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Preface 

PostgreSQL has earned its place as one of the most powerful, reliable, and feature-

rich open-source relational database systems in the world. From startups deploy-

ing their first production database to enterprises managing petabytes of critical 

data, PostgreSQL serves as the backbone of countless systems across every indus-

try. Yet, for all its robustness and elegance, PostgreSQL demands something of 

those who steward it: a deep understanding of how it works, how it breaks, 

and how to make it thrive under pressure. 

That is precisely why this book exists. 

Why This Book 
"PostgreSQL Administration & Performance Tuning" was written for database 

administrators, backend engineers, DevOps professionals, and architects who want 

to move beyond surface-level PostgreSQL usage and develop genuine mastery 

over the systems they manage. Whether you are responsible for a single Postgre-

SQL instance or a fleet of high-availability clusters, this book provides the knowl-

edge and practical strategies you need to keep your databases healthy, secure, 

and performant. 

Too often, PostgreSQL administration knowledge is scattered across documen-

tation pages, blog posts, mailing list archives, and tribal wisdom passed between 

colleagues. This book brings that knowledge together into a single, structured re-

source — one that respects your time while refusing to sacrifice depth. 
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What You Will Learn 
The book is organized into sixteen chapters and five appendices, progressing 

from foundational concepts to advanced architectural thinking. 

We begin by exploring PostgreSQL internals — the process architecture, 

shared memory, and storage model that underpin everything else. From there, we 

move through installation, configuration, and role management, ensuring you 

can set up and govern PostgreSQL environments with confidence. Chapters on 

monitoring, logging, and query analysis equip you with the observability skills 

that separate reactive troubleshooting from proactive stewardship. 

A significant portion of the book is dedicated to performance tuning — ar-

guably the most critical and nuanced aspect of PostgreSQL administration. You will 

study indexing from fundamentals through advanced techniques, dissect query ex-

ecution plans, and learn to tune memory and resource parameters for your specific 

workloads. These chapters are grounded in real-world scenarios, not abstract theo-

ry. 

We then turn to the operational pillars of production PostgreSQL: backup and 

recovery strategies, replication and high availability, security hardening, and 

routine maintenance. Each chapter provides actionable guidance you can apply 

immediately. The final chapters address scaling PostgreSQL for growing demands 

and making the professional leap from DBA to database architect — thinking 

about data systems at a strategic level. 

The appendices serve as lasting reference material, including a PostgreSQL 

command cheat sheet, common performance queries, a configuration tuning 

reference table, a backup and recovery checklist, and a career roadmap for 

those building a future around PostgreSQL expertise. 
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Who This Book Is For 
This book assumes a working familiarity with SQL and basic database concepts. It 

is ideal for: 

-	 Database administrators managing PostgreSQL in production 

-	 Backend developers who want to understand what happens beneath 

their queries 

-	 DevOps and SRE professionals responsible for database reliability 

-	 Technical leaders evaluating PostgreSQL for critical workloads 

A Note of Gratitude 
No book is written in isolation. I owe a deep debt of gratitude to the PostgreSQL 

Global Development Group and the vibrant open-source community whose 

decades of work have produced a database system worthy of serious study. I am 

also grateful to the countless PostgreSQL practitioners — bloggers, conference 

speakers, mailing list contributors — whose shared knowledge has shaped my own 

understanding. Special thanks to the technical reviewers and editors whose careful 

eyes improved every chapter, and to my family for their patience during the long 

hours this work required. 

The Invitation 
PostgreSQL rewards those who invest in understanding it. A well-tuned PostgreSQL 

system is not just fast — it is predictable, resilient, and a genuine pleasure to oper-

ate. My hope is that this book accelerates your journey toward that level of mastery. 



5

Let's begin. 

Thomas Ellison 
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Chapter 1: Understanding 
PostgreSQL Internals 

PostgreSQL stands as one of the most advanced open-source relational database 

management systems in the world. Before you can effectively administer, secure, 

and optimize a PostgreSQL installation, you must first develop a deep understand-

ing of how PostgreSQL works beneath the surface. This chapter takes you on a 

thorough journey through the internal architecture of PostgreSQL, exploring the 

process model, memory architecture, storage system, write-ahead logging mecha-

nism, and the query processing pipeline. By the end of this chapter, you will have a 

solid mental model of what happens inside PostgreSQL every time a query is exe-

cuted, a row is inserted, or a transaction is committed. 

