Linux Permissions

Understanding Ownership, Access
Control, and Security on Linux Systems

Preface

Every file on a Linux system has a gatekeeper. Every directory, every script, every
configuration file, every socket — all of them are governed by a quiet but unyield-
ing system of rules that determines who can read, who can write, and who can exe-
cute. This system is the Linux permissions model, and it is one of the most funda-
mental pillars of Linux security.

Yet for many Linux users and administrators, permissions remain a source of
confusion, frustration, and — too often — costly mistakes. A web application fails
silently because a directory isn't executable. A cron job breaks after a routine de-
ployment. A well-meaning administrator runs chmod 777 to "fix" a problem and
unknowingly opens a door that should have stayed locked. These scenarios play
out every day on Linux systems around the world.

This book exists to make sure they don't play out on yours.

What This Book Covers

Linux Permissions: Understanding Ownership, Access Control, and Security on Lin-
ux Systems is a comprehensive, practical guide to how Linux controls access to
files, directories, and system resources. It is written for system administrators, de-
velopers, DevOps engineers, and anyone who works with Linux and wants to move
beyond guesswork toward genuine understanding.

We begin with the foundations — why permissions matter on Linux, how users
and groups form the basis of ownership, and what read, write, and execute actually

mean in practice. From there, we explore both symbolic and numeric (octal) modes

for setting permissions, and we examine the distinct behaviors that permissions ex-
hibit on files versus directories.

The middle chapters take you deeper into the Linux permissions landscape.
You'll learn about special permission bits — SUID, SGID, and the sticky bit — and
understand when they're essential and when they're dangerous. You'll master
umask to control default permissions, and you'll work with Access Control Lists
(ACLs) for the fine-grained access control that standard Linux permissions alone
cannot provide.

The later chapters are where theory meets the real world. We tackle permis-
sion troubleshooting with systematic approaches, examine best practices for web
servers and system services running on Linux, and introduce auditing tech-
niques to verify that your permissions reflect your security intentions. We also pro-
vide an accessible introduction to SELinux, showing how mandatory access con-
trols extend beyond traditional Linux permissions. A dedicated chapter on permis-
sion anti-patterns catalogs the most common mistakes so you can recognize and
avoid them. The final chapter steps back to frame Linux permissions within the
broader context of security architecture, pointing you toward a more holistic un-
derstanding.

Five appendices provide quick-reference material — cheat sheets for chmod
and chown, an octal permission reference table, ACL command summaries, a trou-
bleshooting checklist, and a Linux security learning roadmap for continuing your

journey.

How to Use This Book

If you're new to Linux permissions, read the chapters in order. Each one builds on

the last. If you're an experienced administrator looking to fill specific gaps, the

chapters are self-contained enough to serve as targeted references. Either way, the
appendices are designed to stay open on your desk — or your second monitor —

while you work.

A Note of Thanks

This book was shaped by years of conversations with Linux administrators who
learned permissions the hard way: through broken deployments, security inci-
dents, and late-night troubleshooting sessions. Their experiences — and their will-
ingness to share what went wrong — made this a better, more honest book. I'm also
grateful to the broader Linux and open-source community, whose documentation,
forum posts, and tireless knowledge-sharing form the bedrock on which any book

like this is built.

The Goal

Linux permissions are not merely a technical detail. They are the first line of de-
fense on every Linux system you manage. My goal is that by the final page, you
won't just know how to set permissions — you'll understand why you're setting
them, what could go wrong if you don't, and how to verify that your systems are as
secure as you believe them to be.

Let's begin.

