
1

PostgreSQL for Developers:
Queries, Functions & Trig-
gers

Writing Efficient SQL, Building Server-
Side Logic, and Optimizing Database
Workflows

2

Preface

Why This Book Exists
PostgreSQL has quietly become one of the most powerful and beloved databases

in the world — and for good reason. It's open source, remarkably extensible, stan-

dards-compliant, and trusted by organizations ranging from startups to Fortune

500 companies. Yet for many developers, PostgreSQL remains an underutilized

tool: a place to store data, but rarely a place to think about data.

This book was written to change that.

PostgreSQL for Developers: Queries, Functions & Triggers is designed for

application developers who want to move beyond basic CRUD operations and un-

lock the full potential of PostgreSQL as a development platform. Whether you're

writing your first SELECT statement or looking to build sophisticated server-side

logic with PL/pgSQL functions and triggers, this book meets you where you are

and takes you further than you expected to go.

What This Book Covers
The scope of this book is intentionally focused on what matters most to working

developers. We begin with the fundamentals — why PostgreSQL is uniquely devel-

oper-friendly, how to set up a productive development environment, and how to

write queries that are both correct and expressive. From there, we build steadily

3

through joins, aggregations, subqueries, and common table expressions, giv-

ing you fluency in the SQL patterns you'll encounter daily.

But we don't stop at queries. PostgreSQL offers capabilities that many develop-

ers never explore, and some of the most valuable chapters in this book cover ex-

actly that territory:

-	 Working with JSON and arrays natively in PostgreSQL, eliminating the

need for awkward workarounds at the application layer

-	 Indexing and query performance, demystified for developers who

want fast applications without becoming full-time DBAs

-	 SQL functions and PL/pgSQL, enabling you to push logic closer to

your data where it often belongs

-	 Triggers and practical automation scenarios that enforce business

rules, maintain audit trails, and keep your data consistent

-	 Transactions and concurrency, the bedrock of data integrity that every

developer must understand

The final chapters bring everything together, showing how to integrate PostgreSQL

effectively with your applications and charting a path from capable developer to

true database power user.

How to Read This Book
The book is structured as a progressive journey through sixteen chapters and five

appendices. Chapters 1 through 9 build your foundation in PostgreSQL queries

and performance. Chapters 10 through 13 introduce server-side programming

with functions and triggers. Chapters 14 through 16 address integration, data in-

tegrity, and mastery. The appendices serve as practical, quick-reference resources

4

— including a SQL cheat sheet, optimization patterns, function and trigger tem-

plates, and a concurrency checklist — that you'll return to long after you've finished

reading.

You can read straight through or jump to the chapters most relevant to your

current work. Either way, each chapter is designed to be practical first, with real-

world examples rooted in the kinds of problems developers actually face.

Who This Book Is For
If you write code that talks to a PostgreSQL database — or if you're about to start —

this book is for you. No prior database expertise is required, though familiarity

with basic programming concepts will help. Backend developers, full-stack engi-

neers, and anyone building data-driven applications will find immediate, applica-

ble value here.

Acknowledgments
This book owes a debt of gratitude to the PostgreSQL community — the contribu-

tors, maintainers, and educators who have built and documented one of the finest

pieces of open-source software ever created. Their commitment to quality, open-

ness, and relentless improvement is an inspiration. Thanks also to the countless de-

velopers whose real-world questions, struggles, and breakthroughs shaped the ex-

amples and explanations in these pages.

PostgreSQL is more than a database. It's a development tool waiting to be fully

embraced. Let's begin.