The PostgreSQL Process Architecture 
PostgreSQL employs a multi-process architecture rather than a multi-threaded one. 

This is a fundamental design decision that differentiates PostgreSQL from several 

other database systems. Each client connection to a PostgreSQL server results in 

the creation of a dedicated operating system process, commonly referred to as a 

backend process. This design choice provides excellent process isolation. If one 

backend process crashes due to a bug or a problematic query, it does not bring 

down the entire database server. The operating system's process management 

handles memory protection between these processes, ensuring stability and relia-

bility. 



8

When you start a PostgreSQL server, the first process that comes to life is called 

the postmaster. The postmaster is the supervisory process that listens for incom-

ing client connections on a configured TCP port (by default, port 5432). When a 

new connection request arrives, the postmaster forks a new backend process to 

handle that specific client. The postmaster itself does not execute queries. It serves 

purely as a connection dispatcher and process supervisor. If any child process ter-

minates abnormally, the postmaster detects this and initiates a recovery sequence, 

which may involve restarting all backend processes to ensure data consistency. 

Beyond the postmaster and the individual backend processes, PostgreSQL re-

lies on several auxiliary background processes that perform critical maintenance 

and operational tasks. The following table describes each of these processes in de-

tail. 

Process Name Description Role in the System

Postmaster The main supervisory dae-
mon process

Listens for connections, 
forks backend processes, 
supervises child processes

Backend Process One per client connection Parses, plans, and executes 
SQL queries on behalf of a 
connected client

Background Writer 
(bgwriter)

Writes dirty buffers to disk 
periodically

Reduces the amount of 
work the checkpoint 
process must do, smooths 
out I/O

Checkpointer Performs periodic check-
points

Flushes all dirty buffers to 
disk, writes a checkpoint 
record to WAL, ensures 
crash recovery point

WAL Writer Writes WAL buffers to WAL 
files

Ensures write-ahead log 
data reaches persistent 
storage in a timely manner
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Autovacuum Launcher Manages autovacuum 
worker processes

Launches autovacuum 
workers to reclaim dead 
tuples and update sta-
tistics

Autovacuum Worker Performs actual vacuuming Cleans up dead rows, up-
dates visibility maps, and 
refreshes planner statistics

Stats Collector Collects activity statistics Gathers information about 
table access, index usage, 
and query activity for re-
porting

Logical Replication 
Launcher

Manages logical replica-
tion workers

Coordinates logical repli-
cation subscriptions and 
their worker processes

WAL Sender Sends WAL data to repli-
cas

Streams WAL records to 
standby servers for physi-
cal or logical replication

WAL Receiver Receives WAL data on 
standby

Runs on standby servers to 
receive and apply WAL 
records from the primary

Archiver Archives completed WAL 
segments

Copies completed WAL 
files to an archive location 
for point-in-time recovery

You can observe these processes on a running PostgreSQL server by using operat-

ing system commands. On a Linux system, for instance, the following command re-

veals the process tree: 

ps aux | grep postgres 

A typical output might look like this: 

postgres  1234  postmaster 

postgres  1235  checkpointer 

postgres  1236  background writer 

postgres  1237  walwriter 

postgres  1238  autovacuum launcher 
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postgres  1239  stats collector 

postgres  1240  logical replication launcher 

postgres  1250  postgres: user mydb [local] idle 

postgres  1251  postgres: user mydb 192.168.1.10(54321) SELECT 

The last two lines represent backend processes serving individual client connec-

tions. You can see the username, the database, the client address, and the current 

state of each backend. 

Note: Understanding the process model is critical for capacity planning. Each 

backend process consumes memory independently. If you configure PostgreSQL 

to allow 200 simultaneous connections via the max_connections parameter, you 

must account for the memory consumption of up to 200 separate backend pro-

cesses, each with its own allocation of work_mem, temp_buffers, and other per-

session memory settings. 

Memory Architecture 
PostgreSQL's memory architecture is divided into two broad categories: shared 

memory and local memory. Shared memory is allocated once when the server 

starts and is accessible to all backend processes. Local memory is private to each 

backend process. 

