PostgreSQL for Developers:
Queries, Functions & Trig-
gers

Writing Efficient SQL, Building Server-
Side Logic, and Optimizing Database
Workflows

Preface

Why This Book Exists

PostgreSQL has quietly become one of the most powerful and beloved databases
in the world — and for good reason. It's open source, remarkably extensible, stan-
dards-compliant, and trusted by organizations ranging from startups to Fortune
500 companies. Yet for many developers, PostgreSQL remains an underutilized
tool: a place to store data, but rarely a place to think about data.

This book was written to change that.

PostgreSQL for Developers: Queries, Functions & Triggers is designed for
application developers who want to move beyond basic CRUD operations and un-
lock the full potential of PostgreSQL as a development platform. Whether you're
writing your first SELECT statement or looking to build sophisticated server-side
logic with PL/pgSQL functions and triggers, this book meets you where you are

and takes you further than you expected to go.

What This Book Covers

The scope of this book is intentionally focused on what matters most to working
developers. We begin with the fundamentals — why PostgreSQL is uniquely devel-
oper-friendly, how to set up a productive development environment, and how to

write queries that are both correct and expressive. From there, we build steadily

through joins, aggregations, subqueries, and common table expressions, giv-
ing you fluency in the SQL patterns you'll encounter daily.

But we don't stop at queries. PostgreSQL offers capabilities that many develop-
ers never explore, and some of the most valuable chapters in this book cover ex-

actly that territory:

Working with JSON and arrays natively in PostgreSQL, eliminating the

need for awkward workarounds at the application layer

- Indexing and query performance, demystified for developers who
want fast applications without becoming full-time DBAs

- SQL functions and PL/pgSQL, enabling you to push logic closer to
your data where it often belongs

- Triggers and practical automation scenarios that enforce business
rules, maintain audit trails, and keep your data consistent

- Transactions and concurrency, the bedrock of data integrity that every

developer must understand

The final chapters bring everything together, showing how to integrate PostgreSQL
effectively with your applications and charting a path from capable developer to

true database power user.

How to Read This Book

The book is structured as a progressive journey through sixteen chapters and five
appendices. Chapters 1 through 9 build your foundation in PostgreSQL queries
and performance. Chapters 10 through 13 introduce server-side programming
with functions and triggers. Chapters 14 through 16 address integration, data in-

tegrity, and mastery. The appendices serve as practical, quick-reference resources

— including a SQL cheat sheet, optimization patterns, function and trigger tem-
plates, and a concurrency checklist — that you'll return to long after you've finished
reading.

You can read straight through or jump to the chapters most relevant to your
current work. Either way, each chapter is designed to be practical first, with real-

world examples rooted in the kinds of problems developers actually face.

Who This Book Is For

If you write code that talks to a PostgreSQL database — or if you're about to start —
this book is for you. No prior database expertise is required, though familiarity
with basic programming concepts will help. Backend developers, full-stack engi-
neers, and anyone building data-driven applications will find immediate, applica-

ble value here.

Acknowledgments

This book owes a debt of gratitude to the PostgreSQL community — the contribu-
tors, maintainers, and educators who have built and documented one of the finest
pieces of open-source software ever created. Their commitment to quality, open-
ness, and relentless improvement is an inspiration. Thanks also to the countless de-
velopers whose real-world questions, struggles, and breakthroughs shaped the ex-
amples and explanations in these pages.

PostgreSQL is more than a database. It's a development tool waiting to be fully

embraced. Let's begin.

