Secure Web Hosting with Al-
maLinux 9

Hardened Apache, Nginx, Firewall,
Fail2Ban, and SSL Setup Guide

Preface

Every day, thousands of web servers are compromised—not because attackers are
brilliant, but because defenders left the door open. Default configurations, un-
patched software, misconfigured firewalls, and neglected logs create an attack sur-
face that automated bots exploit around the clock. If you've ever deployed a Linux

server and wondered whether it was truly secure, this book was written for you.

Why This Book Exists

Secure Web Hosting with AlmaLinux ? was born from a simple observation: most
web hosting guides teach you how to get a server running, but very few teach you
how to keep it secure. There is a vast and dangerous gap between a functioning
web server and a hardened one, and that gap is precisely where attackers operate.
This book exists to close it.

The focus here is singular and deliberate—secure configuration at every layer
of your hosting stack. From the operating system kernel to TLS cipher suites, from
file permissions to intrusion detection, every chapter is built around one central

question: How do we make this secure?

What You Will Learn

This book takes a ground-up approach to secure web hosting on AlmaLinux 9, one

of the most trusted enterprise Linux distributions available today. You will begin by

understanding why web servers get hacked-the real-world attack vectors, com-
mon misconfigurations, and the attacker mindset that makes unsecured servers
such easy targets.

From there, you will build a hardened AlmaLinux 9 base, configure fire-
walld for disciplined network access control, and apply network-level hardening
techniques that reduce your exposure before a single web service is installed. You
will then deploy and secure both Apache and Nginx with production-grade con-
figurations designed to resist common exploits.

The journey continues through securing the full application stack-PHP-FPM,
MySQL/MariaDB, and the file system itself-because a secure web server means
nothing if the layers behind it are vulnerable. You will implement Fail2Ban to auto-
matically block brute-force attacks, establish log monitoring and alerting to de-
tect suspicious activity in real time, and deploy SSL/TLS certificates with Let's En-
crypt alongside advanced TLS hardening to protect data in transit.

Finally, you will learn how to maintain security over time through continuous
security maintenance practices and how to evolve from secure hosting into a

broader production security architecture.

Who This Book Is For

This book is for system administrators, DevOps engineers, web developers, and
anyone responsible for deploying or maintaining Linux-based web servers.
Whether you manage a single VPS or a fleet of production servers, the secure con-
figurations and hardening strategies presented here will immediately strengthen
your infrastructure. Prior experience with Linux command-line administration is as-

sumed, but every secure configuration is explained with clarity and context.

How This Book Is Structured

The sixteen chapters follow a logical progression—secure the foundation first,
then secure each service layer, then maintain and evolve your security pos-
ture. The five appendices provide ready-to-use templates and checklists, including
hardened configuration files for Apache and Nginx, firewall rule examples,
Fail2Ban jail templates, and a comprehensive VPS security hardening checklist.
These are designed to be practical references you will return to long after your first

read.

Acknowledgments

This book owes a debt of gratitude to the open-source community—the developers
behind AlmaLinux, Apache, Nginx, Fail2Ban, Let's Encrypt, and the countless secu-
rity tools that make secure hosting possible. | also want to thank the security re-
searchers and practitioners whose published work, vulnerability disclosures, and
shared knowledge continue to raise the bar for all of us. Finally, to every reader
who chooses to take security seriously rather than leaving it to chance: the internet
is better because of you.

Security is not a product you install-it is a discipline you practice. Let this book
be your guide to building, configuring, and maintaining web servers that are secure
by design and resilient by habit.

