PostgreSQL Administration &
Performance Tuning

Managing, Securing, and Optimizing
PostgreSQL for High-Performance Sys-
tems

Preface

PostgreSQL has earned its place as one of the most powerful, reliable, and feature-
rich open-source relational database systems in the world. From startups deploy-
ing their first production database to enterprises managing petabytes of critical
data, PostgreSQL serves as the backbone of countless systems across every indus-
try. Yet, for all its robustness and elegance, PostgreSQL demands something of
those who steward it: a deep understanding of how it works, how it breaks,
and how to make it thrive under pressure.

That is precisely why this book exists.

Why This Book

"PostgreSQL Administration & Performance Tuning" was written for database
administrators, backend engineers, DevOps professionals, and architects who want
to move beyond surface-level PostgreSQL usage and develop genuine mastery
over the systems they manage. Whether you are responsible for a single Postgre-
SQL instance or a fleet of high-availability clusters, this book provides the knowl-
edge and practical strategies you need to keep your databases healthy, secure,
and performant.

Too often, PostgreSQL administration knowledge is scattered across documen-
tation pages, blog posts, mailing list archives, and tribal wisdom passed between
colleagues. This book brings that knowledge together into a single, structured re-

source — one that respects your time while refusing to sacrifice depth.

What You Will Learn

The book is organized into sixteen chapters and five appendices, progressing
from foundational concepts to advanced architectural thinking.

We begin by exploring PostgreSQL internals — the process architecture,
shared memory, and storage model that underpin everything else. From there, we
move through installation, configuration, and role management, ensuring you
can set up and govern PostgreSQL environments with confidence. Chapters on
monitoring, logging, and query analysis equip you with the observability skills
that separate reactive troubleshooting from proactive stewardship.

A significant portion of the book is dedicated to performance tuning — ar-
guably the most critical and nuanced aspect of PostgreSQL administration. You will
study indexing from fundamentals through advanced techniques, dissect query ex-
ecution plans, and learn to tune memory and resource parameters for your specific
workloads. These chapters are grounded in real-world scenarios, not abstract theo-
ry.

We then turn to the operational pillars of production PostgreSQL: backup and
recovery strategies, replication and high availability, security hardening, and
routine maintenance. Each chapter provides actionable guidance you can apply
immediately. The final chapters address scaling PostgreSQL for growing demands
and making the professional leap from DBA to database architect — thinking
about data systems at a strategic level.

The appendices serve as lasting reference material, including a PostgreSQL
command cheat sheet, common performance queries, a configuration tuning
reference table, a backup and recovery checklist, and a career roadmap for

those building a future around PostgreSQL expertise.

Who This Book Is For

This book assumes a working familiarity with SQL and basic database concepts. It

is ideal for:

Database administrators managing PostgreSQL in production

- Backend developers who want to understand what happens beneath
their queries
- DevOps and SRE professionals responsible for database reliability

- Technical leaders evaluating PostgreSQL for critical workloads

A Note of Gratitude

No book is written in isolation. | owe a deep debt of gratitude to the PostgreSQL
Global Development Group and the vibrant open-source community whose
decades of work have produced a database system worthy of serious study. | am
also grateful to the countless PostgreSQL practitioners — bloggers, conference
speakers, mailing list contributors — whose shared knowledge has shaped my own
understanding. Special thanks to the technical reviewers and editors whose careful
eyes improved every chapter, and to my family for their patience during the long

hours this work required.

The Invitation

PostgreSQL rewards those who invest in understanding it. A well-tuned PostgreSQL
system is not just fast — it is predictable, resilient, and a genuine pleasure to oper-

ate. My hope is that this book accelerates your journey toward that level of mastery.

Let's begin.