Bas van den Berg

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Why Permissions Matter

Users, Groups, and Ownership
Understanding Read, Write, and Execute
Symbolic and Numeric Modes
Managing File Permissions
Managing Directory Permissions
SUID, SGID, and Sticky Bit
Default Permissions and umask
Access Control Lists (ACLs)
Permission Troubleshooting
Permissions for Web Servers
Permissions for System Services
Auditing Permissions
Permissions and SELinux Basics

Permission Anti-Patterns

From Permission Basics to Security Architecture

chmod and chown Cheat Sheet
Octal Permission Reference Table
ACL Command Reference

Permission Troubleshooting Checklist

Linux Security Learning Roadmap

Page

20

33

48

60

76

89

104
118
132
146
160
177
192
206
219
237
252
261
274
287

Chapter 1: Why Permissions
Matter

Linux is, at its very core, a multi-user operating system. From the moment it was
conceived as a reimagining of Unix principles, Linux was designed with the as-
sumption that more than one person would be using the same machine, accessing
the same resources, and running programs simultaneously. This fundamental de-
sign philosophy gave rise to one of the most critical and elegant subsystems in all
of computing: the Linux permissions model. Before we dive into the technical me-
chanics of how permissions work, how to read them, and how to change them, it is
essential that we first understand why they exist, what problems they solve, and
what would happen in a world without them. This chapter lays the philosophical

and practical groundwork for everything that follows in this book.

The Multi-User Nature of Linux

To truly appreciate why permissions matter, you must first understand the environ-
ment in which Linux operates. Unlike some operating systems that were originally
designed for a single user sitting at a single desk, Linux inherited its DNA from
Unix, which was born in the shared computing environments of Bell Labs in the
early 1970s. In those days, a single powerful computer served dozens or even hun-
dreds of users through terminals. Every user had their own login, their own files,
and their own running processes, but they all shared the same physical hardware,

the same kernel, and the same filesystem.

This multi-user heritage is not merely a historical curiosity. It is alive and well in
modern Linux deployments. Consider a Linux web server hosting websites for mul-
tiple clients. Each client may have their own user account, their own directory of
web files, and their own set of scripts and configurations. On a university Linux
server, hundreds of students might log in to complete programming assignments,
each needing a private workspace where their code cannot be seen or copied by
classmates. In a corporate environment, different departments might share a single
Linux file server, with accounting data that must remain invisible to the marketing
team and vice versa.

Even on a single-user Linux desktop, the multi-user model is at work in ways
that are not immediately obvious. The system itself runs dozens of services under
different user accounts. Your web server might run as the user www-data, your
database as mysqgl or postgres, your print spooler as 1p, and your mail server as
mail. Each of these service accounts is a "user" in the eyes of the Linux kernel, and
the permissions system ensures that a compromised web server cannot read your
database files, and a misbehaving print spooler cannot modify your system config-
uration.

The following table illustrates some common system users found on a typical

Linux installation and the purpose each one serves:

System User Typical Purpose Home Directory Why It Exists
root Superuser with full sys- /root Performs administrative
tem access tasks that require unre-

stricted access

www-data Runsthe Apache or Ng- /var/www Isolates web server pro-
inx web server cesses from the rest of
the system
mysq| Runs the MySQL data- /var/lib/mysql Prevents database files
base server from being accessed by

other services

nobody Used for unprivileged /nonexistent Provides a user with min-
operations imal permissions for
sandboxing

mail Handles mail delivery /var/mail Separates mail process-
subsystem ing from other system
functions
lp Manages printing ser- /var/spool/lpd Restricts printer opera-
vices tions to a dedicated ac-
count
sshd Manages SSH daemon /run/sshd Isolates SSH connection
privilege separation handling for security

You can see these users on your own system by examining the password file:

cat /etc/passwd

Each line in this file represents a user account. You will likely find dozens of entries,
most of which are system accounts rather than human users. Every single one of
these accounts interacts with the permissions system every time it reads a file,
writes data, or executes a program. This is the landscape in which Linux permis-

sions operate, and it is far more complex and populated than most people realize.

What Happens Without Permissions

To understand why something matters, it is often helpful to imagine what the world
would look like without it. Let us conduct a thought experiment. Imagine a Linux
system with no permissions whatsoever. Every file on the system, from the kernel it-
self to your personal photographs, is equally accessible to every user and every
process. Anyone can read anything, write to anything, and execute anything.