Thomas Ellison

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Why PostgreSQL Is Developer-Friendly
Setting Up a Developer Environment
SELECT Statements and Filtering

Joins and Data Relationships

Aggregations and Grouping

Page

7

20
35
50
67

Subqueries and Common Table Expressions (CTEs) 84

Working with JSON and Arrays

Indexing for Developers

Understanding Query Performance
Creating SQL Functions

PL/pgSQL for Application Logic
Understanding Triggers

Practical Trigger Scenarios

Transactions and Data Integrity
Integrating PostgreSQL with Applications
From Developer to Database Power User
SQL Cheat Sheet for Developers
Common Query Optimization Patterns
Function and Trigger Templates
Transaction and Concurrency Checklist

PostgreSQL Developer Learning Path

100
118
134
150
168
186
201
218
237
264
281
304
318
340
357

Chapter 1: Why PostgreSQL
Is Developer-Friendly

When developers sit down to choose a database for their next project, they face a
landscape crowded with options. There are lightweight embedded databases,
cloud-native solutions, document stores, and of course, the traditional relational
database management systems that have powered enterprise applications for
decades. Among all of these choices, PostgreSQL has steadily risen to become one
of the most beloved and widely adopted databases in the world. But what exactly
makes PostgreSQL so appealing to developers? Why do seasoned engineers and
newcomers alike gravitate toward it with such enthusiasm? This chapter explores
the philosophy, features, and practical advantages that make PostgreSQL not just a
powerful database, but a genuinely developer-friendly one.

PostgreSQL is not merely a tool for storing and retrieving data. It is a complete
platform for building sophisticated data-driven applications. It offers developers an
extraordinary degree of control, flexibility, and expressiveness that few other data-
bases can match. From its rich type system to its extensible architecture, from its
standards compliance to its vibrant open-source community, PostgreSQL has been
designed from the ground up with the developer experience in mind. Understand-
ing why this is the case will set the foundation for everything else you learn in this

book.

The Origins and Philosophy of Post-
greSQL

To understand why PostgreSQL is developer-friendly, it helps to understand where
it came from. PostgreSQL traces its roots back to 1986, when Professor Michael
Stonebraker at the University of California, Berkeley, began work on a project
called POSTGRES, which stood for Post-Ingres. The project was an academic en-
deavor aimed at pushing the boundaries of what relational databases could do.
Unlike commercial database products of the era, which were primarily concerned
with performance benchmarks and enterprise sales, POSTGRES was driven by in-
tellectual curiosity and a desire to solve real problems in data management.

This academic heritage gave PostgreSQL a distinctive character. The project
valued correctness over shortcuts. It prioritized adherence to SQL standards. It em-
braced extensibility as a core design principle, recognizing that no single database
design could anticipate every use case developers might encounter. When the
project transitioned from an academic prototype to an open-source community
project in 1996, these values came along with it. The community that formed
around PostgreSQL carried forward the same commitment to doing things right,
even when doing things right was harder.

Today, PostgreSQL is developed and maintained by a global community of
contributors. There is no single corporation that owns or controls it. This indepen-
dence means that PostgreSQL evolves based on what developers actually need,
rather than what a marketing department decides to prioritize. Features are added
thoughtfully, with extensive discussion and review. Backward compatibility is taken
seriously. The result is a database that developers can trust to behave predictably

and to grow with their needs over time.

SQL Standards Compliance and Why It
Matters

One of the first things developers notice about PostgreSQL is how closely it ad-
heres to the SQL standard. SQL, or Structured Query Language, is the lingua franca
of relational databases. In theory, SQL should be portable across different data-
base systems. In practice, most databases implement their own dialects with pro-
prietary extensions and subtle deviations from the standard. PostgreSQL is not per-
fectly standard-compliant, as no database truly is, but it comes closer than most of
its peers.

Why does this matter for developers? Because when you write SQL in Postgre-
SQL, you are learning transferable skills. The queries you write, the patterns you
develop, and the mental models you build will serve you well even if you eventual-
ly work with other database systems. More importantly, standard-compliant SQL
tends to be more predictable. When PostgreSQL follows the standard, you can
consult the SQL specification to understand how a feature should behave, rather
than hunting through vendor-specific documentation for edge cases.

Consider a simple example. The SQL standard defines how NULL values
should be handled in comparisons, aggregations, and sorting. Some databases
take liberties with these rules in ways that can produce surprising results. Postgre-
SQL follows the standard faithfully. NULL is not equal to NULL. NULL is not less than
or greater than any value. Aggregation functions ignore NULL values unless explic-
itly told otherwise. These behaviors are consistent and logical, which means fewer
bugs and less time spent debugging unexpected query results.

