
1

Secure Web Hosting with Al-
maLinux 9 

Hardened Apache, Nginx, Firewall, 
Fail2Ban, and SSL Setup Guide 



2

Preface 

Every day, thousands of web servers are compromised—not because attackers are 

brilliant, but because defenders left the door open. Default configurations, un-

patched software, misconfigured firewalls, and neglected logs create an attack sur-

face that automated bots exploit around the clock. If you've ever deployed a Linux 

server and wondered whether it was truly secure, this book was written for you. 

Why This Book Exists 
Secure Web Hosting with AlmaLinux 9 was born from a simple observation: most 

web hosting guides teach you how to get a server running, but very few teach you 

how to keep it secure. There is a vast and dangerous gap between a functioning 

web server and a hardened one, and that gap is precisely where attackers operate. 

This book exists to close it. 

The focus here is singular and deliberate—secure configuration at every layer 

of your hosting stack. From the operating system kernel to TLS cipher suites, from 

file permissions to intrusion detection, every chapter is built around one central 

question: How do we make this secure? 

What You Will Learn 
This book takes a ground-up approach to secure web hosting on AlmaLinux 9, one 

of the most trusted enterprise Linux distributions available today. You will begin by 



3

understanding why web servers get hacked—the real-world attack vectors, com-

mon misconfigurations, and the attacker mindset that makes unsecured servers 

such easy targets. 

From there, you will build a hardened AlmaLinux 9 base, configure fire-

walld for disciplined network access control, and apply network-level hardening 

techniques that reduce your exposure before a single web service is installed. You 

will then deploy and secure both Apache and Nginx with production-grade con-

figurations designed to resist common exploits. 

The journey continues through securing the full application stack—PHP-FPM, 

MySQL/MariaDB, and the file system itself—because a secure web server means 

nothing if the layers behind it are vulnerable. You will implement Fail2Ban to auto-

matically block brute-force attacks, establish log monitoring and alerting to de-

tect suspicious activity in real time, and deploy SSL/TLS certificates with Let's En-

crypt alongside advanced TLS hardening to protect data in transit. 

Finally, you will learn how to maintain security over time through continuous 

security maintenance practices and how to evolve from secure hosting into a 

broader production security architecture. 

Who This Book Is For 
This book is for system administrators, DevOps engineers, web developers, and 

anyone responsible for deploying or maintaining Linux-based web servers. 

Whether you manage a single VPS or a fleet of production servers, the secure con-

figurations and hardening strategies presented here will immediately strengthen 

your infrastructure. Prior experience with Linux command-line administration is as-

sumed, but every secure configuration is explained with clarity and context. 



4

How This Book Is Structured 
The sixteen chapters follow a logical progression—secure the foundation first, 

then secure each service layer, then maintain and evolve your security pos-

ture. The five appendices provide ready-to-use templates and checklists, including 

hardened configuration files for Apache and Nginx, firewall rule examples, 

Fail2Ban jail templates, and a comprehensive VPS security hardening checklist. 

These are designed to be practical references you will return to long after your first 

read. 

Acknowledgments 
This book owes a debt of gratitude to the open-source community—the developers 

behind AlmaLinux, Apache, Nginx, Fail2Ban, Let's Encrypt, and the countless secu-

rity tools that make secure hosting possible. I also want to thank the security re-

searchers and practitioners whose published work, vulnerability disclosures, and 

shared knowledge continue to raise the bar for all of us. Finally, to every reader 

who chooses to take security seriously rather than leaving it to chance: the internet 

is better because of you. 

--- 

Security is not a product you install—it is a discipline you practice. Let this book 

be your guide to building, configuring, and maintaining web servers that are secure 

by design and resilient by habit. 