5

Thomas Ellison

6

Table of Contents

Chapter Title Page

1 Why PostgreSQL Is Developer-Friendly 7

2 Setting Up a Developer Environment 20

3 SELECT Statements and Filtering 35

4 Joins and Data Relationships 50

5 Aggregations and Grouping 67

6 Subqueries and Common Table Expressions (CTEs) 84

7 Working with JSON and Arrays 100

8 Indexing for Developers 118

9 Understanding Query Performance 134

10 Creating SQL Functions 150

11 PL/pgSQL for Application Logic 168

12 Understanding Triggers 186

13 Practical Trigger Scenarios 201

14 Transactions and Data Integrity 218

15 Integrating PostgreSQL with Applications 237

16 From Developer to Database Power User 264

App SQL Cheat Sheet for Developers 281

App Common Query Optimization Patterns 304

App Function and Trigger Templates 318

App Transaction and Concurrency Checklist 340

App PostgreSQL Developer Learning Path 357

7

Chapter 1: Why PostgreSQL
Is Developer-Friendly

When developers sit down to choose a database for their next project, they face a

landscape crowded with options. There are lightweight embedded databases,

cloud-native solutions, document stores, and of course, the traditional relational

database management systems that have powered enterprise applications for

decades. Among all of these choices, PostgreSQL has steadily risen to become one

of the most beloved and widely adopted databases in the world. But what exactly

makes PostgreSQL so appealing to developers? Why do seasoned engineers and

newcomers alike gravitate toward it with such enthusiasm? This chapter explores

the philosophy, features, and practical advantages that make PostgreSQL not just a

powerful database, but a genuinely developer-friendly one.

PostgreSQL is not merely a tool for storing and retrieving data. It is a complete

platform for building sophisticated data-driven applications. It offers developers an

extraordinary degree of control, flexibility, and expressiveness that few other data-

bases can match. From its rich type system to its extensible architecture, from its

standards compliance to its vibrant open-source community, PostgreSQL has been

designed from the ground up with the developer experience in mind. Understand-

ing why this is the case will set the foundation for everything else you learn in this

book.

8

The Origins and Philosophy of Post-
greSQL
To understand why PostgreSQL is developer-friendly, it helps to understand where

it came from. PostgreSQL traces its roots back to 1986, when Professor Michael

Stonebraker at the University of California, Berkeley, began work on a project

called POSTGRES, which stood for Post-Ingres. The project was an academic en-

deavor aimed at pushing the boundaries of what relational databases could do.

Unlike commercial database products of the era, which were primarily concerned

with performance benchmarks and enterprise sales, POSTGRES was driven by in-

tellectual curiosity and a desire to solve real problems in data management.

This academic heritage gave PostgreSQL a distinctive character. The project

valued correctness over shortcuts. It prioritized adherence to SQL standards. It em-

braced extensibility as a core design principle, recognizing that no single database

design could anticipate every use case developers might encounter. When the

project transitioned from an academic prototype to an open-source community

project in 1996, these values came along with it. The community that formed

around PostgreSQL carried forward the same commitment to doing things right,

even when doing things right was harder.

Today, PostgreSQL is developed and maintained by a global community of

contributors. There is no single corporation that owns or controls it. This indepen-

dence means that PostgreSQL evolves based on what developers actually need,

rather than what a marketing department decides to prioritize. Features are added

thoughtfully, with extensive discussion and review. Backward compatibility is taken

seriously. The result is a database that developers can trust to behave predictably

and to grow with their needs over time.

9

SQL Standards Compliance and Why It
Matters
One of the first things developers notice about PostgreSQL is how closely it ad-

heres to the SQL standard. SQL, or Structured Query Language, is the lingua franca

of relational databases. In theory, SQL should be portable across different data-

base systems. In practice, most databases implement their own dialects with pro-

prietary extensions and subtle deviations from the standard. PostgreSQL is not per-

fectly standard-compliant, as no database truly is, but it comes closer than most of

its peers.

Why does this matter for developers? Because when you write SQL in Postgre-

SQL, you are learning transferable skills. The queries you write, the patterns you

develop, and the mental models you build will serve you well even if you eventual-

ly work with other database systems. More importantly, standard-compliant SQL

tends to be more predictable. When PostgreSQL follows the standard, you can

consult the SQL specification to understand how a feature should behave, rather

than hunting through vendor-specific documentation for edge cases.

Consider a simple example. The SQL standard defines how NULL values

should be handled in comparisons, aggregations, and sorting. Some databases

take liberties with these rules in ways that can produce surprising results. Postgre-

SQL follows the standard faithfully. NULL is not equal to NULL. NULL is not less than

or greater than any value. Aggregation functions ignore NULL values unless explic-

itly told otherwise. These behaviors are consistent and logical, which means fewer

bugs and less time spent debugging unexpected query results.