PostgreSQL also supports advanced SQL features that many other databases
either lack or implement incompletely. Window functions, Common Table Expres-
sions (CTEs), lateral joins, recursive queries, and full outer joins are all first-class citi-

zens in PostgreSQL. These features allow developers to express complex logic di-

rectly in SQL, often eliminating the need to pull data into application code for pro-
cessing.
Here is an example of a recursive CTE that generates a series of dates, a task

that would require procedural code in many other environments:

WITH RECURSIVE date series AS (
SELECT DATE '2024-01-01' AS generated date
UNION ALL
SELECT generated date + INTERVAL 'l day'
FROM date series
WHERE generated date < DATE '2024-01-31'

)
SELECT generated date
FROM date series;

This query produces every date in January 2024. The recursion is handled entirely
within SQL, with no need for loops in application code. This kind of expressiveness

is a hallmark of PostgreSQL's developer-friendly design.

The Rich Type System

PostgreSQL offers one of the richest type systems of any relational database. Be-
yond the standard types like INTEGER, VARCHAR, BOOLEAN, and TIMESTAMP,
PostgreSQL provides a wealth of specialized types that can dramatically simplify
application development.

The following table summarizes some of the most notable types available in

PostgreSQL and their typical use cases:

Data Type Description Typical Use Case
SERIAL/ BIGSERIAL Auto-incrementing integer Primary keys that need au-
types tomatic generation

10

UuiD Universally unique identifi- Distributed systems where

er sequential IDs are imprac-

tical

JSON /7 JSONB JavaScript Object Notation Storing semi-structured

storage data alongside relational

data

ARRAY Native array support Storing lists of values with-
out a separate table

HSTORE Key-value pair storage Simple attribute storage
without full JSON over-
head

INET / CIDR Network address types Storing and querying IP
addresses and network
ranges

TSTZRANGE / DATERAN- Range types Representing intervals of

GE time or numeric ranges

TSVECTOR / TSQUERY Full-text search types Building search functional-
ity directly in the database

POINT / POLYGON / PATH Geometric types Spatial data and simple
geometric calculations

INTERVAL Duration representation Calculating differences be-
tween timestamps

MONEY Currency storage Financial applications re-
quiring locale-aware for-
matting

BYTEA Binary data Storing files, images, or

encrypted data

The JSONB type deserves special attention because it bridges the gap between
relational and document-oriented databases. With JSONB, you can store arbitrary
JSON documents in a PostgreSQL column, index them efficiently using GIN index-

es, and query them using a rich set of operators. This means you can handle semi-

11

structured data without abandoning the relational model or introducing a separate
document database into your architecture.

Here is an example of creating a table with a JSONB column and querying it:

CREATE TABLE products (
id SERIAL PRIMARY KEY,
name VARCHAR (200) NOT NULL,
attributes JSONB

) i

INSERT INTO products (name, attributes) VALUES

('Laptop', '{"brand": "ThinkPad", "ram gb": 16, "storage":
"512GB SsSD"}'),

('"Monitor', '{"brand": "Dell", "size inches": 27,
"resolution": "4K"}'),

('Keyboard', '{"brand": "Keychron", "type": "mechanical",
"wireless": true}'):;

SELECT name, attributes->>'brand' AS brand
FROM products
WHERE (attributes->>'ram gb')::int >= 16;

This query retrieves products where the RAM is 16 gigabytes or more, extracting
the brand from the JSON document. The ability to mix relational queries with
JSON operations gives developers remarkable flexibility in how they model their
data.

Note: The ->> operator extracts a JSON field as text, while the -> operator ex-
tracts it as a JSON object. Understanding the difference between these operators

is essential when working with JSONB data in PostgreSQL.