The most important shared memory structure is the shared buffer pool, con-

trolled by the shared_buffers configuration parameter. This is where Postgre-

SQL caches data pages that have been read from disk. When a backend process 

needs to read a table or index page, it first checks the shared buffer pool. If the 

page is found there (a buffer hit), the disk read is avoided entirely. If the page is not 

found (a buffer miss), PostgreSQL reads the page from disk into the shared buffer 

pool, potentially evicting an older page to make room. The buffer replacement al-
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gorithm in PostgreSQL is a clock-sweep algorithm, which is an approximation of 

the Least Recently Used (LRU) strategy. 

The shared buffer pool is organized as an array of 8 KB pages, which matches 

the default PostgreSQL block size. Each page in the buffer pool has associated 

metadata including a pin count (how many processes are currently using the 

page), a usage count (for the clock-sweep algorithm), and dirty flags (indicating 

whether the page has been modified since it was read from disk). 

Other important shared memory areas include: 

Shared Memory Area Configuration Parameter Purpose

Shared Buffers shared_buffers Caches table and index 
data pages

WAL Buffers wal_buffers Buffers WAL records be-
fore writing to WAL files

CLOG (Commit Log) Buf-
fers

Managed internally Tracks transaction commit 
status (committed, abort-
ed, in-progress)

Lock Tables max_locks_per_transaction Stores information about 
all current locks in the sys-
tem

Proc Array max_connections Tracks all active backend 
processes and their trans-
action state

On the local memory side, each backend process has its own private memory allo-

cations. The most significant of these are: 

Local Memory Area Configuration Parameter Purpose

work_mem work_mem Memory used for sort opera-
tions, hash joins, and other 
query operations
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maintenance_work_mem maintenance_work_mem Memory used for mainte-
nance operations like VACU-
UM, CREATE INDEX

temp_buffers temp_buffers Memory used for accessing 
temporary tables

A critical point to understand is that work_mem is allocated per operation, not per 

query and not per connection. A single complex query with multiple sort opera-

tions and hash joins can allocate work_mem multiple times. If work_mem is set to 

256 MB and a query involves four sort operations, that single query could consume 

up to 1 GB of memory. Multiply this by the number of concurrent connections, and 

you can see how improper tuning of this parameter can lead to memory exhaus-

tion. 

To inspect the current shared memory configuration, you can query Postgre-

SQL directly: 

SHOW shared_buffers; 

SHOW work_mem; 

SHOW maintenance_work_mem; 

SHOW wal_buffers; 

Or you can get a comprehensive view using: 

SELECT name, setting, unit, short_desc 

FROM pg_settings 

WHERE category LIKE '%Memory%' OR name IN ('shared_buffers', 

'work_mem', 'wal_buffers'); 

Note: A common starting recommendation for shared_buffers is 25% of total 

system RAM for a dedicated PostgreSQL server. However, this is only a starting 

point. The optimal value depends on your workload, dataset size, and operating 

system's filesystem cache behavior. PostgreSQL relies heavily on the operating sys-

tem's page cache as a second layer of caching, which is why setting shared_buf-
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fers to more than 40% of RAM is rarely beneficial and can sometimes be counter-

productive. 

The Storage System and Data Layout 
PostgreSQL stores all of its data in a directory known as the data directory, typical-

ly referred to as PGDATA. When you initialize a new PostgreSQL cluster using 

initdb, this directory is created and populated with the necessary subdirectory 

structure and initial system catalog data. 

The data directory has a well-defined structure: 

Directory or File Purpose

base/ Contains subdirectories for each database, named by their OID

global/ Contains cluster-wide tables (such as pg_database, pg_authid)

pg_wal/ Contains Write-Ahead Log segment files

pg_xact/ Contains transaction commit status data (formerly pg_clog)

pg_tblspc/ Contains symbolic links to tablespace directories

pg_stat_tmp/ Contains temporary statistics files

pg_multixact/ Contains multi-transaction status data for row-level locks

postgresql.conf Main configuration file

pg_hba.conf Host-based authentication configuration

pg_ident.conf User name mapping configuration

PG_VERSION File containing the major version number

postmaster.pid File containing the PID of the running postmaster process

Within the base/ directory, each database has its own subdirectory named after 

the database's OID (Object Identifier). You can find the OID of a database using: 
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SELECT oid, datname FROM pg_database; 

Inside each database directory, individual tables and indexes are stored as files 

named by their relfilenode number. Each file represents a relation (table or index) 

and is divided into 8 KB pages (blocks). When a file exceeds 1 GB in size, Postgre-

SQL creates additional segment files with numeric extensions (for example, 16384, 

16384.1, 16384.2, and so on). 