Thomas Ellison

Table of Contents

Chapter Title Page
1 Understanding PostgreSQL Internals 7

2 Installation and Environment Setup 23
3 Database and Role Management 38
4 Configuration Management 54
5 Monitoring Database Health 67
6 Logging and Query Analysis 86
7 Index Fundamentals 104
8 Advanced Indexing Techniques 118
9 Query Execution and Optimization 135
10 Memory and Resource Tuning 150
11 Backup and Recovery Strategies 164
12 Replication and High Availability 179
13 Securing PostgreSQL 194
14 Routine Maintenance 210
15 Scaling PostgreSQL 225
16 From DBA to Database Architect 245
App PostgreSQL Command Cheat Sheet 261
App Common Performance Queries 282
App Configuration Tuning Reference Table 299
App Backup & Recovery Checklist 334

App PostgreSQL Career Roadmap 350

Chapter 1: Understanding
PostgreSQL Internals

PostgreSQL stands as one of the most advanced open-source relational database
management systems in the world. Before you can effectively administer, secure,
and optimize a PostgreSQL installation, you must first develop a deep understand-
ing of how PostgreSQL works beneath the surface. This chapter takes you on a
thorough journey through the internal architecture of PostgreSQL, exploring the
process model, memory architecture, storage system, write-ahead logging mecha-
nism, and the query processing pipeline. By the end of this chapter, you will have a
solid mental model of what happens inside PostgreSQL every time a query is exe-

cuted, a row is inserted, or a transaction is committed.

The PostgreSQL Process Architecture

PostgreSQL employs a multi-process architecture rather than a multi-threaded one.
This is a fundamental design decision that differentiates PostgreSQL from several
other database systems. Each client connection to a PostgreSQL server results in
the creation of a dedicated operating system process, commonly referred to as a
backend process. This design choice provides excellent process isolation. If one
backend process crashes due to a bug or a problematic query, it does not bring
down the entire database server. The operating system's process management
handles memory protection between these processes, ensuring stability and relia-

bility.

When you start a PostgreSQL server, the first process that comes to life is called

the postmaster. The postmaster is the supervisory process that listens for incom-

ing client connections on a configured TCP port (by default, port 5432). When a

new connection request arrives, the postmaster forks a new backend process to

handle that specific client. The postmaster itself does not execute queries. It serves

purely as a connection dispatcher and process supervisor. If any child process ter-

minates abnormally, the postmaster detects this and initiates a recovery sequence,

which may involve restarting all backend processes to ensure data consistency.

Beyond the postmaster and the individual backend processes, PostgreSQL re-

lies on several auxiliary background processes that perform critical maintenance

and operational tasks. The following table describes each of these processes in de-

tail.

Process Name

Postmaster

Backend Process

Background Writer
(bgwriter)

Checkpointer

WAL Writer

Description

The main supervisory dae-
mon process

One per client connection

Writes dirty buffers to disk
periodically

Performs periodic check-
points

Role in the System

Listens for connections,
forks backend processes,
supervises child processes

Parses, plans, and executes
SQL queries on behalf of a
connected client

Reduces the amount of
work the checkpoint
process must do, smooths
out I/O

Flushes all dirty buffers to
disk, writes a checkpoint
record to WAL, ensures
crash recovery point

Writes WAL buffers to WAL Ensures write-ahead log

files

data reaches persistent
storage in a timely manner

Autovacuum Launcher

Autovacuum Worker

Stats Collector

Logical Replication

Launcher

WAL Sender

WAL Receiver

Archiver

Manages autovacuum
worker processes

Launches autovacuum
workers to reclaim dead
tuples and update sta-
tistics

Performs actual vacuuming Cleans up dead rows, up-

Collects activity statistics

Manages logical replica-
tion workers

Sends WAL data to repli-

cas

Receives WAL data on
standby

Archives completed WAL

segments

dates visibility maps, and
refreshes planner statistics

Gathers information about
table access, index usage,
and query activity for re-
porting

Coordinates logical repli-
cation subscriptions and
their worker processes

Streams WAL records to
standby servers for physi-
cal or logical replication

Runs on standby servers to
receive and apply WAL
records from the primary

Copies completed WAL
files to an archive location
for point-in-time recovery

You can observe these processes on a running PostgreSQL server by using operat-

ing system commands. On a Linux system, for instance, the following command re-

veals the process tree:

ps aux

grep postgres

A typical output might look like this:

postgres 1234 postmaster

postgres 1235 checkpointer
postgres 1236 Dbackground writer
postgres 1237 walwriter

postgres 1238 autovacuum launcher

postgres 1239 stats collector

postgres 1240 logical replication launcher

postgres 1250 postgres: user mydb [local] idle

postgres 1251 postgres: user mydb 192.168.1.10(54321) SELECT

The last two lines represent backend processes serving individual client connec-
tions. You can see the username, the database, the client address, and the current
state of each backend.