Extensibility as a Core Design Principle

Perhaps the most distinctive aspect of PostgreSQL is its extensibility. PostgreSQL

was designed from the beginning to be extended by its users. You can create cus-

12

tom data types, define new operators, write functions in multiple programming lan-
guages, build custom index types, and even add entirely new features through the
extension system.

The extension system is particularly powerful. Extensions are packages of SQL
objects, functions, types, and operators that can be installed into a PostgreSQL
database with a single command. The PostgreSQL community has produced hun-
dreds of extensions that add capabilities ranging from geographic information sys-
tems to time-series data management to foreign data wrappers that let you query
external data sources as if they were local tables.

Some of the most widely used extensions include:

Extension Purpose Installation Command
PostGIS Geographic and spatial data CREATE EXTENSION post-
support gis;
pg_trgm Trigram-based text similarity ~CREATE EXTENSION pg tr-
and fuzzy matching gm;
uuid-ossp UUID generation functions CREATE EXTENSION "uuid-
ossp";
pgcrypto Cryptographic functions for ~ CREATE EXTENSION
hashing and encryption pgcrypto;
hstore Key-value pair storage type CREATE EXTENSION hsto-
rey
pg_stat_statements Query performance statistics CREATE EXTENSION pg s-
tracking tat statements;
tablefunc Crosstab and pivot table func- CREATE EXTENSION table-
tions func;
citext Case-insensitive text type CREATE EXTENSION ci-

text;

Installing an extension is straightforward. For example, to enable UUID generation:

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

13

SELECT uuid generate v4();

This generates a random UUID that can be used as a primary key or unique identifi-
er. The extension system means that PostgreSQL can grow with your needs. If the
core database does not provide a feature you require, there is likely an extension
that does, or you can build one yourself.

Note: Extensions must be installed by a user with superuser privileges or by a
user who has been granted the CREATE privilege on the database. In managed
cloud environments, the available extensions may be restricted by the hosting

provider.

Developer Tooling and Ecosystem

A database is only as developer-friendly as the tools that surround it. PostgreSQL
benefits from a mature and extensive ecosystem of tools, libraries, and frameworks
that make it easy to work with from virtually any programming language or devel-
opment environment.

On the command line, psqgl is the interactive terminal for PostgreSQL. It is a
powerful tool that goes far beyond simple query execution. It supports tab com-
pletion, command history, formatted output, scripting, and a rich set of meta-com-
mands that let you inspect database objects quickly.

Here are some essential psgl commands that every PostgreSQL developer

should know:

Command Description
\1 List all databases on the server
\c database name Connect to a specific database

14

\dt List all tables in the current schema

\d table name Describe the structure of a specific table

\df List all functions in the current schema

\di List all indexes in the current schema

\du List all roles and users

\timing Toggle display of query execution time

\x Toggle expanded display mode for wide result sets
\i filename.sqgl Execute SQL commands from a file

\copy Import or export data to and from CSV files

\q Quit the psql session

Beyond psql, graphical tools like pgAdmin, DBeaver, and DataGrip provide visual
interfaces for database management, query writing, and performance analysis. Ob-
ject-relational mappers in every major programming language provide first-class
PostgreSQL support. Libraries like psycopg2 for Python, node-postgres for Java-
Script, JDBC for Java, and Npgsql for .NET offer robust, well-maintained drivers
that expose PostgreSQL's full feature set.

The combination of excellent command-line tools, graphical interfaces, and
language-specific libraries means that no matter what your preferred development

environment looks like, PostgreSQL fits comfortably into it.

Practical Exercise: Setting Up and Ex-
ploring PostgreSQL

The best way to appreciate PostgreSQL's developer-friendliness is to experience it

firsthand. The following exercise walks you through connecting to a PostgreSQL in-

15

stance, creating a database, building a table, and running some queries that
demonstrate the features discussed in this chapter.

