computer served dozens or even hun-

dreds of users through terminals. Every user had their own login, their own files,

and their own running processes, but they all shared the same physical hardware,

the same kernel, and the same filesystem.

7

This multi-user heritage is not merely a historical curiosity. It is alive and well in

modern Linux deployments. Consider a Linux web server hosting websites for mul-

tiple clients. Each client may have their own user account, their own directory of

web files, and their own set of scripts and configurations. On a university Linux

server, hundreds of students might log in to complete programming assignments,

each needing a private workspace where their code cannot be seen or copied by

classmates. In a corporate environment, different departments might share a single

Linux file server, with accounting data that must remain invisible to the marketing

team and vice versa.

Even on a single-user Linux desktop, the multi-user model is at work in ways

that are not immediately obvious. The system itself runs dozens of services under

different user accounts. Your web server might run as the user www-data, your

database as mysql or postgres, your print spooler as lp, and your mail server as

mail. Each of these service accounts is a "user" in the eyes of the Linux kernel, and

the permissions system ensures that a compromised web server cannot read your

database files, and a misbehaving print spooler cannot modify your system config-

uration.

The following table illustrates some common system users found on a typical

Linux installation and the purpose each one serves:

System User Typical Purpose Home Directory Why It Exists

root Superuser with full sys-
tem access

/root Performs administrative
tasks that require unre-
stricted access

www-data Runs the Apache or Ng-
inx web server

/var/www Isolates web server pro-
cesses from the rest of
the system

mysql Runs the MySQL data-
base server

/var/lib/mysql Prevents database files
from being accessed by
other services

8

nobody Used for unprivileged
operations

/nonexistent Provides a user with min-
imal permissions for
sandboxing

mail Handles mail delivery
subsystem

/var/mail Separates mail process-
ing from other system
functions

lp Manages printing ser-
vices

/var/spool/lpd Restricts printer opera-
tions to a dedicated ac-
count

sshd Manages SSH daemon
privilege separation

/run/sshd Isolates SSH connection
handling for security

You can see these users on your own system by examining the password file:

cat /etc/passwd

Each line in this file represents a user account. You will likely find dozens of entries,

most of which are system accounts rather than human users. Every single one of

these accounts interacts with the permissions system every time it reads a file,

writes data, or executes a program. This is the landscape in which Linux permis-

sions operate, and it is far more complex and populated than most people realize.

What Happens Without Permissions
To understand why something matters, it is often helpful to imagine what the world

would look like without it. Let us conduct a thought experiment. Imagine a Linux

system with no permissions whatsoever. Every file on the system, from the kernel it-

self to your personal photographs, is equally accessible to every user and every

process. Anyone can read anything, write to anything, and execute anything.

The consequences would be immediate and catastrophic.

9

First, consider privacy. On a shared system, any user could read any other

user's files. Personal documents, private keys, email, browser history, saved pass-

words, and financial records would all be open books. A curious or malicious user

could browse through anyone's home directory at will. In a business context, this

would mean that trade secrets, employee records, salary information, and strategic

plans would be accessible to every person with a login.

Second, consider integrity. Without permissions, any user could modify any

file. A disgruntled employee could alter financial records. A careless student could

accidentally overwrite the operating system's configuration files. A buggy script

could corrupt another user's data. The system itself would be perpetually unstable

because any process could modify any system file. The configuration that tells your

system how to boot, how to resolve network addresses, or how to authenticate

users could be changed by anyone at any time.

Third, consider security. The password file that stores hashed credentials, the

SSH keys that allow remote access, the certificates that secure web traffic, and the

firewall rules that protect the network would all be modifiable by any user. An at-

tacker who gained access to any account, no matter how unprivileged, would im-

mediately have full control of the entire system. There would be no containment,

no damage limitation, and no defense in depth.

Fourth, consider system stability. Linux relies on specific files being owned by

specific users and having specific permissions. The kernel expects certain files to

be read-only. The package manager expects certain directories to have certain

ownership. System services expect their configuration files to be inaccessible to

unauthorized users. Without permissions, these assumptions would all be violated,

and the system would behave unpredictably.

Let us make this concrete with a real example. On a properly configured Linux

system, the file /etc/shadow contains the hashed passwords for all user accounts.