Bas van den Berg

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Why Web Servers Get Hacked
Building a Hardened Almalinux 9 Base
Firewall Configuration with firewalld
Network-Level Hardening

Secure Apache Installation

Apache Security Configuration
Secure Nginx Deployment
PHP-FPM Hardening

Securing MySQL / MariaDB

Secure File and Permission Setup
Installing and Configuring Fail2Ban

Log Monitoring and Alerting

Installing and Managing SSL with Let's Encrypt

Advanced TLS Hardening

Continuous Security Maintenance

From Secure Hosting to Production Security Architecture
Hardened Apache Configuration Template

Hardened Nginx Configuration Template

Firewall Configuration Examples
Fail2Ban Jail Templates
VPS Security Hardening Checklist

Page

21
40

54

71

82

100
117
130
147
164
181
200
212
224
242
255
276
299
312
323

Chapter 1: Why Web Servers
Get Hacked

Every day, thousands of web servers across the globe fall victim to attacks that
could have been prevented. The reality of modern web hosting is both sobering
and instructive: the majority of successful breaches do not result from sophisticat-
ed zero-day exploits or genius-level hackers breaking through military-grade en-
cryption. Instead, they stem from mundane oversights, default configurations left
unchanged, unpatched software, weak passwords, and a general lack of security
awareness among system administrators. Understanding why web servers get
hacked is the essential first step toward building a hosting environment that resists
attack, and that understanding forms the foundation upon which every subsequent
chapter of this book is built.

When we talk about securing a web server running AlmalLinux 9, we are not
merely discussing the installation of a firewall or the generation of an SSL certifi-
cate. We are talking about adopting a mindset, a disciplined approach to every de-
cision made during server setup, configuration, and ongoing maintenance. Before
we can harden Apache, configure Nginx securely, deploy Fail2Ban, or implement
SSL with confidence, we must first appreciate the threat landscape. We must under-
stand the adversary, their motivations, their methods, and the weaknesses they ex-

ploit. This chapter provides that critical context.

The Modern Threat Landscape

The internet has evolved dramatically since the early days of static HTML pages
served from university basements. Today, web servers host complex applications,
process financial transactions, store sensitive personal data, and serve as the back-
bone of businesses large and small. This evolution has made web servers extraor-
dinarily valuable targets. Attackers are no longer motivated solely by curiosity or
the desire for notoriety. The modern threat landscape is driven by financial gain,
political activism, espionage, and even warfare.

Consider the scale of the problem. According to multiple industry reports, a
new cyberattack occurs approximately every 39 seconds. Web applications are the
single most targeted attack vector, accounting for a significant percentage of all
confirmed data breaches. The average cost of a data breach has climbed into the
millions of dollars, and for small businesses, a single successful attack can mean
permanent closure.

AlmalLinux 9, as a community-driven enterprise Linux distribution that emerged
as a replacement for CentOS, inherits the robust security architecture of Red Hat
Enterprise Linux. However, no operating system is secure by default in the context
of web hosting. The security of a web server depends entirely on how it is config-
ured, maintained, and monitored. A freshly installed AlmaLinux 9 server connected
to the internet without hardening is an open invitation to attackers, and they will
find it faster than most administrators realize.

Automated scanning tools continuously sweep entire ranges of IP addresses,
probing for open ports, identifying running services, and testing for known vulner-
abilities. Within minutes of a new server coming online, it will begin receiving con-
nection attempts from bots and automated attack frameworks. This is not a theoret-
ical concern; it is an observable, measurable reality that any administrator can veri-

fy by examining the authentication logs of a newly deployed server.

Common Reasons Web Servers Are
Compromised

Understanding the specific reasons web servers fall to attackers requires examin-

ing the most frequently exploited weaknesses. The following table provides a com-

prehensive overview of the primary attack vectors and their relationship to server

security.

Attack Vector

Default Configura-
tions

Unpatched Software

Weak Authentication

Misconfigured Fire-
walls

Description

Services installed with High
factory settings, in-

cluding default ports,
enabled modules,

and sample pages

Operating system, Critical
web server, or appli-
cation software run-
ning with known vul-

nerabilities

Simple passwords, Critical
shared credentials, or

lack of multi-factor au-
thentication for ad-

ministrative access

Firewall rules that are High
too permissive, allow-

ing unnecessary traffic

to reach the server

Impact Level Prevention Ap-

proach

Hardening configura-
tions immediately af-

ter installation, remov-
ing unnecessary mod-
ules and default con-

tent

Establishing a regular
patch management
schedule using dnf

update on AlmaLinux
9

Enforcing strong
password policies, im-
plementing key-
based SSH authenti-
cation, disabling root
login