First, connect to your PostgreSQL server using psql:

psqgl -U postgres -h localhost

Create a new database for experimentation:

CREATE DATABASE developer playground;
\c developer playground

Now create a table that uses several of PostgreSQL's rich data types:

CREATE TABLE developers (
id UUID DEFAULT gen random uuid() PRIMARY KEY,
name VARCHAR (100) NOT NULL,
email CITEXT UNIQUE NOT NULL,
skills TEXT[] NOT NULL DEFAULT '{}',
profile JSONB,
joined_at TIMESTAMPTZ DEFAULT NOW (),
active BOOLEAN DEFAULT TRUE
)

Note: The gen random uuid () function is available in PostgreSQL 13 and later
without any extension. For earlier versions, you would need to install the uuid-
ossp or pgcrypto extension. The CITEXT type requires the citext extension,
which you can enable with CREATE EXTENSION IF NOT EXISTS citext;.

Insert some sample data:

CREATE EXTENSION IF NOT EXISTS citext;

INSERT INTO developers (name, email, skills, profile) VALUES
('"Alice Chen', 'alice(lexample.com',
ARRAY['Python', 'PostgreSQL', 'Docker'],
'{"experience years": 8, "team": "Backend", "location": "San
Francisco"}'),
('Bob Martinez', 'boblexample.com',
ARRAY['JavaScript', 'PostgreSQL', 'React'],

16

'{"experience years": 5, "team": "Frontend", "location":
"Austin"} '),

('"Carol Singh', 'carol@example.com',

ARRAY['Go', 'PostgreSQL', 'Kubernetes'],

'{"experience years": 12, "team": "Infrastructure",

"location": "London"}');

Now run some queries that showcase PostgreSQL's capabilities:

-- Query using array containment operator
SELECT name, skills

FROM developers

WHERE skills @> ARRAY['PostgreSQL'];

-— Query using JSONB extraction

SELECT name, profile->>'team' AS team,
(profile->>"experience years')::int AS experience

FROM developers

WHERE (profile->>'experience years')::int > 6

ORDER BY experience DESC;

-— Use array length to find developers with the most skills
SELECT name, array length(skills, 1) AS skill count

FROM developers

ORDER BY skill count DESC;

-- Case-insensitive email lookup thanks to CITEXT
SELECT name, email

FROM developers

WHERE email = 'ALICEQ@EXAMPLE.COM';

The last query demonstrates the CITEXT type in action. Even though the email was
inserted as lowercase, the query matches it against an uppercase version without
needing any explicit case conversion. This is a small but meaningful convenience
that eliminates an entire category of bugs related to case sensitivity.

Explore the database structure using psgl meta-commands:

\dt
\d developers
\timing

17

SELECT * FROM developers;

The \timing command will show you how long each query takes to execute,

which becomes invaluable as you begin optimizing queries later in this book.

The Road Ahead

This chapter has painted a broad picture of why PostgreSQL stands out as a devel-
oper-friendly database. Its adherence to SQL standards means your knowledge is
portable and your queries behave predictably. Its rich type system lets you model
complex data directly in the database without awkward workarounds. Its extensibil-
ity means you are never boxed in by the limitations of the core product. And its
ecosystem of tools and libraries ensures that you can work with PostgreSQL com-
fortably from any development environment.

But we have only scratched the surface. In the chapters that follow, you will
dive deep into writing efficient SQL queries that leverage PostgreSQL's query plan-
ner and execution engine. You will learn to build server-side logic using functions
and stored procedures written in PL/pgSQL and other languages. You will master
triggers that automate database workflows and enforce complex business rules.
And you will discover optimization techniques that ensure your PostgreSQL data-
bases perform well under real-world workloads.

PostgreSQL is more than a database. It is a platform for building robust, main-
tainable, and performant data-driven applications. The journey begins here, and
the destination is mastery of one of the most powerful tools in a developer's arse-
nal. Every concept introduced in this chapter will be expanded upon, practiced,
and refined as you progress through this book. The foundation you have built by

understanding PostgreSQL's philosophy and capabilities will serve you well as the

18

complexity of the material increases. Welcome to PostgreSQL, and welcome to a

better way of working with data.

19