Bas van den Berg 



5

Table of Contents 

Chapter Title Page

1 Why Web Servers Get Hacked 6

2 Building a Hardened AlmaLinux 9 Base 21

3 Firewall Configuration with firewalld 40

4 Network-Level Hardening 54

5 Secure Apache Installation 71

6 Apache Security Configuration 82

7 Secure Nginx Deployment 100

8 PHP-FPM Hardening 117

9 Securing MySQL / MariaDB 130

10 Secure File and Permission Setup 147

11 Installing and Configuring Fail2Ban 164

12 Log Monitoring and Alerting 181

13 Installing and Managing SSL with Let’s Encrypt 200

14 Advanced TLS Hardening 212

15 Continuous Security Maintenance 224

16 From Secure Hosting to Production Security Architecture 242

App Hardened Apache Configuration Template 255

App Hardened Nginx Configuration Template 276

App Firewall Configuration Examples 299

App Fail2Ban Jail Templates 312

App VPS Security Hardening Checklist 323



6

Chapter 1: Why Web Servers 
Get Hacked 

Every day, thousands of web servers across the globe fall victim to attacks that 

could have been prevented. The reality of modern web hosting is both sobering 

and instructive: the majority of successful breaches do not result from sophisticat-

ed zero-day exploits or genius-level hackers breaking through military-grade en-

cryption. Instead, they stem from mundane oversights, default configurations left 

unchanged, unpatched software, weak passwords, and a general lack of security 

awareness among system administrators. Understanding why web servers get 

hacked is the essential first step toward building a hosting environment that resists 

attack, and that understanding forms the foundation upon which every subsequent 

chapter of this book is built. 

When we talk about securing a web server running AlmaLinux 9, we are not 

merely discussing the installation of a firewall or the generation of an SSL certifi-

cate. We are talking about adopting a mindset, a disciplined approach to every de-

cision made during server setup, configuration, and ongoing maintenance. Before 

we can harden Apache, configure Nginx securely, deploy Fail2Ban, or implement 

SSL with confidence, we must first appreciate the threat landscape. We must under-

stand the adversary, their motivations, their methods, and the weaknesses they ex-

ploit. This chapter provides that critical context. 



7

The Modern Threat Landscape 
The internet has evolved dramatically since the early days of static HTML pages 

served from university basements. Today, web servers host complex applications, 

process financial transactions, store sensitive personal data, and serve as the back-

bone of businesses large and small. This evolution has made web servers extraor-

dinarily valuable targets. Attackers are no longer motivated solely by curiosity or 

the desire for notoriety. The modern threat landscape is driven by financial gain, 

political activism, espionage, and even warfare. 

Consider the scale of the problem. According to multiple industry reports, a 

new cyberattack occurs approximately every 39 seconds. Web applications are the 

single most targeted attack vector, accounting for a significant percentage of all 

confirmed data breaches. The average cost of a data breach has climbed into the 

millions of dollars, and for small businesses, a single successful attack can mean 

permanent closure. 

AlmaLinux 9, as a community-driven enterprise Linux distribution that emerged 

as a replacement for CentOS, inherits the robust security architecture of Red Hat 

Enterprise Linux. However, no operating system is secure by default in the context 

of web hosting. The security of a web server depends entirely on how it is config-

ured, maintained, and monitored. A freshly installed AlmaLinux 9 server connected 

to the internet without hardening is an open invitation to attackers, and they will 

find it faster than most administrators realize. 

Automated scanning tools continuously sweep entire ranges of IP addresses, 

probing for open ports, identifying running services, and testing for known vulner-

abilities. Within minutes of a new server coming online, it will begin receiving con-

nection attempts from bots and automated attack frameworks. This is not a theoret-

ical concern; it is an observable, measurable reality that any administrator can veri-

fy by examining the authentication logs of a newly deployed server. 



8

Common Reasons Web Servers Are 
Compromised 
Understanding the specific reasons web servers fall to attackers requires examin-

ing the most frequently exploited weaknesses. The following table provides a com-

prehensive overview of the primary attack vectors and their relationship to server 

security. 

Attack Vector Description Impact Level Prevention Ap-
proach

Default Configura-
tions

Services installed with 
factory settings, in-
cluding default ports, 
enabled modules, 
and sample pages

High Hardening configura-
tions immediately af-
ter installation, remov-
ing unnecessary mod-
ules and default con-
tent

Unpatched Software Operating system, 
web server, or appli-
cation software run-
ning with known vul-
nerabilities

Critical Establishing a regular 
patch management 
schedule using dnf 
update on AlmaLinux 
9

Weak Authentication Simple passwords, 
shared credentials, or 
lack of multi-factor au-
thentication for ad-
ministrative access