Note: Understanding the process model is critical for capacity planning. Each
backend process consumes memory independently. If you configure PostgreSQL
to allow 200 simultaneous connections via the max connections parameter, you
must account for the memory consumption of up to 200 separate backend pro-
cesses, each with its own allocation of work mem, temp buffers, and other per-

session memory settings.

Memory Architecture

PostgreSQL's memory architecture is divided into two broad categories: shared
memory and local memory. Shared memory is allocated once when the server
starts and is accessible to all backend processes. Local memory is private to each
backend process.

The most important shared memory structure is the shared buffer pool, con-
trolled by the shared buffers configuration parameter. This is where Postgre-
SQL caches data pages that have been read from disk. When a backend process
needs to read a table or index page, it first checks the shared buffer pool. If the
page is found there (a buffer hit), the disk read is avoided entirely. If the page is not
found (a buffer miss), PostgreSQL reads the page from disk into the shared buffer

pool, potentially evicting an older page to make room. The buffer replacement al-

10

gorithm in PostgreSQL is a clock-sweep algorithm, which is an approximation of
the Least Recently Used (LRU) strategy.

The shared buffer pool is organized as an array of 8 KB pages, which matches
the default PostgreSQL block size. Each page in the buffer pool has associated
metadata including a pin count (how many processes are currently using the
page), a usage count (for the clock-sweep algorithm), and dirty flags (indicating
whether the page has been modified since it was read from disk).

Other important shared memory areas include:

Shared Memory Area Configuration Parameter Purpose

Shared Buffers shared_buffers Caches table and index
data pages

WAL Buffers wal_buffers Buffers WAL records be-
fore writing to WAL files

CLOG (Commit Log) Buf- Managed internally Tracks transaction commit

fers status (committed, abort-

ed, in-progress)

Lock Tables max_locks_per_transaction Stores information about
all current locks in the sys-
tem

Proc Array max_connections Tracks all active backend

processes and their trans-
action state

On the local memory side, each backend process has its own private memory allo-

cations. The most significant of these are:

Local Memory Area Configuration Parameter Purpose

work_mem work_mem Memory used for sort opera-
tions, hash joins, and other
query operations

11

maintenance_work_mem maintenance_work_mem Memory used for mainte-
nance operations like VACU-
UM, CREATE INDEX

temp_buffers temp_buffers Memory used for accessing
temporary tables

A critical point to understand is that work mem is allocated per operation, not per
query and not per connection. A single complex query with multiple sort opera-
tions and hash joins can allocate work mem multiple times. If work mem is set to
256 MB and a query involves four sort operations, that single query could consume
up to 1 GB of memory. Multiply this by the number of concurrent connections, and
you can see how improper tuning of this parameter can lead to memory exhaus-
tion.

To inspect the current shared memory configuration, you can query Postgre-

SQL directly:

SHOW shared buffers;

SHOW work mem;

SHOW maintenance_work_mem;
SHOW wal buffers;

Or you can get a comprehensive view using:

SELECT name, setting, unit, short desc
FROM pg settings
WHERE category LIKE '%Memory%' OR name IN ('shared buffers',

'work mem', 'wal buffers');

Note: A common starting recommendation for shared buffers is 25% of total
system RAM for a dedicated PostgreSQL server. However, this is only a starting
point. The optimal value depends on your workload, dataset size, and operating
system's filesystem cache behavior. PostgreSQL relies heavily on the operating sys-

tem's page cache as a second layer of caching, which is why setting shared buf-

12

fers to more than 40% of RAM is rarely beneficial and can sometimes be counter-

productive.

The Storage System and Data Layout

PostgreSQL stores all of its data in a directory known as the data directory, typical-

ly referred to as PGDATA. When you initialize a new PostgreSQL cluster using

initdb, this directory is created and populated with the necessary subdirectory

structure and initial system catalog data.