To find the physical file location of a specific table: 

SELECT pg_relation_filepath('my_table'); 

This might return something like base/16385/16400, meaning the table is stored 

in database OID 16385 as file 16400. 

Each data page within a table file has a specific internal structure. The page be-

gins with a page header (24 bytes) that contains metadata such as the page's LSN 

(Log Sequence Number), free space pointers, and flags. Following the header is an 

array of item pointers (also called line pointers), which are 4-byte entries pointing 

to the actual tuple data within the page. The tuple data itself is stored from the end 

of the page backward, growing toward the item pointer array. The free space in the 

middle of the page shrinks as more tuples are added. 

Each tuple (row) stored in a page contains a tuple header of approximately 23 

bytes. This header includes critical fields for PostgreSQL's Multi-Version Concurren-

cy Control (MVCC) implementation: 

Tuple Header Field Size Purpose

t_xmin 4 bytes Transaction ID that inserted this tuple

t_xmax 4 bytes Transaction ID that deleted or updated this tuple (0 if 
still live)

t_cid 4 bytes Command ID within the inserting transaction
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t_ctid 6 bytes Current tuple ID (physical location), points to newer 
version if updated

t_infomask 2 bytes Various status flags about the tuple

t_infomask2 2 bytes Number of attributes and additional flags

t_hoff 1 byte Offset to the actual user data

The t_xmin and t_xmax fields are the heart of MVCC. When a row is inserted, 

t_xmin is set to the inserting transaction's ID and t_xmax is set to 0. When a row is 

updated, PostgreSQL does not modify the existing tuple in place. Instead, it creates 

a new version of the tuple with the new data, sets t_xmax on the old tuple to the 

updating transaction's ID, and links the old tuple to the new one via t_ctid. This 

means that an UPDATE operation in PostgreSQL results in both a dead tuple (the 

old version) and a new tuple. This is why regular VACUUM operations are essential: 

they reclaim the space occupied by dead tuples that are no longer visible to any 

active transaction. 

You can examine the physical structure of a page using the pageinspect ex-

tension: 

CREATE EXTENSION pageinspect; 

 

SELECT * FROM page_header(get_raw_page('my_table', 0)); 

 

SELECT lp, t_xmin, t_xmax, t_ctid, t_infomask::bit(16) 

FROM heap_page_items(get_raw_page('my_table', 0)); 

Write-Ahead Logging (WAL) 
The Write-Ahead Logging mechanism is one of the most critical components of 

PostgreSQL's architecture. WAL ensures data durability and provides the founda-

tion for crash recovery, point-in-time recovery, and replication. 



16

The fundamental principle of WAL is simple but powerful: before any change 

to a data page is written to disk, a record describing that change must first be writ-

ten to the WAL. This guarantees that if the system crashes at any point, PostgreSQL 

can replay the WAL records from the last checkpoint to reconstruct any changes 

that were made to data pages in shared buffers but not yet flushed to disk. 

The WAL is stored as a sequence of segment files in the pg_wal/ directory. 

Each segment file is 16 MB by default (this can be changed at compile time or dur-

ing initdb with the --wal-segsize option). The files are named with a 24-char-

acter hexadecimal string that encodes the timeline, log file number, and segment 

number. 

The lifecycle of a write operation in PostgreSQL follows these steps: 

1.	 The backend process modifies a data page in the shared buffer pool 

and marks it as dirty. 

2.	 Before the modification, a WAL record describing the change is written 

to the WAL buffer in shared memory. 

3.	 When the transaction commits, the WAL writer (or the backend process 

itself) flushes the WAL buffer to the WAL files on disk using fsync. 

4.	 The commit is acknowledged to the client only after the WAL record is 

safely on disk. 

5.	 At some later point, the background writer or checkpointer writes the 

actual dirty data page to the data file on disk. 