Critical Enforcing strong 
password policies, im-
plementing key-
based SSH authenti-
cation, disabling root 
login

Misconfigured Fire-
walls

Firewall rules that are 
too permissive, allow-
ing unnecessary traffic 
to reach the server

High Configuring firewalld 
on AlmaLinux 9 to al-
low only required 
ports and services



9

Missing SSL/TLS Serving content over 
unencrypted HTTP, 
exposing data in tran-
sit to interception

High Implementing SSL/
TLS certificates using 
Let's Encrypt or com-
mercial certificate au-
thorities

Directory Traversal Web server configura-
tion allowing access 
to files outside the in-
tended document 
root

Medium Proper Apache and 
Nginx configuration 
with restrictive direc-
tory permissions

Brute Force Attacks Automated attempts 
to guess passwords 
for SSH, web applica-
tion logins, or data-
base access

High Deploying Fail2Ban to 
detect and block re-
peated failed authen-
tication attempts

Information Disclo-
sure

Server headers, error 
messages, or directo-
ry listings revealing 
software versions and 
server architecture

Medium Configuring Apache 
and Nginx to sup-
press version informa-
tion and disable di-
rectory listing

SQL Injection Malicious SQL state-
ments inserted 
through web applica-
tion input fields

Critical Input validation at the 
application level, web 
application firewalls, 
least-privilege data-
base users

Cross-Site Scripting Injection of malicious 
scripts into web 
pages viewed by oth-
er users

High Proper output encod-
ing, Content Security 
Policy headers, web 
application firewall 
rules

Each of these vectors represents a doorway that attackers actively probe. The criti-

cal insight is that most of these vulnerabilities are not inherent flaws in the technol-

ogy itself. They are configuration failures and maintenance oversights. A properly 

configured and maintained AlmaLinux 9 server running hardened Apache or Ng-



10

inx, protected by firewalld and Fail2Ban, and serving content over properly config-

ured SSL, eliminates the vast majority of these attack surfaces. 

Let us examine several of these vectors in greater detail to understand exactly 

how they are exploited in practice. 

The Danger of Default Configurations 

When Apache HTTP Server or Nginx is installed on AlmaLinux 9, the default config-

uration is designed for functionality, not security. Apache, for example, ships with 

its default welcome page enabled, server signature and version information visible 

in HTTP response headers, and a set of loaded modules that far exceeds what 

most deployments require. Each loaded module represents additional code that 

could contain vulnerabilities, and each piece of information disclosed to visitors 

gives attackers valuable reconnaissance data. 

Consider what happens when an attacker sends a simple HTTP request to a 

server running default Apache on AlmaLinux 9. The response headers might reveal 

something like this: 

Server: Apache/2.4.57 (AlmaLinux) 

X-Powered-By: PHP/8.1.14 

This single response tells the attacker exactly which web server software is running, 

its precise version number, the operating system, and the PHP version. With this in-

formation, the attacker can immediately search vulnerability databases for known 

exploits targeting those specific versions. The attacker has gone from knowing 

nothing about the server to having a targeted attack plan in seconds, all because 

the default configuration freely volunteered that information. 

The same principle applies to Nginx. A default Nginx installation on AlmaLinux 

9 will include the server version in response headers and may have configurations 



11

that are more permissive than necessary. The process of hardening these services, 

which we will cover in detail in later chapters, begins with understanding that de-

faults are starting points, never endpoints. 

The Unpatched Software Epidemic 

Perhaps no single factor contributes more to successful web server compromises 

than unpatched software. When a vulnerability is discovered in Apache, Nginx, 

OpenSSL, PHP, or any other component of the web hosting stack, a race begins. 

Security researchers and vendors work to develop and release patches. Simultane-

ously, attackers work to develop exploits and identify vulnerable servers. The win-

dow between public disclosure of a vulnerability and the availability of a patch is 

dangerous, but the window between patch availability and actual patch application 

by administrators is where the real damage occurs. 