The data directory has a well-defined structure:

Directory or File Purpose

base/

global/
pg_wal/
pg_xact/
pg_tblspc/
pg_stat_tmp/
pg_multixact/
postgresql.conf
pg_hba.conf
pg_ident.conf
PG_VERSION

postmaster.pid

Contains subdirectories for each database, named by their OID
Contains cluster-wide tables (such as pg_database, pg_authid)
Contains Write-Ahead Log segment files

Contains transaction commit status data (formerly pg_clog)
Contains symbolic links to tablespace directories

Contains temporary statistics files

Contains multi-transaction status data for row-level locks

Main configuration file

Host-based authentication configuration

User name mapping configuration

File containing the major version number

File containing the PID of the running postmaster process

Within the base/ directory, each database has its own subdirectory named after

the database's OID (Object Identifier). You can find the OID of a database using:

13

SELECT oid, datname FROM pg database;

Inside each database directory, individual tables and indexes are stored as files
named by their relfilenode number. Each file represents a relation (table or index)
and is divided into 8 KB pages (blocks). When a file exceeds 1 GB in size, Postgre-
SQL creates additional segment files with numeric extensions (for example, 16384,
16384.1,16384.2,and so on).

To find the physical file location of a specific table:

SELECT pg relation filepath('my table');

This might return something like base/16385/16400, meaning the table is stored
in database OID 16385 as file 16400.

Each data page within a table file has a specific internal structure. The page be-
gins with a page header (24 bytes) that contains metadata such as the page's LSN
(Log Sequence Number), free space pointers, and flags. Following the header is an
array of item pointers (also called line pointers), which are 4-byte entries pointing
to the actual tuple data within the page. The tuple data itself is stored from the end
of the page backward, growing toward the item pointer array. The free space in the
middle of the page shrinks as more tuples are added.

Each tuple (row) stored in a page contains a tuple header of approximately 23
bytes. This header includes critical fields for PostgreSQL's Multi-Version Concurren-

cy Control (MVCC) implementation:

Tuple Header Field Size Purpose

t_xmin 4 bytes Transaction ID that inserted this tuple

t_xmax 4 bytes Transaction ID that deleted or updated this tuple (0 if
still live)

t_cid 4 bytes Command ID within the inserting transaction

14

t_ctid 6 bytes Current tuple ID (physical location), points to newer
version if updated

t_infomask 2 bytes Various status flags about the tuple
t_infomask?2 2 bytes Number of attributes and additional flags
t_hoff 1 byte Offset to the actual user data

The t xmin and t_ xmax fields are the heart of MVCC. When a row is inserted,
t_xmin is set to the inserting transaction's ID and t _xmax is set to 0. When a row is
updated, PostgreSQL does not modify the existing tuple in place. Instead, it creates
a new version of the tuple with the new data, sets t xmax on the old tuple to the
updating transaction's ID, and links the old tuple to the new one via t ctid. This
means that an UPDATE operation in PostgreSQL results in both a dead tuple (the
old version) and a new tuple. This is why regular VACUUM operations are essential:
they reclaim the space occupied by dead tuples that are no longer visible to any
active transaction.

You can examine the physical structure of a page using the pageinspect ex-

tension:

CREATE EXTENSION pageinspect;
SELECT * FROM page header (get raw page('my table', 0));

SELECT lp, t xmin, t xmax, t ctid, t infomask::bit (16)
FROM heap page items (get raw page('my table', 0));

Write-Ahead Logging (WAL)

The Write-Ahead Logging mechanism is one of the most critical components of
PostgreSQL's architecture. WAL ensures data durability and provides the founda-

tion for crash recovery, point-in-time recovery, and replication.

15

The fundamental principle of WAL is simple but powerful: before any change
to a data page is written to disk, a record describing that change must first be writ-
ten to the WAL. This guarantees that if the system crashes at any point, PostgreSQL
can replay the WAL records from the last checkpoint to reconstruct any changes
that were made to data pages in shared buffers but not yet flushed to disk.

The WAL is stored as a sequence of segment files in the pg wal/ directory.
Each segment file is 16 MB by default (this can be changed at compile time or dur-
ing initdb with the --wal-segsize option). The files are named with a 24-char-
acter hexadecimal string that encodes the timeline, log file number, and segment
number.