The consequences would be immediate and catastrophic.

First, consider privacy. On a shared system, any user could read any other
user's files. Personal documents, private keys, email, browser history, saved pass-
words, and financial records would all be open books. A curious or malicious user
could browse through anyone's home directory at will. In a business context, this
would mean that trade secrets, employee records, salary information, and strategic
plans would be accessible to every person with a login.

Second, consider integrity. Without permissions, any user could modify any
file. A disgruntled employee could alter financial records. A careless student could
accidentally overwrite the operating system's configuration files. A buggy script
could corrupt another user's data. The system itself would be perpetually unstable
because any process could modify any system file. The configuration that tells your
system how to boot, how to resolve network addresses, or how to authenticate
users could be changed by anyone at any time.

Third, consider security. The password file that stores hashed credentials, the
SSH keys that allow remote access, the certificates that secure web traffic, and the
firewall rules that protect the network would all be modifiable by any user. An at-
tacker who gained access to any account, no matter how unprivileged, would im-
mediately have full control of the entire system. There would be no containment,
no damage limitation, and no defense in depth.

Fourth, consider system stability. Linux relies on specific files being owned by
specific users and having specific permissions. The kernel expects certain files to
be read-only. The package manager expects certain directories to have certain
ownership. System services expect their configuration files to be inaccessible to
unauthorized users. Without permissions, these assumptions would all be violated,
and the system would behave unpredictably.

Let us make this concrete with a real example. On a properly configured Linux
system, the file /etc/shadow contains the hashed passwords for all user accounts.

Let us examine its permissions:

ls -1 /etc/shadow

The output will look something like this:

-rw-r-———-— 1 root shadow 1234 Jan 15 10:30 /etc/shadow

This tells us that only the root user can read and write this file, and members of the
shadow group can read it. No other user on the system can access it at all. This is a
deliberate and critical security measure. If any user could read this file, they could
take the password hashes offline and attempt to crack them using brute-force
tools. If any user could write to this file, they could change any user's password, in-
cluding root's, and take over the system entirely.

Now consider another critical file:

ls -1 /etc/passwd

-rw-r—--r-— 1 root root 2345 Jan 15 10:30 /etc/passwd

This file is world-readable because programs need to look up user information, but
it is only writable by root. The distinction between /etc/passwd being readable
by everyone and /etc/shadow being readable only by root and the shadow
group is a perfect example of the permissions system making nuanced, file-by-file

security decisions.

The Three Pillars of Linux Security
Through Permissions

The Linux permissions model rests on three fundamental pillars that work together
to create a comprehensive security framework. Understanding these pillars is es-

sential before we explore the technical details in later chapters.

10

The First Pillar: Ownership

Every file and every directory on a Linux system has an owner and a group. The
owner is typically the user who created the file, and the group is typically the pri-
mary group of that user. Ownership answers the question: "Who does this belong
to?" This is not merely a label. Ownership determines which set of permission rules
apply to which users. When you access a file, the kernel first checks whether you
are the owner, then whether you belong to the file's group, and finally falls back to
the "other" category. This three-tier classification is the foundation upon which all
permission decisions are made.

You can see the ownership of files in your home directory with:

ls -la ~/

Every file listed will show two names: the owner and the group. These two pieces
of information, combined with the permission bits, determine exactly who can do
what with each file.

The Second Pillar: Access Types

Linux defines three fundamental types of access: read, write, and execute.
These three access types have slightly different meanings depending on whether
they are applied to a file or a directory, which is a nuance we will explore in great
detail in later chapters. For now, understand that read means the ability to see the
contents, write means the ability to modify or delete, and execute means the ability
to run a file as a program or enter a directory. Every combination of ownership cat-
egory and access type creates a specific permission that can be independently
granted or denied.