On AlmaLinux 9, the package management system provides a straightforward 

mechanism for keeping software current: 

sudo dnf check-update 

This command checks for available updates across all installed packages. To apply 

all available security updates, an administrator would execute: 

sudo dnf update --security 

To apply all available updates, including bug fixes and enhancements: 

sudo dnf update -y 

The simplicity of these commands makes the prevalence of unpatched servers all 

the more frustrating. Administrators who fail to establish regular patching routines 

leave their servers vulnerable to attacks that exploit well-documented, publicly 

known weaknesses. Automated tools like Metasploit contain modules for exploit-



12

ing hundreds of known vulnerabilities, and script kiddies with minimal technical 

knowledge can use these tools to compromise unpatched servers. 

Note: AlmaLinux 9 supports automatic security updates through the dnf-auto-

matic package. Configuring this service is one of the first steps in establishing a se-

cure baseline, and we will walk through its configuration in a later chapter. Howev-

er, automatic updates must be implemented thoughtfully, as updates can occa-

sionally introduce compatibility issues with running applications. 

Brute Force and the Importance of Authentication 
Hardening 

SSH is the primary method by which administrators manage their AlmaLinux 9 

servers remotely. It is also one of the most targeted services by automated attack 

tools. A server with SSH exposed on the default port 22 with password authentica-

tion enabled will receive thousands of login attempts per day. These brute force at-

tacks use dictionaries of common usernames and passwords, cycling through com-

binations at high speed. 

To illustrate the scale of this problem, consider examining the authentication 

log on a newly deployed server: 

sudo journalctl -u sshd | grep "Failed password" | wc -l 

On a server that has been online for even a few hours, this command frequently re-

turns hundreds or thousands of results. Each line represents a failed login attempt, 

an attacker or automated bot trying to guess credentials. 

The defense against brute force attacks is multi-layered. First, password au-

thentication for SSH should be disabled entirely in favor of key-based authentica-

tion. On AlmaLinux 9, this is configured in the SSH daemon configuration file: 



13

sudo vi /etc/ssh/sshd_config 

The relevant settings include: 

PermitRootLogin no 

PasswordAuthentication no 

PubkeyAuthentication yes 

MaxAuthTries 3 

After making these changes, the SSH service must be restarted: 

sudo systemctl restart sshd 

Second, Fail2Ban should be deployed to monitor authentication logs and automat-

ically block IP addresses that exhibit brute force behavior. Fail2Ban watches log 

files for patterns indicating repeated failed login attempts and creates temporary 

firewall rules to block the offending IP addresses. This dramatically reduces the 

noise in authentication logs and provides an active defense layer. 

Third, the firewall itself should be configured to limit SSH access. If administra-

tive access is only needed from specific IP addresses or ranges, firewalld can be 

configured to restrict SSH accordingly: 

sudo firewall-cmd --permanent --add-rich-rule='rule family="ipv4" 

source address="203.0.113.50" service name="ssh" accept' 

sudo firewall-cmd --permanent --remove-service=ssh 

sudo firewall-cmd --reload 

This combination of key-based authentication, Fail2Ban monitoring, and firewall re-

strictions transforms SSH from a vulnerable attack surface into a well-defended ad-

ministrative channel. 



14

Who Are the Attackers 
Understanding the motivations and capabilities of attackers helps administrators 

prioritize their defensive efforts. The following table categorizes the primary types 

of threat actors that target web servers. 

Threat Actor Motivation Capability Lev-
el

Typical Targets Common 
Methods

Script Kiddies Curiosity, brag-
ging rights, mi-
nor vandalism

Low Any vulnerable 
server, targets 
of opportunity

Automated 
scanning tools, 
publicly avail-
able exploits, 
default creden-
tial lists

Cybercriminals Financial gain 
through data 
theft, ran-
somware, cryp-
tomining

Medium to 
High

E-commerce 
sites, databases 
with personal 
information, 
any server with 
processing 
power

Sophisticated 
phishing, cus-
tom malware, 
exploitation of 
unpatched vul-
nerabilities

Hacktivists Political or so-
cial messaging

Low to Medium Government 
sites, corporate 
targets aligned 
with their cause

Website de-
facement, de-
nial of service, 
data leaks

Nation-State 
Actors

Espionage, sab-
otage, strategic 
advantage

Very High Critical in-
frastructure, 
government 
systems, de-
fense contrac-
tors