The lifecycle of a write operation in PostgreSQL follows these steps:

1. The backend process modifies a data page in the shared buffer pool
and marks it as dirty.

2. Before the modification, a WAL record describing the change is written
to the WAL buffer in shared memory.

3. When the transaction commits, the WAL writer (or the backend process
itself) flushes the WAL buffer to the WAL files on disk using £sync.

4. The commit is acknowledged to the client only after the WAL record is
safely on disk.

5. At some later point, the background writer or checkpointer writes the

actual dirty data page to the data file on disk.

This sequence ensures that even if the system crashes between steps 4 and 5, the
data change is not lost. During recovery, PostgreSQL reads the WAL from the last
checkpoint forward and replays all the changes to bring the data files up to date.

Key WAL-related configuration parameters include:

16

Parameter Default Purpose

wal_level replica Determines how much information is written to
WAL (minimal, replica, logical)

fsync on Forces WAL writes to be flushed to disk for durabili-
ty
synchronous_commit on Whether to wait for WAL flush before confirming

commit to client

wal_buffers -1 (auto) Size of WAL buffer in shared memory

checkpoint_timeout 5min Maximum time between automatic checkpoints

max_wal_size 1GB Maximum WAL size between checkpoints before
forcing a new checkpoint

min_wal_size 80MB Minimum WAL size to retain for recycling
archive_mode off Whether to enable WAL archiving for backup and
recovery

Note: The synchronous commit parameter offers an interesting trade-off. Set-

ting it to off allows PostgreSQL to acknowledge commits before the WAL is

flushed to disk. This can significantly improve transaction throughput for workloads

with many small transactions, but it introduces a window (typically a few hundred

milliseconds) during which committed transactions could be lost in a crash. The

data remains consistent in all cases; you simply might lose the most recent commit-

ted transactions. This is acceptable for some workloads but not for others.

You can monitor WAL activity using:

SELECT * FROM pg stat wal;

SELECT pg current wal 1sn();

SELECT pg walfile name (pg current wal 1lsn());

SELECT pg wal lsn diff (pg current wal 1lsn(),
total wal bytes;

'0/0") AS

17

Query Processing Pipeline

When a SQL query arrives at a PostgreSQL backend process, it passes through a
series of well-defined stages before results are returned to the client. Understand-
ing this pipeline is essential for diagnosing performance problems and writing effi-
cient queries.

The first stage is parsing. The parser takes the raw SQL text and transforms it
into a parse tree, which is an internal representation of the query's structure. Dur-
ing this stage, the syntax of the SQL statement is validated. If you write SELEC *
FROM my table, the parser will reject it with a syntax error. The parser does not,
however, validate that the referenced tables or columns actually exist. That hap-
pens in the next stage.

The second stage is analysis (also called semantic analysis or rewriting). The
analyzer takes the parse tree and resolves all object references. It looks up table
names in the system catalogs to verify they exist, resolves column names, checks
data types, applies implicit type casts, and expands wildcards like * into actual col-
umn lists. The analyzer also applies any applicable rewrite rules, such as those that
implement views. When you query a view, the analyzer replaces the view reference
with the view's underlying query definition. The output of this stage is called the
query tree.

The third stage is planning (also called optimization). This is arguably the most
complex and important stage. The planner takes the query tree and generates an
execution plan that describes the most efficient way to retrieve the requested
data. The planner considers multiple strategies for each operation in the query. For
a table scan, it might consider a sequential scan, an index scan, a bitmap index
scan, or an index-only scan. For a join, it might consider nested loop, hash join, or

merge join. For each possible combination of strategies, the planner estimates the

18

cost using statistics collected about the data (stored in pg_statistic and acces-
sible through pg_stats).

The planner uses a cost model based on configurable cost constants:

Cost Parameter Default Represents

seq_page_cost 1.0 Cost of reading a single page sequentially from
disk

random_page_cost 4.0 Cost of reading a single page randomly from disk

cpu_tuple_cost 0.01 Cost of processing a single tuple

cpu_index_tuple_cost 0.005 Cost of processing a single index entry
cpu_operator_cost 0.0025 Cost of executing a single operator or function

effective_cache_size 4GB Planner's estimate of the total cache available
(shared buffers plus OS cache)

The planner combines these costs with table statistics (row counts, column value
distributions, most common values, histograms) to estimate the total cost of each
possible plan. It then selects the plan with the lowest estimated total cost. You can

examine the chosen plan using the EXPLAIN command:

EXPLAIN (ANALYZE, BUFFERS, FORMAT TEXT) SELECT * FROM orders
WHERE customer id = 42;

The output shows the plan tree, estimated and actual row counts, execution time,
and buffer usage. This is one of the most valuable tools for performance tuning,
and we will explore it extensively in later chapters.