The following table summarizes the basic access types:

11

Access Type Symbol Effect on Files Effect on Directories

Read r View the contents of the file List the contents of the direc-
tory
Write w Modify or delete the file con- Create, delete, or rename
tents files within the directory
Execute X Run the file as a program or Enter the directory and ac-
script cess its contents

The Third Pillar: Enforcement by the Kernel

Permissions in Linux are not suggestions or guidelines. They are enforced by
the kernel itself, which is the lowest and most authoritative layer of the operating
system. When a process attempts to open a file, the kernel checks the permissions
before allowing the operation. This check cannot be bypassed by user-space pro-
grams. It does not matter how clever a program is or what tricks it attempts. If the
kernel says no, the answer is no. The only exception is the root user, who tradition-
ally bypasses most permission checks, which is precisely why gaining root access is
the ultimate goal of any attacker and why protecting it is the ultimate responsibility
of any administrator.

You can observe the kernel enforcing permissions with a simple experiment.

Create a file and remove all permissions from it:

touch /tmp/testfile

echo "secret data" > /tmp/testfile
chmod 000 /tmp/testfile

cat /tmp/testfile

As a regular user, the last command will produce:

cat: /tmp/testfile: Permission denied

This "Permission denied" message comes directly from the kernel. The cat pro-

gram asked the kernel to open the file, the kernel checked the permissions, found

12

that the requesting user had no read access, and refused the operation. This is ker-
nel-level enforcement in action.

To clean up after this experiment:

chmod 644 /tmp/testfile
rm /tmp/testfile

Real-World Scenarios Where Permis-
sions Save the Day

Understanding permissions in the abstract is valuable, but seeing them in action
makes their importance visceral and real. Here are several scenarios drawn from
real-world Linux administration where the permissions system prevents disaster.

Scenario One: The Shared Web Server

A hosting company runs a Linux server with 50 client websites. Each client has
their own user account and their own directory under /var/www/. Client A's files
are owned by clienta:clienta with permissions 750, meaning Client A can
read, write, and execute, the group can read and execute, and everyone else has
no access at all. When Client B tries to access Client A's files, the kernel denies the
request. Even if Client B discovers a vulnerability in their own web application that
allows arbitrary file reading, the permissions system prevents the attacker from piv-

oting to other clients' data.
Example of setting up isolated client directories
mkdir /var/www/clienta

chown clienta:clienta /var/www/clienta

chmod 750 /var/www/clienta

mkdir /var/www/clientb

chown clientb:clientb /var/www/clientb

13

chmod 750 /var/www/clientb

Scenario Two: The Careless Script

A system administrator writes a cleanup script that is supposed to delete tem-
porary files from /tmp/. Due to a typo, the script contains rm -rf / tmp/ instead
of rm -rf /tmp/.On a system where the script runs as an unprivileged user, the
permissions system prevents the script from deleting system files, configuration
files, and other users' data. The damage is contained to files that the unprivileged
user owns. This is why experienced administrators never run scripts as root unless
absolutely necessary, and why the principle of least privilege is a cornerstone of
Linux security.

Scenario Three: The Compromised Service

An attacker exploits a vulnerability in a web application running on a Linux
server. The web application runs as the www-data user. Because of the permis-
sions system, the attacker can only access files that www-data is permitted to read.
They cannot read /etc/shadow to obtain password hashes. They cannot modify /
etc/ssh/sshd config to weaken SSH security. They cannot install a rootkit in /
usr/bin/. The permissions system has transformed a complete system compro-

mise into a limited breach that affects only the web application's own files.

The Principle of Least Privilege

One concept that runs like a thread through every aspect of Linux permissions is
the principle of least privilege. This principle states that every user, every process,
and every service should have only the minimum permissions necessary to per-
form its intended function, and nothing more. This principle is not unique to Linux,

but Linux's permissions system provides the tools to implement it with precision.

14

When you create a new file, the default permissions should not be more gener-
ous than necessary. When you set up a new service, it should run under a dedicat-
ed user account with access only to the files it needs. When you grant a user access
to a system, they should receive only the permissions required for their role.