Configuring firewalld
on AlmalLinux 9 to al-
low only required
ports and services

Missing SSL/TLS

Directory Traversal

Brute Force Attacks

Information Disclo-

sure

SQL Injection

Cross-Site Scripting

Serving content over
unencrypted HTTP,
exposing data in tran-
sit to interception

Web server configura-

tion allowing access
to files outside the in-
tended document
root

Automated attempts
to guess passwords
for SSH, web applica-
tion logins, or data-
base access

Server headers, error
messages, or directo-
ry listings revealing
software versions and
server architecture

Malicious SQL state-
ments inserted
through web applica-
tion input fields

Injection of malicious
scripts into web
pages viewed by oth-
er users

High

Medium

High

Medium

Critical

High

Implementing SSL/
TLS certificates using
Let's Encrypt or com-
mercial certificate au-
thorities

Proper Apache and
Nginx configuration
with restrictive direc-
tory permissions

Deploying Fail2Ban to
detect and block re-
peated failed authen-
tication attempts

Configuring Apache
and Nginx to sup-
press version informa-
tion and disable di-
rectory listing

Input validation at the
application level, web
application firewalls,
least-privilege data-
base users

Proper output encod-
ing, Content Security
Policy headers, web
application firewall
rules

Each of these vectors represents a doorway that attackers actively probe. The criti-

cal insight is that most of these vulnerabilities are not inherent flaws in the technol-

ogy itself. They are configuration failures and maintenance oversights. A properly

configured and maintained AlmaLinux 9 server running hardened Apache or Ng-

inx, protected by firewalld and Fail2Ban, and serving content over properly config-
ured SSL, eliminates the vast majority of these attack surfaces.
Let us examine several of these vectors in greater detail to understand exactly

how they are exploited in practice.

The Danger of Default Configurations

When Apache HTTP Server or Nginx is installed on AlmaLinux 9, the default config-
uration is designed for functionality, not security. Apache, for example, ships with
its default welcome page enabled, server signature and version information visible
in HTTP response headers, and a set of loaded modules that far exceeds what
most deployments require. Each loaded module represents additional code that
could contain vulnerabilities, and each piece of information disclosed to visitors
gives attackers valuable reconnaissance data.

Consider what happens when an attacker sends a simple HTTP request to a
server running default Apache on AlmaLinux 9. The response headers might reveal

something like this:

Server: Apache/2.4.57 (AlmalLinux)
X-Powered-By: PHP/8.1.14

This single response tells the attacker exactly which web server software is running,
its precise version number, the operating system, and the PHP version. With this in-
formation, the attacker can immediately search vulnerability databases for known
exploits targeting those specific versions. The attacker has gone from knowing
nothing about the server to having a targeted attack plan in seconds, all because
the default configuration freely volunteered that information.

The same principle applies to Nginx. A default Nginx installation on AlmaLinux

9 will include the server version in response headers and may have configurations

10

that are more permissive than necessary. The process of hardening these services,
which we will cover in detail in later chapters, begins with understanding that de-

faults are starting points, never endpoints.

The Unpatched Software Epidemic

Perhaps no single factor contributes more to successful web server compromises
than unpatched software. When a vulnerability is discovered in Apache, Nginx,
OpenSSL, PHP, or any other component of the web hosting stack, a race begins.
Security researchers and vendors work to develop and release patches. Simultane-
ously, attackers work to develop exploits and identify vulnerable servers. The win-
dow between public disclosure of a vulnerability and the availability of a patch is
dangerous, but the window between patch availability and actual patch application
by administrators is where the real damage occurs.