Let us examine its permissions:

10

ls -l /etc/shadow

The output will look something like this:

-rw-r----- 1 root shadow 1234 Jan 15 10:30 /etc/shadow

This tells us that only the root user can read and write this file, and members of the

shadow group can read it. No other user on the system can access it at all. This is a

deliberate and critical security measure. If any user could read this file, they could

take the password hashes offline and attempt to crack them using brute-force

tools. If any user could write to this file, they could change any user's password, in-

cluding root's, and take over the system entirely.

Now consider another critical file:

ls -l /etc/passwd

-rw-r--r-- 1 root root 2345 Jan 15 10:30 /etc/passwd

This file is world-readable because programs need to look up user information, but

it is only writable by root. The distinction between /etc/passwd being readable

by everyone and /etc/shadow being readable only by root and the shadow

group is a perfect example of the permissions system making nuanced, file-by-file

security decisions.

The Three Pillars of Linux Security
Through Permissions
The Linux permissions model rests on three fundamental pillars that work together

to create a comprehensive security framework. Understanding these pillars is es-

sential before we explore the technical details in later chapters.

11

The First Pillar: Ownership

Every file and every directory on a Linux system has an owner and a group. The

owner is typically the user who created the file, and the group is typically the pri-

mary group of that user. Ownership answers the question: "Who does this belong

to?" This is not merely a label. Ownership determines which set of permission rules

apply to which users. When you access a file, the kernel first checks whether you

are the owner, then whether you belong to the file's group, and finally falls back to

the "other" category. This three-tier classification is the foundation upon which all

permission decisions are made.

You can see the ownership of files in your home directory with:

ls -la ~/

Every file listed will show two names: the owner and the group. These two pieces

of information, combined with the permission bits, determine exactly who can do

what with each file.

The Second Pillar: Access Types

Linux defines three fundamental types of access: read, write, and execute.

These three access types have slightly different meanings depending on whether

they are applied to a file or a directory, which is a nuance we will explore in great

detail in later chapters. For now, understand that read means the ability to see the

contents, write means the ability to modify or delete, and execute means the ability

to run a file as a program or enter a directory. Every combination of ownership cat-

egory and access type creates a specific permission that can be independently

granted or denied.

The following table summarizes the basic access types:

12

Access Type Symbol Effect on Files Effect on Directories

Read r View the contents of the file List the contents of the direc-
tory

Write w Modify or delete the file con-
tents

Create, delete, or rename
files within the directory

Execute x Run the file as a program or
script

Enter the directory and ac-
cess its contents

The Third Pillar: Enforcement by the Kernel

Permissions in Linux are not suggestions or guidelines. They are enforced by

the kernel itself, which is the lowest and most authoritative layer of the operating

system. When a process attempts to open a file, the kernel checks the permissions

before allowing the operation. This check cannot be bypassed by user-space pro-

grams. It does not matter how clever a program is or what tricks it attempts. If the

kernel says no, the answer is no. The only exception is the root user, who tradition-

ally bypasses most permission checks, which is precisely why gaining root access is

the ultimate goal of any attacker and why protecting it is the ultimate responsibility

of any administrator.

You can observe the kernel enforcing permissions with a simple experiment.

Create a file and remove all permissions from it:

touch /tmp/testfile

echo "secret data" > /tmp/testfile

chmod 000 /tmp/testfile

cat /tmp/testfile

As a regular user, the last command will produce:

cat: /tmp/testfile: Permission denied

This "Permission denied" message comes directly from the kernel. The cat pro-

gram asked the kernel to open the file, the kernel checked the permissions, found

13

that the requesting user had no read access, and refused the operation. This is ker-

nel-level enforcement in action.

To clean up after this experiment:

chmod 644 /tmp/testfile

rm /tmp/testfile

Real-World Scenarios Where Permis-
sions Save the Day
Understanding permissions in the abstract is valuable, but seeing them in action

makes their importance visceral and real. Here are several scenarios drawn from

real-world Linux administration where the permissions system prevents disaster.

Scenario One: The Shared Web Server

A hosting company runs a Linux server with 50 client websites. Each client has

their own user account and their own directory under /var/www/. Client A's files

are owned by clienta:clienta with permissions 750, meaning Client A can

read, write, and execute, the group can read and execute, and everyone else has

no access at all. When Client B tries to access Client A's files, the kernel denies the

request. Even if Client B discovers a vulnerability in their own web application that

allows arbitrary file reading, the permissions system prevents the attacker from piv-

oting to other clients' data.