The following table shows how the principle of least privilege applies to com-

mon Linux scenarios:

Scenario Least Privilege Ap- Overly Permissive Risk of Overly Per-
proach Approach missive

Web server files Owned by root, Owned by www- Attacker can modify
readable by www- data with write ac- website content
data cess

User home directo- Mode 700, accessi- Mode 755, read- Other users can

ries ble only to owner able by everyone browse private files

System configurati- Mode 644 or 600, Mode 666, writable Any user can alter
on owned by root by everyone system behavior

SSH private keys Mode 600, read- Mode 644, read- Keys can be stolen
able only by owner able by group and and used for unau-

others thorized access
Database files Owned by data- World-readable Sensitive data ex-
base user, mode posed to all users

700

You can check the permissions on your own SSH keys to see if they follow the prin-

ciple of least privilege:
ls -la ~/.ssh/
If your private key (1d rsa or id ed25519) has permissions more open than 600,

the SSH client itself will refuse to use it and display a warning. This is a perfect ex-

ample of a program enforcing the principle of least privilege on behalf of the user.

Correct permissions for SSH private keys
chmod 600 ~/.ssh/id_rsa

15

chmod 600 ~/.ssh/id ed25519

Correct permissions for the .ssh directory
chmod 700 ~/.ssh

Correct permissions for the authorized keys file
chmod 600 ~/.ssh/authorized keys

Setting the Stage for What Comes
Next

This chapter has established the "why" of Linux permissions. We have seen that
Linux is inherently a multi-user system, that the absence of permissions would lead
to chaos, that the permissions model rests on three pillars of ownership, access
types, and kernel enforcement, and that the principle of least privilege guides how
permissions should be applied in practice.

In the chapters that follow, we will move from philosophy to practice. We will
learn how to read permission strings, how to use chmod to change permissions,
how to use chown and chgrp to change ownership, how octal notation works,
what special permissions like setuid, setgid, and the sticky bit do, and how Access
Control Lists extend the basic permissions model for more complex scenarios.
Every technical detail we explore will be grounded in the understanding we have
built here: that permissions are not bureaucratic obstacles or arbitrary restrictions,
but essential safeguards that make Linux the secure, stable, and trustworthy oper-
ating system that powers the majority of the world's servers, supercomputers, and

embedded devices.

16

Exercises

The following exercises will help reinforce the concepts covered in this chapter.
Complete each one on a Linux system to build hands-on familiarity with the topics
discussed.

Exercise 1: Exploring System Users

Run the following command and count how many user accounts exist on your
system. Identify which ones are human users and which are system accounts. Sys-
tem accounts typically have user IDs below 1000 on most modern Linux distribu-
tions.
cat /etc/passwd | wc -1

awk -F: '$3 < 1000 {print $1, $3}' /etc/passwd
awk -F: '$3 >= 1000 {print $1, $3}' /etc/passwd

Write down the total number of accounts, the number of system accounts, and the
number of human accounts. Consider why so many system accounts exist and what
role each one plays.

Exercise 2: Examining Critical File Permissions

Examine the permissions on the following critical system files and record what
you observe. For each file, note who the owner is, what group it belongs to, and

what the permission string says.

ls -1 /etc/passwd
1ls -1 /etc/shadow
ls -1 /etc/group

ls -1 /etc/hostname

ls -1 /etc/sudoers

For each file, answer these questions: Who can read this file? Who can write to it?
Why do you think these specific permissions were chosen?

Exercise 3: Witnessing Permission Denial

17

Create a test file, write some content to it, then remove all permissions and at-
tempt to read it. Observe the error message. Then restore the permissions and

clean up.

echo "This is a test of Linux permissions" > /tmp/permission test
chmod 000 /tmp/permission test

cat /tmp/permission test

chmod 644 /tmp/permission test

rm /tmp/permission test

Record the exact error message you receive. This message originates from the ker-
nel's permission enforcement mechanism.