This sequence ensures that even if the system crashes between steps 4 and 5, the 

data change is not lost. During recovery, PostgreSQL reads the WAL from the last 

checkpoint forward and replays all the changes to bring the data files up to date. 

Key WAL-related configuration parameters include: 
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Parameter Default Purpose

wal_level replica Determines how much information is written to 
WAL (minimal, replica, logical)

fsync on Forces WAL writes to be flushed to disk for durabili-
ty

synchronous_commit on Whether to wait for WAL flush before confirming 
commit to client

wal_buffers -1 (auto) Size of WAL buffer in shared memory

checkpoint_timeout 5min Maximum time between automatic checkpoints

max_wal_size 1GB Maximum WAL size between checkpoints before 
forcing a new checkpoint

min_wal_size 80MB Minimum WAL size to retain for recycling

archive_mode off Whether to enable WAL archiving for backup and 
recovery

Note: The synchronous_commit parameter offers an interesting trade-off. Set-

ting it to off allows PostgreSQL to acknowledge commits before the WAL is 

flushed to disk. This can significantly improve transaction throughput for workloads 

with many small transactions, but it introduces a window (typically a few hundred 

milliseconds) during which committed transactions could be lost in a crash. The 

data remains consistent in all cases; you simply might lose the most recent commit-

ted transactions. This is acceptable for some workloads but not for others. 

You can monitor WAL activity using: 

SELECT * FROM pg_stat_wal; 

 

SELECT pg_current_wal_lsn(); 

SELECT pg_walfile_name(pg_current_wal_lsn()); 

SELECT pg_wal_lsn_diff(pg_current_wal_lsn(), '0/0') AS 

total_wal_bytes; 
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Query Processing Pipeline 
When a SQL query arrives at a PostgreSQL backend process, it passes through a 

series of well-defined stages before results are returned to the client. Understand-

ing this pipeline is essential for diagnosing performance problems and writing effi-

cient queries. 

The first stage is parsing. The parser takes the raw SQL text and transforms it 

into a parse tree, which is an internal representation of the query's structure. Dur-

ing this stage, the syntax of the SQL statement is validated. If you write SELEC * 

FROM my_table, the parser will reject it with a syntax error. The parser does not, 

however, validate that the referenced tables or columns actually exist. That hap-

pens in the next stage. 

The second stage is analysis (also called semantic analysis or rewriting). The 

analyzer takes the parse tree and resolves all object references. It looks up table 

names in the system catalogs to verify they exist, resolves column names, checks 

data types, applies implicit type casts, and expands wildcards like * into actual col-

umn lists. The analyzer also applies any applicable rewrite rules, such as those that 

implement views. When you query a view, the analyzer replaces the view reference 

with the view's underlying query definition. The output of this stage is called the 

query tree. 

The third stage is planning (also called optimization). This is arguably the most 

complex and important stage. The planner takes the query tree and generates an 

execution plan that describes the most efficient way to retrieve the requested 

data. The planner considers multiple strategies for each operation in the query. For 

a table scan, it might consider a sequential scan, an index scan, a bitmap index 

scan, or an index-only scan. For a join, it might consider nested loop, hash join, or 

merge join. For each possible combination of strategies, the planner estimates the 



19

cost using statistics collected about the data (stored in pg_statistic and acces-

sible through pg_stats). 

The planner uses a cost model based on configurable cost constants: 

Cost Parameter Default Represents

seq_page_cost 1.0 Cost of reading a single page sequentially from 
disk

random_page_cost 4.0 Cost of reading a single page randomly from disk

cpu_tuple_cost 0.01 Cost of processing a single tuple

cpu_index_tuple_cost 0.005 Cost of processing a single index entry

cpu_operator_cost 0.0025 Cost of executing a single operator or function

effective_cache_size 4GB Planner's estimate of the total cache available 
(shared buffers plus OS cache)

The planner combines these costs with table statistics (row counts, column value 

distributions, most common values, histograms) to estimate the total cost of each 

possible plan. It then selects the plan with the lowest estimated total cost. You can 

examine the chosen plan using the EXPLAIN command: 

EXPLAIN (ANALYZE, BUFFERS, FORMAT TEXT) SELECT * FROM orders 

WHERE customer_id = 42; 

The output shows the plan tree, estimated and actual row counts, execution time, 

and buffer usage. This is one of the most valuable tools for performance tuning, 

and we will explore it extensively in later chapters. 