Advanced per-
sistent threats, 
zero-day ex-
ploits, supply 
chain attacks



15

Insiders Revenge, finan-
cial gain, negli-
gence

Varies Their own orga-
nization's sys-
tems

Abuse of legiti-
mate access, 
data exfiltra-
tion, intentional 
misconfigura-
tion

Automated 
Bots

Programmatic 
exploitation at 
scale

Low individual-
ly, massive in 
aggregate

Every server 
connected to 
the internet

Continuous 
scanning, cre-
dential stuffing, 
vulnerability 
probing

The most important observation from this table is that automated bots represent 

the most common and persistent threat to web servers. These bots do not discrimi-

nate. They do not care whether a server hosts a Fortune 500 company's website or 

a personal blog. They scan, they probe, and when they find a weakness, they ex-

ploit it. This is why the argument that "my server is too small or unimportant to be 

targeted" is dangerously wrong. Every server is a target simply by virtue of being 

connected to the internet. 

The Real Cost of a Compromise 
When a web server is compromised, the consequences extend far beyond the im-

mediate technical problem. The following represents a realistic sequence of events 

following a typical server breach: 

First, the attacker gains initial access, often through a brute-forced SSH pass-

word or an unpatched vulnerability in a web application. They establish persistence 

by creating additional user accounts, installing backdoors, or modifying system 

services to maintain access even if the original vulnerability is patched. 



16

Next, the attacker surveys the compromised system. They examine databases 

for valuable data, check for stored credentials that might provide access to other 

systems, and evaluate the server's resources. A server with significant processing 

power might be enrolled in a cryptocurrency mining botnet. A server with access 

to customer data might have that data exfiltrated for sale on dark web market-

places. 

The compromised server may also be used as a platform for attacking other 

targets. It might be enrolled in a distributed denial-of-service botnet, used to send 

spam or phishing emails, or used as a proxy to obscure the attacker's true location 

during attacks against other systems. 

For the server owner, the consequences include data loss, reputational dam-

age, potential legal liability under data protection regulations such as GDPR, the 

cost of incident response and forensic investigation, and the operational disruption 

of taking systems offline for remediation. For businesses, customer trust, once lost, 

is extraordinarily difficult to rebuild. 

Note: Under regulations like GDPR, organizations that fail to adequately pro-

tect personal data can face fines of up to 4 percent of annual global revenue or 20 

million euros, whichever is greater. The argument that security is too expensive or 

too time-consuming collapses entirely when weighed against these potential 

penalties. 

Building a Security Mindset 
The purpose of this chapter is not to create fear but to establish the foundation for 

informed, deliberate security practices. Every chapter that follows in this book ad-

dresses specific, actionable measures for securing a web hosting environment on 



17

AlmaLinux 9. But those measures are only effective when implemented by adminis-

trators who understand why they matter. 

Security is not a product that can be purchased and installed. It is not a single 

configuration change or a one-time audit. Security is a continuous process of as-

sessment, implementation, monitoring, and adaptation. The threat landscape 

evolves constantly, and defensive measures must evolve with it. 

As we move forward through this book, we will systematically address each lay-

er of the security stack. We will harden the AlmaLinux 9 operating system itself, 

configure Apache and Nginx with security as the primary design criterion, deploy 

and configure firewalld to control network access, implement Fail2Ban to provide 

active defense against brute force attacks, and establish SSL/TLS encryption to pro-

tect data in transit. 

Each of these measures addresses specific attack vectors described in this 

chapter. Each reduces the attack surface available to adversaries. Together, they 

create a defense-in-depth architecture that makes successful compromise dramati-

cally more difficult and provides the monitoring and alerting capabilities needed to 

detect and respond to attacks that do occur. 

The journey toward a secure web hosting environment begins with under-

standing the threat. You now have that understanding. In the next chapter, we will 

begin the practical work of building that environment, starting with the installation 

and initial hardening of AlmaLinux 9 itself. 



18

Practical Exercise: Assessing Your Cur-
rent Exposure 
Before moving to the next chapter, perform the following exercise on a test server 

or virtual machine running AlmaLinux 9. This exercise is designed to demonstrate 

the reality of the threats discussed in this chapter. 

Step 1: Install AlmaLinux 9 on a virtual machine with a minimal installation pro-

file. Connect it to a network with internet access. 