Example of setting up isolated client directories

mkdir /var/www/clienta

chown clienta:clienta /var/www/clienta

chmod 750 /var/www/clienta

mkdir /var/www/clientb

chown clientb:clientb /var/www/clientb

14

chmod 750 /var/www/clientb

Scenario Two: The Careless Script

A system administrator writes a cleanup script that is supposed to delete tem-

porary files from /tmp/. Due to a typo, the script contains rm -rf / tmp/ instead

of rm -rf /tmp/. On a system where the script runs as an unprivileged user, the

permissions system prevents the script from deleting system files, configuration

files, and other users' data. The damage is contained to files that the unprivileged

user owns. This is why experienced administrators never run scripts as root unless

absolutely necessary, and why the principle of least privilege is a cornerstone of

Linux security.

Scenario Three: The Compromised Service

An attacker exploits a vulnerability in a web application running on a Linux

server. The web application runs as the www-data user. Because of the permis-

sions system, the attacker can only access files that www-data is permitted to read.

They cannot read /etc/shadow to obtain password hashes. They cannot modify /

etc/ssh/sshd_config to weaken SSH security. They cannot install a rootkit in /

usr/bin/. The permissions system has transformed a complete system compro-

mise into a limited breach that affects only the web application's own files.

The Principle of Least Privilege
One concept that runs like a thread through every aspect of Linux permissions is

the principle of least privilege. This principle states that every user, every process,

and every service should have only the minimum permissions necessary to per-

form its intended function, and nothing more. This principle is not unique to Linux,

but Linux's permissions system provides the tools to implement it with precision.

15

When you create a new file, the default permissions should not be more gener-

ous than necessary. When you set up a new service, it should run under a dedicat-

ed user account with access only to the files it needs. When you grant a user access

to a system, they should receive only the permissions required for their role.

The following table shows how the principle of least privilege applies to com-

mon Linux scenarios:

Scenario Least Privilege Ap-
proach

Overly Permissive
Approach

Risk of Overly Per-
missive

Web server files Owned by root,
readable by www-
data

Owned by www-
data with write ac-
cess

Attacker can modify
website content

User home directo-
ries

Mode 700, accessi-
ble only to owner

Mode 755, read-
able by everyone

Other users can
browse private files

System configurati-
on

Mode 644 or 600,
owned by root

Mode 666, writable
by everyone

Any user can alter
system behavior

SSH private keys Mode 600, read-
able only by owner

Mode 644, read-
able by group and
others

Keys can be stolen
and used for unau-
thorized access

Database files Owned by data-
base user, mode
700

World-readable Sensitive data ex-
posed to all users

You can check the permissions on your own SSH keys to see if they follow the prin-

ciple of least privilege:

ls -la ~/.ssh/

If your private key (id_rsa or id_ed25519) has permissions more open than 600,

the SSH client itself will refuse to use it and display a warning. This is a perfect ex-

ample of a program enforcing the principle of least privilege on behalf of the user.

Correct permissions for SSH private keys

chmod 600 ~/.ssh/id_rsa

16

chmod 600 ~/.ssh/id_ed25519

Correct permissions for the .ssh directory

chmod 700 ~/.ssh

Correct permissions for the authorized_keys file

chmod 600 ~/.ssh/authorized_keys

Setting the Stage for What Comes
Next
This chapter has established the "why" of Linux permissions. We have seen that

Linux is inherently a multi-user system, that the absence of permissions would lead

to chaos, that the permissions model rests on three pillars of ownership, access

types, and kernel enforcement, and that the principle of least privilege guides how

permissions should be applied in practice.

In the chapters that follow, we will move from philosophy to practice. We will

learn how to read permission strings, how to use chmod to change permissions,

how to use chown and chgrp to change ownership, how octal notation works,

what special permissions like setuid, setgid, and the sticky bit do, and how Access

Control Lists extend the basic permissions model for more complex scenarios.

Every technical detail we explore will be grounded in the understanding we have

built here: that permissions are not bureaucratic obstacles or arbitrary restrictions,

but essential safeguards that make Linux the secure, stable, and trustworthy oper-

ating system that powers the majority of the world's servers, supercomputers, and

embedded devices.

17

Exercises
The following exercises will help reinforce the concepts covered in this chapter.

Complete each one on a Linux system to build hands-on familiarity with the topics

discussed.

Exercise 1: Exploring System Users

Run the following command and count how many user accounts exist on your

system. Identify which ones are human users and which are system accounts. Sys-

tem accounts typically have user IDs below 1000 on most modern Linux distribu-

tions.

cat /etc/passwd | wc -l

awk -F: '$3 < 1000 {print $1, $3}' /etc/passwd

awk -F: '$3 >= 1000 {print $1, $3}' /etc/passwd

Write down the total number of accounts, the number of system accounts, and the

number of human accounts. Consider why so many system accounts exist and what

role each one plays.