Exercise 4: Investigating Your Own Permissions

Examine the permissions on your home directory and its contents. Consider

whether the permissions follow the principle of least privilege.

ls -la ~/
ls -1d ~/
stat ~/

The stat command provides detailed information about a file or directory, includ-
ing its permissions in both symbolic and octal notation. Familiarize yourself with its
output, as we will use it extensively in later chapters.

Exercise 5: Thinking About Least Privilege

Without making any changes to your system, identify three files or directories
where you believe the permissions could be made more restrictive without break-
ing functionality. Write down what the current permissions are, what you would
change them to, and why. This exercise develops the security mindset that is essen-
tial for effective Linux administration.

Note: Throughout these exercises, be careful not to change permissions on
system files unless you fully understand the consequences. Working in /tmp/ orin

your own home directory is safe for experimentation. Modifying permissions on

18

system files can render your system unbootable or insecure. When in doubt, ob-
serve and record rather than modify.

The understanding you build in this chapter is the foundation upon which all
subsequent chapters rest. Permissions are not an advanced topic to be learned lat-
er. They are a fundamental aspect of how Linux works, and every command you
run, every file you create, and every service you configure interacts with the permis-
sions system. By understanding why permissions matter, you are prepared to learn

how they work.

19

Chapter 2: Users, Groups,
and Ownership

Linux is, at its very core, a multi-user operating system. This fundamental character-
istic shapes everything about how it manages security, allocates resources, and
controls access to files and processes. Before you can truly understand permissions
in Linux, you must first understand the actors involved: users, groups, and the con-
cept of ownership. These three pillars form the foundation upon which the entire
Linux permission model is built. Without a clear grasp of who users are, how
groups organize them, and what ownership means in the context of files and direc-
tories, any attempt to manage permissions will feel like navigating a dark room
without a flashlight. This chapter will illuminate each of these concepts with depth,
practical examples, and exercises that will transform your understanding from the-
oretical to operational.

Every action taken on a Linux system is performed in the context of a user.
When you type a command in the terminal, when a web server responds to a re-
quest, when a scheduled task runs at midnight, there is always a user identity asso-
ciated with that action. Linux does not allow anonymous activity. Even processes
that appear to run "in the background" with no human interaction are tied to a spe-
cific user account. This design philosophy is not accidental. It is the deliberate re-
sult of decades of Unix and Linux development, where accountability and isolation
between users were considered essential properties of a secure and stable operat-
ing system.

The Root User and Regular Users

20

At the top of the user hierarchy sits the root user, also known as the superuser.
The root user has a User ID (UID) of 0, and this single number grants it unrestricted
access to every file, every process, and every configuration on the system. The root
user can read any file regardless of its permissions, kill any process regardless of
who owns it, and modify any system configuration regardless of how it is protect-
ed. This level of power is both necessary and dangerous. It is necessary because
someone must be able to administer the system, install software, configure net-
work interfaces, and manage hardware. It is dangerous because a single mistake
made as root can render the entire system unusable, corrupt data, or open security
vulnerabilities.

Regular users, by contrast, operate within carefully defined boundaries. A regu-
lar user typically has a UID starting from 1000 on most modern Linux distributions
such as Ubuntu, Fedora, and Debian. Each regular user has a home directory, usu-
ally located at /home/username, where they can create, modify, and delete files
freely. Outside of their home directory, their ability to interact with the system is
governed by permissions, which we will explore in great detail throughout this
book.

Between root and regular users, there exists a category often called system
users or service users. These are accounts created specifically to run services and
daemons. For example, the www-data user might run the Apache web server, the
mysqgl user might run the MySQL database server, and the nobody user might be
used for processes that require minimal privileges. System users typically have
UIDs between 1 and 999, they usually do not have a login shell, and they do not
have a traditional home directory. Their purpose is to provide isolation: if a web
server is compromised, the attacker gains only the privileges of the www-data
user, not the privileges of root.