Step 2: After installation, check for available security updates: 

sudo dnf check-update --security 

Document the number of security updates available. Even a freshly installed sys-

tem may have pending security patches if the installation media is not the most 

current version. 

Step 3: Examine the default SSH configuration: 

sudo grep -E "PermitRootLogin|PasswordAuthentication|

PubkeyAuthentication" /etc/ssh/sshd_config 

Note the default values. Consider what each setting means in terms of security ex-

posure. 

Step 4: Check which ports are currently open and which services are listening: 

sudo ss -tulnp 

Document every listening service. For each service, ask yourself: Is this service nec-

essary for the server's intended function? If not, it represents unnecessary attack 

surface. 

Step 5: Examine the current firewall configuration: 

sudo firewall-cmd --list-all 



19

Note which services and ports are permitted through the firewall by default. Con-

sider whether each permitted service is actually required. 

Step 6: If the server has been connected to the internet for any period of time, 

check for failed SSH login attempts: 

sudo journalctl -u sshd --since "1 hour ago" | grep -c "Failed" 

The results of this exercise will provide concrete, personal evidence of the threats 

discussed throughout this chapter. They will also serve as a baseline against which 

you can measure the security improvements made as you work through the re-

maining chapters of this book. 

Exercise Step Command What It Reveals Security Implica-
tion

Check security up-
dates

dnf check-update --
security

Number of known 
vulnerabilities in in-
stalled packages

Unpatched systems 
are vulnerable to 
known exploits

Review SSH config-
uration

grep relevant set-
tings in sshd_config

Default authentica-
tion and access set-
tings

Default SSH set-
tings often permit 
password-based 
and root authenti-
cation

List listening ser-
vices

ss -tulnp All network services 
accepting connec-
tions

Each listening ser-
vice is a potential 
attack vector

Review firewall rules firewall-cmd --list-all Current network ac-
cess control rules

Overly permissive 
rules expose ser-
vices unnecessarily

Count failed SSH lo-
gins

journalctl grep for 
Failed entries

Volume of brute 
force attempts 
against SSH

Demonstrates the 
constant automated 
attack pressure on 
internet-facing 
servers



20

This exercise transforms the abstract concepts discussed in this chapter into tangi-

ble, observable data on your own system. It is the first step in developing the 

hands-on security skills that will be built upon throughout the remainder of this 

book. 



21

Chapter 2: Building a Hard-
ened AlmaLinux 9 Base 

When constructing a secure web hosting environment, the foundation upon which 

everything rests is the operating system itself. No amount of application-level secu-

rity, firewall rules, or intrusion detection systems can compensate for a poorly con-

figured base operating system. Think of it this way: you would never build a 

fortress on sand. The same principle applies to your server infrastructure. AlmaLin-

ux 9, as an enterprise-grade Linux distribution, provides an excellent starting point, 

but out of the box, it is configured for general-purpose use rather than hardened 

web hosting. This chapter walks you through every critical step of transforming a 

fresh AlmaLinux 9 installation into a security-hardened platform ready to host web 

services with confidence. 

We will begin with the installation process itself, making deliberate choices 

about disk partitioning, package selection, and initial configuration. From there, we 

will move into post-installation hardening, covering everything from kernel para-

meters and filesystem permissions to user account policies and audit logging. By 

the end of this chapter, you will have a base system that follows industry best prac-

tices for security, aligned with benchmarks published by the Center for Internet Se-

curity and recommendations from Red Hat's own security guides. 



22

Choosing the Right Installation Profile 
The very first security decision you make happens before AlmaLinux 9 is even fully 

installed. During the installation process, the Anaconda installer presents you with 

several options that have profound implications for the security posture of your 

server. The most important of these is the software selection screen, often called 

the "Base Environment" selection. 

For a secure web hosting server, you should always select the "Minimal Install" 

option. This is not merely a suggestion; it is a fundamental security principle known 

as "attack surface reduction." Every package installed on your system represents 

potential vulnerabilities, additional network services that might listen on ports, and 

more code that must be kept updated. A minimal installation includes only the 

core operating system components required to boot and operate the system. 