Exercise 2: Examining Critical File Permissions

Examine the permissions on the following critical system files and record what

you observe. For each file, note who the owner is, what group it belongs to, and

what the permission string says.

ls -l /etc/passwd

ls -l /etc/shadow

ls -l /etc/group

ls -l /etc/hostname

ls -l /etc/sudoers

For each file, answer these questions: Who can read this file? Who can write to it?

Why do you think these specific permissions were chosen?

Exercise 3: Witnessing Permission Denial

18

Create a test file, write some content to it, then remove all permissions and at-

tempt to read it. Observe the error message. Then restore the permissions and

clean up.

echo "This is a test of Linux permissions" > /tmp/permission_test

chmod 000 /tmp/permission_test

cat /tmp/permission_test

chmod 644 /tmp/permission_test

rm /tmp/permission_test

Record the exact error message you receive. This message originates from the ker-

nel's permission enforcement mechanism.

Exercise 4: Investigating Your Own Permissions

Examine the permissions on your home directory and its contents. Consider

whether the permissions follow the principle of least privilege.

ls -la ~/

ls -ld ~/

stat ~/

The stat command provides detailed information about a file or directory, includ-

ing its permissions in both symbolic and octal notation. Familiarize yourself with its

output, as we will use it extensively in later chapters.

Exercise 5: Thinking About Least Privilege

Without making any changes to your system, identify three files or directories

where you believe the permissions could be made more restrictive without break-

ing functionality. Write down what the current permissions are, what you would

change them to, and why. This exercise develops the security mindset that is essen-

tial for effective Linux administration.

Note: Throughout these exercises, be careful not to change permissions on

system files unless you fully understand the consequences. Working in /tmp/ or in

your own home directory is safe for experimentation. Modifying permissions on

19

system files can render your system unbootable or insecure. When in doubt, ob-

serve and record rather than modify.

The understanding you build in this chapter is the foundation upon which all

subsequent chapters rest. Permissions are not an advanced topic to be learned lat-

er. They are a fundamental aspect of how Linux works, and every command you

run, every file you create, and every service you configure interacts with the permis-

sions system. By understanding why permissions matter, you are prepared to learn

how they work.

20

Chapter 2: Users, Groups,
and Ownership

Linux is, at its very core, a multi-user operating system. This fundamental character-

istic shapes everything about how it manages security, allocates resources, and

controls access to files and processes. Before you can truly understand permissions

in Linux, you must first understand the actors involved: users, groups, and the con-

cept of ownership. These three pillars form the foundation upon which the entire

Linux permission model is built. Without a clear grasp of who users are, how

groups organize them, and what ownership means in the context of files and direc-

tories, any attempt to manage permissions will feel like navigating a dark room

without a flashlight. This chapter will illuminate each of these concepts with depth,

practical examples, and exercises that will transform your understanding from the-

oretical to operational.

Every action taken on a Linux system is performed in the context of a user.

When you type a command in the terminal, when a web server responds to a re-

quest, when a scheduled task runs at midnight, there is always a user identity asso-

ciated with that action. Linux does not allow anonymous activity. Even processes

that appear to run "in the background" with no human interaction are tied to a spe-

cific user account. This design philosophy is not accidental. It is the deliberate re-

sult of decades of Unix and Linux development, where accountability and isolation

between users were considered essential properties of a secure and stable operat-

ing system.

The Root User and Regular Users

21

At the top of the user hierarchy sits the root user, also known as the superuser.

The root user has a User ID (UID) of 0, and this single number grants it unrestricted

access to every file, every process, and every configuration on the system. The root

user can read any file regardless of its permissions, kill any process regardless of

who owns it, and modify any system configuration regardless of how it is protect-

ed. This level of power is both necessary and dangerous. It is necessary because

someone must be able to administer the system, install software, configure net-

work interfaces, and manage hardware. It is dangerous because a single mistake

made as root can render the entire system unusable, corrupt data, or open security

vulnerabilities.

Regular users, by contrast, operate within carefully defined boundaries. A regu-

lar user typically has a UID starting from 1000 on most modern Linux distributions

such as Ubuntu, Fedora, and Debian. Each regular user has a home directory, usu-

ally located at /home/username, where they can create, modify, and delete files

freely. Outside of their home directory, their ability to interact with the system is

governed by permissions, which we will explore in great detail throughout this

book.