Let us examine the key files that store user information on a Linux system.

The /etc/passwd File

21

The /etc/passwd file is the primary database of user accounts on a Linux sys-

tem. Despite its name, it no longer stores passwords on modern systems. Each line

in this file represents a single user account and contains seven fields separated by

colons.

Consider this example entry:

john:x:1001:1001:John Smith,Room 101,555-1234:/home/john:/bin/

bash

The following table explains each field in detail:

Field Position Field Name

Example Value

1 Username john
2 Password Placeholder x

3 User ID (UID) 1001
4 Group ID (GID) 1001

Explanation

The login name used
to identify the user on
the system. It must be
unique and is typical-
ly lowercase.

Historically contained
the encrypted pass-
word. The "x" indi-
cates the password is
stored in /etc/shadow
instead.

A unique numerical
identifier for the user.
The system uses this
number internally
rather than the user-
name.

The numerical ID of
the user's primary
group. This corre-
sponds to an entry
in /etc/group.

22

5 GECOS Field John Smith,Room A comment field con-
101,555-1234 taining additional in-
formation about the
user such as full
name, office location,
and phone number.

6 Home Directory /home/john The absolute path to
the user's home di-
rectory. This is the di-
rectory the user is
placed in upon login.

7 Login Shell /bin/bash The program that
runs when the user
logs in. For interactive
users, this is typically
a shell like bash or
zsh.

You can view the contents of this file by running:

cat /etc/passwd

To search for a specific user, you can use the grep command:

grep "john" /etc/passwd

The /etc/shadow File

The /etc/shadow file stores the actual encrypted passwords and password
aging information. This file is readable only by root, which is a critical security mea-
sure. An example entry looks like this:

john:
$6Srounds=5000$saltsaltShashedpasswordhere:19500:0:99999:7:::

Field Position Field Name Explanation

1 Username Must match the username in /etc/passwd

23

Encrypted Password The hashed password. A value of "!" or "*"
means the account is locked.

Last Password Change Days since January 1, 1970 when the
password was last changed

Minimum Password Age Minimum number of days between pass-
word changes

Maximum Password Age Maximum number of days the password is
valid

Warning Period Number of days before expiration that the
user is warned

Inactivity Period Number of days after expiration before
the account is disabled

Account Expiration Date when the account expires, expressed
as days since January 1, 1970

Reserved Reserved for future use

Creating and Managing Users

Linux provides several commands for managing user accounts. The most com-

monly used are useradd, usermod, and userdel.

To create a new user with a home directory and a default shell:

sudo useradd -m -s /bin/bash -c¢ "Jane Doe" jane

The flags used here deserve explanation:

Flag

-m
-s /bin/bash

-c "Jane Doe"

Meaning

Create the user's home directory if it does not exist
Set the user's login shell to /bin/bash

Set the GECOS comment field to the user's full name

After creating the user, you should set a password:

24

sudo passwd jane

To modify an existing user, the usermod command is used. For example, to change

a user's shell:

sudo usermod -s /bin/zsh Jjane

To lock a user account, preventing login:

sudo usermod -L Jjane

To unlock the account:

sudo usermod -U jane

To delete a user and their home directory:

sudo userdel -r Jjane

Note: The -r flag with userdel removes the user's home directory and mail
spool. Without this flag, the home directory remains on the filesystem, which can
create orphaned files that still reference the deleted user's UID.

Understanding Groups

Groups in Linux serve as a mechanism for organizing users and managing col-
lective access to resources. Rather than assigning permissions to each user individ-
ually, which would be tedious and error-prone on a system with hundreds of users,
Linux allows you to assign permissions to a group and then add users to that
group. Every user on a Linux system belongs to at least one group, known as their
primary group. They may also belong to additional groups, known as supplemen-
tary groups or secondary groups.

When a user creates a file, that file is owned by the user and by the user's pri-
mary group. This is an important detail that directly affects how permissions work in

practice.

25