On Almalinux 9, the package management system provides a straightforward

mechanism for keeping software current:

sudo dnf check-update

This command checks for available updates across all installed packages. To apply

all available security updates, an administrator would execute:

sudo dnf update --security

To apply all available updates, including bug fixes and enhancements:

sudo dnf update -y

The simplicity of these commands makes the prevalence of unpatched servers all
the more frustrating. Administrators who fail to establish regular patching routines

leave their servers vulnerable to attacks that exploit well-documented, publicly

known weaknesses. Automated tools like Metasploit contain modules for exploit-

11

ing hundreds of known vulnerabilities, and script kiddies with minimal technical
knowledge can use these tools to compromise unpatched servers.

Note: AlmalLinux 9 supports automatic security updates through the dnf-auto-
matic package. Configuring this service is one of the first steps in establishing a se-
cure baseline, and we will walk through its configuration in a later chapter. Howev-
er, automatic updates must be implemented thoughtfully, as updates can occa-

sionally introduce compatibility issues with running applications.

Brute Force and the Importance of Authentication
Hardening

SSH is the primary method by which administrators manage their AlmaLinux 9
servers remotely. It is also one of the most targeted services by automated attack
tools. A server with SSH exposed on the default port 22 with password authentica-
tion enabled will receive thousands of login attempts per day. These brute force at-
tacks use dictionaries of common usernames and passwords, cycling through com-
binations at high speed.

To illustrate the scale of this problem, consider examining the authentication

log on a newly deployed server:

sudo journalctl -u sshd | grep "Failed password" | wc -1

On a server that has been online for even a few hours, this command frequently re-
turns hundreds or thousands of results. Each line represents a failed login attempt,
an attacker or automated bot trying to guess credentials.

The defense against brute force attacks is multi-layered. First, password au-
thentication for SSH should be disabled entirely in favor of key-based authentica-

tion. On AlmalLinux 9, this is configured in the SSH daemon configuration file:

12

sudo vi /etc/ssh/sshd config

The relevant settings include:

PermitRootLogin no
PasswordAuthentication no
PubkeyAuthentication yes
MaxAuthTries 3

After making these changes, the SSH service must be restarted:

sudo systemctl restart sshd

Second, Fail2Ban should be deployed to monitor authentication logs and automat-
ically block IP addresses that exhibit brute force behavior. Fail2Ban watches log
files for patterns indicating repeated failed login attempts and creates temporary
firewall rules to block the offending IP addresses. This dramatically reduces the
noise in authentication logs and provides an active defense layer.

Third, the firewall itself should be configured to limit SSH access. If administra-
tive access is only needed from specific IP addresses or ranges, firewalld can be

configured to restrict SSH accordingly:

sudo firewall-cmd --permanent --add-rich-rule='rule family="ipv4"
source address="203.0.113.50" service name="ssh" accept'
sudo firewall-cmd --permanent --remove-service=ssh

sudo firewall-cmd --reload

This combination of key-based authentication, Fail2Ban monitoring, and firewall re-
strictions transforms SSH from a vulnerable attack surface into a well-defended ad-

ministrative channel.

13

Who Are the Attackers

Understanding the motivations and capabilities of attackers helps administrators

prioritize their defensive efforts. The following table categorizes the primary types

of threat actors that target web servers.

Threat Actor Motivation Capability Lev- Typical Targets Common
el Methods
Script Kiddies Curiosity, brag- Low Any vulnerable Automated
ging rights, mi- server, targets scanning tools,
nor vandalism of opportunity publicly avail-
able exploits,
default creden-
tial lists
Cybercriminals Financial gain Medium to E-commerce Sophisticated
through data High sites, databases phishing, cus-
theft, ran- with personal tom malware,
somware, cryp- information, exploitation of
tomining any server with unpatched vul-
processing nerabilities
power
Hacktivists Political or so- Low to Medium Government Website de-

cial messaging

sites, corporate
targets aligned
with their cause

facement, de-
nial of service,
data leaks

Nation-State Espionage, sab- Very High Critical in- Advanced per-
Actors otage, strategic frastructure, sistent threats,
advantage government zero-day ex-
systems, de- ploits, supply

fense contrac-
tors

chain attacks

14

Insiders Revenge, finan- Varies Their own orga- Abuse of legiti-
cial gain, negli- nization's sys- mate access,
gence tems data exfiltra-

tion, intentional
misconfigura-

tion
Automated Programmatic Low individual- Every server Continuous
Bots exploitation at ly, massivein connectedto scanning, cre-
scale aggregate the internet dential stuffing,
vulnerability
probing