PostgreSQL also supports advanced SQL features that many other databases

either lack or implement incompletely. Window functions, Common Table Expres-

sions (CTEs), lateral joins, recursive queries, and full outer joins are all first-class citi-

zens in PostgreSQL. These features allow developers to express complex logic di-

10

rectly in SQL, often eliminating the need to pull data into application code for pro-

cessing.

Here is an example of a recursive CTE that generates a series of dates, a task

that would require procedural code in many other environments:

WITH RECURSIVE date_series AS (

 SELECT DATE '2024-01-01' AS generated_date

 UNION ALL

 SELECT generated_date + INTERVAL '1 day'

 FROM date_series

 WHERE generated_date < DATE '2024-01-31'

)

SELECT generated_date

FROM date_series;

This query produces every date in January 2024. The recursion is handled entirely

within SQL, with no need for loops in application code. This kind of expressiveness

is a hallmark of PostgreSQL's developer-friendly design.

The Rich Type System
PostgreSQL offers one of the richest type systems of any relational database. Be-

yond the standard types like INTEGER, VARCHAR, BOOLEAN, and TIMESTAMP,

PostgreSQL provides a wealth of specialized types that can dramatically simplify

application development.

The following table summarizes some of the most notable types available in

PostgreSQL and their typical use cases:

Data Type Description Typical Use Case

SERIAL / BIGSERIAL Auto-incrementing integer
types

Primary keys that need au-
tomatic generation

11

UUID Universally unique identifi-
er

Distributed systems where
sequential IDs are imprac-
tical

JSON / JSONB JavaScript Object Notation
storage

Storing semi-structured
data alongside relational
data

ARRAY Native array support Storing lists of values with-
out a separate table

HSTORE Key-value pair storage Simple attribute storage
without full JSON over-
head

INET / CIDR Network address types Storing and querying IP
addresses and network
ranges

TSTZRANGE / DATERAN-
GE

Range types Representing intervals of
time or numeric ranges

TSVECTOR / TSQUERY Full-text search types Building search functional-
ity directly in the database

POINT / POLYGON / PATH Geometric types Spatial data and simple
geometric calculations

INTERVAL Duration representation Calculating differences be-
tween timestamps

MONEY Currency storage Financial applications re-
quiring locale-aware for-
matting

BYTEA Binary data Storing files, images, or
encrypted data

The JSONB type deserves special attention because it bridges the gap between

relational and document-oriented databases. With JSONB, you can store arbitrary

JSON documents in a PostgreSQL column, index them efficiently using GIN index-

es, and query them using a rich set of operators. This means you can handle semi-

12

structured data without abandoning the relational model or introducing a separate

document database into your architecture.

Here is an example of creating a table with a JSONB column and querying it:

CREATE TABLE products (

 id SERIAL PRIMARY KEY,

 name VARCHAR(200) NOT NULL,

 attributes JSONB

);

INSERT INTO products (name, attributes) VALUES

 ('Laptop', '{"brand": "ThinkPad", "ram_gb": 16, "storage":

"512GB SSD"}'),

 ('Monitor', '{"brand": "Dell", "size_inches": 27,

"resolution": "4K"}'),

 ('Keyboard', '{"brand": "Keychron", "type": "mechanical",

"wireless": true}');

SELECT name, attributes->>'brand' AS brand

FROM products

WHERE (attributes->>'ram_gb')::int >= 16;

This query retrieves products where the RAM is 16 gigabytes or more, extracting

the brand from the JSON document. The ability to mix relational queries with

JSON operations gives developers remarkable flexibility in how they model their

data.

Note: The ->> operator extracts a JSON field as text, while the -> operator ex-

tracts it as a JSON object. Understanding the difference between these operators

is essential when working with JSONB data in PostgreSQL.

Extensibility as a Core Design Principle
Perhaps the most distinctive aspect of PostgreSQL is its extensibility. PostgreSQL

was designed from the beginning to be extended by its users. You can create cus-

13

tom data types, define new operators, write functions in multiple programming lan-

guages, build custom index types, and even add entirely new features through the

extension system.