The fourth and final stage is execution. The executor takes the plan tree gener-

ated by the planner and actually executes it. PostgreSQL uses a pull-based itera-

tor model (also known as the Volcano model). Each node in the plan tree imple-

ments three operations: initialize, get-next-tuple, and close. The top node calls get-

next-tuple on its child node, which in turn calls get-next-tuple on its child, and so 
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on down to the leaf nodes (which are typically scan nodes that read from tables or 

indexes). Tuples flow upward through the plan tree, being filtered, joined, sorted, 

and aggregated along the way. 

Here is a practical example that ties together multiple concepts. Consider the 

following query and its execution: 

CREATE TABLE customers ( 

    id SERIAL PRIMARY KEY, 

    name TEXT NOT NULL, 

    email TEXT, 

    created_at TIMESTAMP DEFAULT now() 

); 

 

CREATE INDEX idx_customers_email ON customers(email); 

 

INSERT INTO customers (name, email) 

SELECT 'Customer ' || i, 'customer' || i || '@example.com' 

FROM generate_series(1, 100000) AS i; 

 

ANALYZE customers; 

 

EXPLAIN (ANALYZE, BUFFERS) 

SELECT * FROM customers WHERE email = 'customer500@example.com'; 

The output might look like: 

Index Scan using idx_customers_email on customers  

(cost=0.42..8.44 rows=1 width=45) (actual time=0.025..0.026 

rows=1 loops=1) 

  Index Cond: (email = 'customer500@example.com'::text) 

  Buffers: shared hit=4 

Planning Time: 0.085 ms 

Execution Time: 0.042 ms 

This output tells us that the planner chose an index scan using idx_customer-

s_email, estimated it would find 1 row, actually found 1 row, and the entire opera-

tion required reading only 4 pages from the shared buffer cache (all hits, no disk 
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reads). The planning took 0.085 milliseconds and execution took 0.042 millisec-

onds. 

Practical Exercise 
To solidify your understanding of PostgreSQL internals, perform the following exer-

cise on a test PostgreSQL installation. 

First, create a test database and table: 

CREATE DATABASE internals_lab; 

\c internals_lab 

 

CREATE TABLE test_mvcc ( 

    id SERIAL PRIMARY KEY, 

    value TEXT 

); 

 

INSERT INTO test_mvcc (value) VALUES ('original'); 

Now, install the pageinspect extension and examine the tuple: 

CREATE EXTENSION pageinspect; 

 

SELECT lp, t_xmin, t_xmax, t_ctid 

FROM heap_page_items(get_raw_page('test_mvcc', 0)); 

Note the t_xmin value and the fact that t_xmax is 0 (meaning the tuple has not 

been deleted or updated). Now update the row: 

UPDATE test_mvcc SET value = 'updated' WHERE id = 1; 

 

SELECT lp, t_xmin, t_xmax, t_ctid 

FROM heap_page_items(get_raw_page('test_mvcc', 0)); 
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You should now see two tuples on the page. The first tuple (the original) now has a 

non-zero t_xmax and its t_ctid points to the second tuple. The second tuple (the 

updated version) has a new t_xmin and t_xmax of 0. This is MVCC in action. 

Finally, run VACUUM and observe the change: 

VACUUM test_mvcc; 

 

SELECT lp, t_xmin, t_xmax, t_ctid 

FROM heap_page_items(get_raw_page('test_mvcc', 0)); 

After vacuuming, the dead tuple should be marked as unused, freeing its space for 

future inserts. 

This chapter has laid the groundwork for everything that follows in this book. 

The process architecture determines how you plan for connection pooling and 

memory allocation. The memory architecture guides your configuration tuning. The 

storage system and MVCC model explain why VACUUM is essential and how bloat 

occurs. The WAL mechanism underpins your backup, recovery, and replication 

strategies. And the query processing pipeline is the foundation for all query perfor-

mance tuning. With these internals firmly understood, you are now prepared to 

dive into the practical aspects of PostgreSQL administration and performance opti-

mization in the chapters ahead. 