The most important observation from this table is that automated bots represent
the most common and persistent threat to web servers. These bots do not discrimi-
nate. They do not care whether a server hosts a Fortune 500 company's website or
a personal blog. They scan, they probe, and when they find a weakness, they ex-
ploit it. This is why the argument that "my server is too small or unimportant to be
targeted" is dangerously wrong. Every server is a target simply by virtue of being

connected to the internet.

The Real Cost of a Compromise

When a web server is compromised, the consequences extend far beyond the im-
mediate technical problem. The following represents a realistic sequence of events
following a typical server breach:

First, the attacker gains initial access, often through a brute-forced SSH pass-
word or an unpatched vulnerability in a web application. They establish persistence
by creating additional user accounts, installing backdoors, or modifying system

services to maintain access even if the original vulnerability is patched.

15

Next, the attacker surveys the compromised system. They examine databases
for valuable data, check for stored credentials that might provide access to other
systems, and evaluate the server's resources. A server with significant processing
power might be enrolled in a cryptocurrency mining botnet. A server with access
to customer data might have that data exfiltrated for sale on dark web market-
places.

The compromised server may also be used as a platform for attacking other
targets. It might be enrolled in a distributed denial-of-service botnet, used to send
spam or phishing emails, or used as a proxy to obscure the attacker's true location
during attacks against other systems.

For the server owner, the consequences include data loss, reputational dam-
age, potential legal liability under data protection regulations such as GDPR, the
cost of incident response and forensic investigation, and the operational disruption
of taking systems offline for remediation. For businesses, customer trust, once lost,
is extraordinarily difficult to rebuild.

Note: Under regulations like GDPR, organizations that fail to adequately pro-
tect personal data can face fines of up to 4 percent of annual global revenue or 20
million euros, whichever is greater. The argument that security is too expensive or
too time-consuming collapses entirely when weighed against these potential

penalties.

Building a Security Mindset

The purpose of this chapter is not to create fear but to establish the foundation for
informed, deliberate security practices. Every chapter that follows in this book ad-

dresses specific, actionable measures for securing a web hosting environment on

16

AlmalLinux 9. But those measures are only effective when implemented by adminis-
trators who understand why they matter.

Security is not a product that can be purchased and installed. It is not a single
configuration change or a one-time audit. Security is a continuous process of as-
sessment, implementation, monitoring, and adaptation. The threat landscape
evolves constantly, and defensive measures must evolve with it.

As we move forward through this book, we will systematically address each lay-
er of the security stack. We will harden the AlmaLinux 9 operating system itself,
configure Apache and Nginx with security as the primary design criterion, deploy
and configure firewalld to control network access, implement Fail2Ban to provide
active defense against brute force attacks, and establish SSL/TLS encryption to pro-
tect data in transit.

Each of these measures addresses specific attack vectors described in this
chapter. Each reduces the attack surface available to adversaries. Together, they
create a defense-in-depth architecture that makes successful compromise dramati-
cally more difficult and provides the monitoring and alerting capabilities needed to
detect and respond to attacks that do occur.

The journey toward a secure web hosting environment begins with under-
standing the threat. You now have that understanding. In the next chapter, we will
begin the practical work of building that environment, starting with the installation

and initial hardening of AlmalLinux 9 itself.

17

Practical Exercise: Assessing Your Cur-
rent Exposure

Before moving to the next chapter, perform the following exercise on a test server
or virtual machine running AlmalLinux 9. This exercise is designed to demonstrate
the reality of the threats discussed in this chapter.

Step 1: Install AlImaLinux 9 on a virtual machine with a minimal installation pro-
file. Connect it to a network with internet access.