Between root and regular users, there exists a category often called system

users or service users. These are accounts created specifically to run services and

daemons. For example, the www-data user might run the Apache web server, the

mysql user might run the MySQL database server, and the nobody user might be

used for processes that require minimal privileges. System users typically have

UIDs between 1 and 999, they usually do not have a login shell, and they do not

have a traditional home directory. Their purpose is to provide isolation: if a web

server is compromised, the attacker gains only the privileges of the www-data

user, not the privileges of root.

Let us examine the key files that store user information on a Linux system.

The /etc/passwd File

22

The /etc/passwd file is the primary database of user accounts on a Linux sys-

tem. Despite its name, it no longer stores passwords on modern systems. Each line

in this file represents a single user account and contains seven fields separated by

colons.

Consider this example entry:

john:x:1001:1001:John Smith,Room 101,555-1234:/home/john:/bin/

bash

The following table explains each field in detail:

Field Position Field Name Example Value Explanation

1 Username john The login name used
to identify the user on
the system. It must be
unique and is typical-
ly lowercase.

2 Password Placeholder x Historically contained
the encrypted pass-
word. The "x" indi-
cates the password is
stored in /etc/shadow
instead.

3 User ID (UID) 1001 A unique numerical
identifier for the user.
The system uses this
number internally
rather than the user-
name.

4 Group ID (GID) 1001 The numerical ID of
the user's primary
group. This corre-
sponds to an entry
in /etc/group.

23

5 GECOS Field John Smith,Room
101,555-1234

A comment field con-
taining additional in-
formation about the
user such as full
name, office location,
and phone number.

6 Home Directory /home/john The absolute path to
the user's home di-
rectory. This is the di-
rectory the user is
placed in upon login.

7 Login Shell /bin/bash The program that
runs when the user
logs in. For interactive
users, this is typically
a shell like bash or
zsh.

You can view the contents of this file by running:

cat /etc/passwd

To search for a specific user, you can use the grep command:

grep "john" /etc/passwd

The /etc/shadow File

The /etc/shadow file stores the actual encrypted passwords and password

aging information. This file is readable only by root, which is a critical security mea-

sure. An example entry looks like this:

john:

6rounds=5000$saltsalt$hashedpasswordhere:19500:0:99999:7:::

Field Position Field Name Explanation

1 Username Must match the username in /etc/passwd

24

2 Encrypted Password The hashed password. A value of "!" or "*"
means the account is locked.

3 Last Password Change Days since January 1, 1970 when the
password was last changed

4 Minimum Password Age Minimum number of days between pass-
word changes

5 Maximum Password Age Maximum number of days the password is
valid

6 Warning Period Number of days before expiration that the
user is warned

7 Inactivity Period Number of days after expiration before
the account is disabled

8 Account Expiration Date when the account expires, expressed
as days since January 1, 1970

9 Reserved Reserved for future use

Creating and Managing Users

Linux provides several commands for managing user accounts. The most com-

monly used are useradd, usermod, and userdel.

To create a new user with a home directory and a default shell:

sudo useradd -m -s /bin/bash -c "Jane Doe" jane

The flags used here deserve explanation:

Flag Meaning

-m Create the user's home directory if it does not exist

-s /bin/bash Set the user's login shell to /bin/bash

-c "Jane Doe" Set the GECOS comment field to the user's full name

After creating the user, you should set a password:

25

sudo passwd jane

To modify an existing user, the usermod command is used. For example, to change

a user's shell:

sudo usermod -s /bin/zsh jane

To lock a user account, preventing login:

sudo usermod -L jane

To unlock the account:

sudo usermod -U jane

To delete a user and their home directory:

sudo userdel -r jane

Note: The -r flag with userdel removes the user's home directory and mail

spool. Without this flag, the home directory remains on the filesystem, which can

create orphaned files that still reference the deleted user's UID.

Understanding Groups

Groups in Linux serve as a mechanism for organizing users and managing col-

lective access to resources. Rather than assigning permissions to each user individ-

ually, which would be tedious and error-prone on a system with hundreds of users,

Linux allows you to assign permissions to a group and then add users to that

group. Every user on a Linux system belongs to at least one group, known as their

primary group. They may also belong to additional groups, known as supplemen-

tary groups or secondary groups.

When a user creates a file, that file is owned by the user and by the user's pri-

mary group. This is an important detail that directly affects how permissions work in

practice.