# After installation, verify the minimal install by checking 

installed packages 

dnf list installed | wc -l 

On a truly minimal installation, you should see roughly 300 to 400 packages. Com-

pare this to a "Server with GUI" installation, which can include over 1,200 packages. 

Each additional package is a potential entry point for an attacker. 

The following table outlines the recommended installation choices and their 

security implications: 

Installation Option Recommended Setting Security Rationale

Base Environment Minimal Install Reduces attack surface by 
eliminating unnecessary 
packages and services

Software Selection Add-
ons

None selected Prevents installation of de-
velopment tools, GUI com-
ponents, and unnecessary 
daemons



23

Root Password Strong, unique password First line of defense for 
privileged access; use at 
least 16 characters with 
mixed complexity

User Creation Create a non-root adminis-
trative user

Enables principle of least 
privilege; root login will be 
disabled later

Network Configuration Configure static IP if possi-
ble

Predictable network con-
figuration aids in firewall 
rule creation

Security Policy CIS AlmaLinux 9 Bench-
mark (if available)

Applies automated hard-
ening during installation

Kdump Disabled Reduces memory footprint 
and eliminates a service 
that is unnecessary for pro-
duction web hosting

Note: If you are installing on a cloud provider such as AWS, DigitalOcean, or Lin-

ode, you may not have access to the Anaconda installer directly. In that case, start 

with the provider's AlmaLinux 9 minimal image and proceed with post-installation 

hardening as described in the following sections. 

Disk Partitioning for Security 
Disk partitioning is often treated as a mundane administrative task, but from a se-

curity perspective, it is one of the most consequential decisions you will make. 

Proper partition layout allows you to apply mount options that restrict what can 

happen on each filesystem, which directly mitigates several classes of attacks. 

The principle here is separation of concerns. By placing different types of data 

on separate partitions, you can apply restrictive mount options that would be im-

practical on a single root partition. For example, you can prevent executable files 



24

from running in /tmp, which is a common location where attackers drop and exe-

cute malicious payloads. 

Here is the recommended partition layout for a secure web hosting server: 

Mount Point Suggested Size Filesystem Mount Options Purpose

/boot 1 GB xfs defaults,no-
suid,nodev

Boot loader and 
kernel images

/boot/efi 512 MB vfat defaults,no-
suid,nodev

EFI system parti-
tion (UEFI systems 
only)

/ 20 GB xfs defaults Root filesystem; 
kept small to limit 
exposure

/home 10 GB xfs defaults,no-
suid,nodev

User home direc-
tories

/tmp 5 GB xfs defaults,no-
suid,nodev,noex-
ec

Temporary files; 
noexec prevents 
script execution

/var 20 GB xfs defaults,no-
suid,nodev

Variable data in-
cluding logs and 
mail spools

/var/log 10 GB xfs defaults,no-
suid,nodev,noex-
ec

System logs; sep-
arate partition 
prevents log 
flooding from fill-
ing root

/var/log/audit 5 GB xfs defaults,no-
suid,nodev,noex-
ec

Audit logs; critical 
for forensic analy-
sis

/var/tmp 5 GB xfs defaults,no-
suid,nodev,noex-
ec

Persistent tempo-
rary files



25

/var/www Remaining space xfs defaults,no-
suid,nodev

Web content; 
sized according 
to your hosting 
needs

swap 2x RAM (up to 8 
GB)

swap defaults Virtual memory

After installation, you can verify and modify mount options by editing the /etc/

fstab file: 

# View current mount options 

mount | column -t 

 

# Edit fstab to add security mount options 

vi /etc/fstab 

An example /etc/fstab entry with hardened mount options for /tmp: 

/dev/mapper/almalinux-tmp  /tmp  xfs  

defaults,nosuid,nodev,noexec  0  0 

After modifying /etc/fstab, remount the affected partitions without rebooting: 

# Remount /tmp with new options 

mount -o remount /tmp 

 

# Verify the new mount options are active 

mount | grep /tmp 

Note: The nosuid option prevents set-user-identifier and set-group-identifier bits 

from taking effect, which stops privilege escalation through SUID binaries placed in 

that location. The nodev option prevents the creation of device files, and noexec 

prevents the execution of any binary on that partition. Together, these three op-

tions form a powerful defense against common attack techniques. 