Step 2: After installation, check for available security updates:

sudo dnf check-update --security

Document the number of security updates available. Even a freshly installed sys-
tem may have pending security patches if the installation media is not the most
current version.

Step 3: Examine the default SSH configuration:

sudo grep -E "PermitRootLogin|PasswordAuthentication]

PubkeyAuthentication" /etc/ssh/sshd config

Note the default values. Consider what each setting means in terms of security ex-
posure.

Step 4: Check which ports are currently open and which services are listening:

sudo ss —-tulnp

Document every listening service. For each service, ask yourself: Is this service nec-
essary for the server's intended function? If not, it represents unnecessary attack
surface.

Step 5: Examine the current firewall configuration:

sudo firewall-cmd --list-all

18

Note which services and ports are permitted through the firewall by default. Con-
sider whether each permitted service is actually required.
Step 6: If the server has been connected to the internet for any period of time,

check for failed SSH login attempts:

sudo journalctl -u sshd --since "1 hour ago" | grep -c "Failed"

The results of this exercise will provide concrete, personal evidence of the threats
discussed throughout this chapter. They will also serve as a baseline against which
you can measure the security improvements made as you work through the re-

maining chapters of this book.

Exercise Step Command What It Reveals Security Implica-
tion

Check security up- dnf check-update -- Number of known Unpatched systems
dates security vulnerabilities in in- are vulnerable to
stalled packages known exploits

Review SSH config- grep relevant set- Default authentica- Default SSH set-

uration tings in sshd_config tion and access set- tings often permit
tings password-based
and root authenti-
cation
List listening ser- ss -tulnp All network services Each listening ser-
vices accepting connec- vice is a potential
tions attack vector

Review firewall rules firewall-cmd --list-all Current network ac- Overly permissive
cess control rules rules expose ser-
vices unnecessarily

Count failed SSH lo- journalctl grep for Volume of brute Demonstrates the
gins Failed entries force attempts constant automated
against SSH attack pressure on
internet-facing
servers

19

This exercise transforms the abstract concepts discussed in this chapter into tangi-
ble, observable data on your own system. It is the first step in developing the

hands-on security skills that will be built upon throughout the remainder of this

book.

20

Chapter 2: Building a Hard-
ened Almalinux 9 Base

When constructing a secure web hosting environment, the foundation upon which
everything rests is the operating system itself. No amount of application-level secu-
rity, firewall rules, or intrusion detection systems can compensate for a poorly con-
figured base operating system. Think of it this way: you would never build a
fortress on sand. The same principle applies to your server infrastructure. AlmalLin-
ux 9, as an enterprise-grade Linux distribution, provides an excellent starting point,
but out of the box, it is configured for general-purpose use rather than hardened
web hosting. This chapter walks you through every critical step of transforming a
fresh Almalinux 9 installation into a security-hardened platform ready to host web
services with confidence.

We will begin with the installation process itself, making deliberate choices
about disk partitioning, package selection, and initial configuration. From there, we
will move into post-installation hardening, covering everything from kernel para-
meters and filesystem permissions to user account policies and audit logging. By
the end of this chapter, you will have a base system that follows industry best prac-
tices for security, aligned with benchmarks published by the Center for Internet Se-

curity and recommendations from Red Hat's own security guides.

21

Choosing the Right Installation Profile

The very first security decision you make happens before AlmaLinux 9 is even fully
installed. During the installation process, the Anaconda installer presents you with
several options that have profound implications for the security posture of your
server. The most important of these is the software selection screen, often called
the "Base Environment" selection.

For a secure web hosting server, you should always select the "Minimal Install"
option. This is not merely a suggestion; it is a fundamental security principle known
as "attack surface reduction." Every package installed on your system represents
potential vulnerabilities, additional network services that might listen on ports, and
more code that must be kept updated. A minimal installation includes only the

core operating system components required to boot and operate the system.