The fourth and final stage is execution. The executor takes the plan tree gener-
ated by the planner and actually executes it. PostgreSQL uses a pull-based itera-
tor model (also known as the Volcano model). Each node in the plan tree imple-
ments three operations: initialize, get-next-tuple, and close. The top node calls get-

next-tuple on its child node, which in turn calls get-next-tuple on its child, and so

19

on down to the leaf nodes (which are typically scan nodes that read from tables or
indexes). Tuples flow upward through the plan tree, being filtered, joined, sorted,
and aggregated along the way.

Here is a practical example that ties together multiple concepts. Consider the

following query and its execution:

CREATE TABLE customers (

id SERIAL PRIMARY KEY,

name TEXT NOT NULL,

email TEXT,

created at TIMESTAMP DEFAULT now ()
)

CREATE INDEX idx customers email ON customers (email);

INSERT INTO customers (name, email)
SELECT 'Customer ' || i, 'customer' || 1 || '(@example.com'
FROM generate series(1l, 100000) AS i;

ANALYZE customers;

EXPLAIN (ANALYZE, BUFFERS)
SELECT * FROM customers WHERE email = 'customer500@example.com';

The output might look like:

Index Scan using idx customers email on customers
(cost=0.42..8.44 rows=1 width=45) (actual time=0.025..0.026
rows=1 loops=1)
Index Cond: (email = 'customer500@example.com'::text)
Buffers: shared hit=4
Planning Time: 0.085 ms

Execution Time: 0.042 ms

This output tells us that the planner chose an index scan using idx customer-
s_email, estimated it would find 1 row, actually found 1 row, and the entire opera-

tion required reading only 4 pages from the shared buffer cache (all hits, no disk

20

reads). The planning took 0.085 milliseconds and execution took 0.042 millisec-

onds.

Practical Exercise

To solidify your understanding of PostgreSQL internals, perform the following exer-
cise on a test PostgreSQL installation.

First, create a test database and table:

CREATE DATABASE internals lab;

\c internals lab

CREATE TABLE test mvcc (
id SERIAL PRIMARY KEY,
value TEXT

) ;

INSERT INTO test mvcc (value) VALUES ('original');

Now, install the pageinspect extension and examine the tuple:

CREATE EXTENSION pageinspect;

SELECT lp, t xmin, t xmax, t ctid
FROM heap page items (get raw page('test mvcc', 0));

Note the t xmin value and the fact that t xmax is 0 (meaning the tuple has not

been deleted or updated). Now update the row:

UPDATE test mvcc SET value = 'updated' WHERE id = 1;

SELECT lp, t xmin, t xmax, t ctid
FROM heap page items (get raw page('test mvcc', 0));

21

You should now see two tuples on the page. The first tuple (the original) now has a
non-zero t xmax and its t ctid points to the second tuple. The second tuple (the
updated version) has a new t xmin and t xmax of 0. This is MVCC in action.

Finally, run VACUUM and observe the change:

VACUUM test mvcc;

SELECT lp, t xmin, t xmax, t ctid
FROM heap page items (get raw page('test mvcc', 0));

After vacuuming, the dead tuple should be marked as unused, freeing its space for
future inserts.

This chapter has laid the groundwork for everything that follows in this book.
The process architecture determines how you plan for connection pooling and
memory allocation. The memory architecture guides your configuration tuning. The
storage system and MVCC model explain why VACUUM is essential and how bloat
occurs. The WAL mechanism underpins your backup, recovery, and replication
strategies. And the query processing pipeline is the foundation for all query perfor-
mance tuning. With these internals firmly understood, you are now prepared to
dive into the practical aspects of PostgreSQL administration and performance opti-

mization in the chapters ahead.

22