After installation, verify the minimal install by checking
installed packages
dnf list installed | wc -1

On a truly minimal installation, you should see roughly 300 to 400 packages. Com-
pare this to a "Server with GUI" installation, which can include over 1,200 packages.
Each additional package is a potential entry point for an attacker.

The following table outlines the recommended installation choices and their

security implications:

Installation Option Recommended Setting Security Rationale

Base Environment Minimal Install Reduces attack surface by
eliminating unnecessary
packages and services

Software Selection Add- None selected Prevents installation of de-

ons velopment tools, GUI com-
ponents, and unnecessary
daemons

22

Root Password Strong, unique password First line of defense for
privileged access; use at
least 16 characters with
mixed complexity

User Creation Create a non-root adminis- Enables principle of least
trative user privilege; root login will be
disabled later

Network Configuration Configure static IP if possi- Predictable network con-
ble figuration aids in firewall
rule creation

Security Policy CIS AlmaLinux 9 Bench- Applies automated hard-
mark (if available) ening during installation
Kdump Disabled Reduces memory footprint

and eliminates a service
that is unnecessary for pro-
duction web hosting

Note: If you are installing on a cloud provider such as AWS, DigitalOcean, or Lin-
ode, you may not have access to the Anaconda installer directly. In that case, start
with the provider's AlmaLinux 9 minimal image and proceed with post-installation

hardening as described in the following sections.

Disk Partitioning for Security

Disk partitioning is often treated as a mundane administrative task, but from a se-
curity perspective, it is one of the most consequential decisions you will make.
Proper partition layout allows you to apply mount options that restrict what can
happen on each filesystem, which directly mitigates several classes of attacks.

The principle here is separation of concerns. By placing different types of data
on separate partitions, you can apply restrictive mount options that would be im-

practical on a single root partition. For example, you can prevent executable files

23

from running in /tmp, which is a common location where attackers drop and exe-

cute malicious payloads.

Here is the recommended partition layout for a secure web hosting server:

Mount Point Suggested Size

/boot 1 GB
/boot/efi 512 MB
/ 20 GB
/home 10 GB
/tmp 5GB
/var 20 GB
/var/log 10 GB

/var/log/audit 5 GB

/var/tmp 5GB

Filesystem Mount Options

xfs

vfat

xfs

xfs

xfs

xfs

xfs

xfs

xfs

defaults,no-
suid,nodev

defaults,no-
suid,nodev

defaults

defaults,no-
suid,nodev

defaults,no-
suid,nodev,noex-
ec

defaults,no-
suid,nodev

defaults,no-
suid,nodev,noex-
ec

defaults,no-
suid,nodev,noex-
ec

defaults,no-
suid,nodev,noex-
ec

Purpose

Boot loader and
kernel images

EFl system parti-
tion (UEFI systems
only)

Root filesystem;
kept small to limit
exposure

User home direc-
tories

Temporary files;
noexec prevents
script execution

Variable data in-
cluding logs and
mail spools

System logs; sep-
arate partition
prevents log
flooding from fill-
ing root

Audit logs; critical
for forensic analy-
sis

Persistent tempo-
rary files

24

/var/www Remaining space xfs defaults,no- Web content;

suid,nodev sized according
to your hosting
needs
swap 2x RAM (upto 8 swap defaults Virtual memory

GB)

After installation, you can verify and modify mount options by editing the /etc/

fstab file:

View current mount options

mount | column -t

Edit fstab to add security mount options
vi /etc/fstab

An example /etc/fstab entry with hardened mount options for / tmp:

/dev/mapper/almalinux-tmp /tmp xfs

defaults, nosuid, nodev,noexec 0 O

After modifying /etc/fstab, remount the affected partitions without rebooting:

Remount /tmp with new options

mount -o remount /tmp

Verify the new mount options are active

mount | grep /tmp

Note: The nosuid option prevents set-user-identifier and set-group-identifier bits
from taking effect, which stops privilege escalation through SUID binaries placed in
that location. The nodev option prevents the creation of device files, and noexec
prevents the execution of any binary on that partition. Together, these three op-

tions form a powerful defense against common attack techniques.

25