The extension system is particularly powerful. Extensions are packages of SQL

objects, functions, types, and operators that can be installed into a PostgreSQL

database with a single command. The PostgreSQL community has produced hun-

dreds of extensions that add capabilities ranging from geographic information sys-

tems to time-series data management to foreign data wrappers that let you query

external data sources as if they were local tables.

Some of the most widely used extensions include:

Extension Purpose Installation Command

PostGIS Geographic and spatial data
support

CREATE EXTENSION post-
gis;

pg_trgm Trigram-based text similarity
and fuzzy matching

CREATE EXTENSION pg_tr-
gm;

uuid-ossp UUID generation functions CREATE EXTENSION "uuid-
ossp";

pgcrypto Cryptographic functions for
hashing and encryption

CREATE EXTENSION
pgcrypto;

hstore Key-value pair storage type CREATE EXTENSION hsto-
re;

pg_stat_statements Query performance statistics
tracking

CREATE EXTENSION pg_s-
tat_statements;

tablefunc Crosstab and pivot table func-
tions

CREATE EXTENSION table-
func;

citext Case-insensitive text type CREATE EXTENSION ci-
text;

Installing an extension is straightforward. For example, to enable UUID generation:

CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

14

SELECT uuid_generate_v4();

This generates a random UUID that can be used as a primary key or unique identifi-

er. The extension system means that PostgreSQL can grow with your needs. If the

core database does not provide a feature you require, there is likely an extension

that does, or you can build one yourself.

Note: Extensions must be installed by a user with superuser privileges or by a

user who has been granted the CREATE privilege on the database. In managed

cloud environments, the available extensions may be restricted by the hosting

provider.

Developer Tooling and Ecosystem
A database is only as developer-friendly as the tools that surround it. PostgreSQL

benefits from a mature and extensive ecosystem of tools, libraries, and frameworks

that make it easy to work with from virtually any programming language or devel-

opment environment.

On the command line, psql is the interactive terminal for PostgreSQL. It is a

powerful tool that goes far beyond simple query execution. It supports tab com-

pletion, command history, formatted output, scripting, and a rich set of meta-com-

mands that let you inspect database objects quickly.

Here are some essential psql commands that every PostgreSQL developer

should know:

Command Description

\l List all databases on the server

\c database_name Connect to a specific database

15

\dt List all tables in the current schema

\d table_name Describe the structure of a specific table

\df List all functions in the current schema

\di List all indexes in the current schema

\du List all roles and users

\timing Toggle display of query execution time

\x Toggle expanded display mode for wide result sets

\i filename.sql Execute SQL commands from a file

\copy Import or export data to and from CSV files

\q Quit the psql session

Beyond psql, graphical tools like pgAdmin, DBeaver, and DataGrip provide visual

interfaces for database management, query writing, and performance analysis. Ob-

ject-relational mappers in every major programming language provide first-class

PostgreSQL support. Libraries like psycopg2 for Python, node-postgres for Java-

Script, JDBC for Java, and Npgsql for .NET offer robust, well-maintained drivers

that expose PostgreSQL's full feature set.

The combination of excellent command-line tools, graphical interfaces, and

language-specific libraries means that no matter what your preferred development

environment looks like, PostgreSQL fits comfortably into it.

Practical Exercise: Setting Up and Ex-
ploring PostgreSQL
The best way to appreciate PostgreSQL's developer-friendliness is to experience it

firsthand. The following exercise walks you through connecting to a PostgreSQL in-

16

stance, creating a database, building a table, and running some queries that

demonstrate the features discussed in this chapter.

First, connect to your PostgreSQL server using psql:

psql -U postgres -h localhost

Create a new database for experimentation:

CREATE DATABASE developer_playground;

\c developer_playground

Now create a table that uses several of PostgreSQL's rich data types:

CREATE TABLE developers (

 id UUID DEFAULT gen_random_uuid() PRIMARY KEY,

 name VARCHAR(100) NOT NULL,

 email CITEXT UNIQUE NOT NULL,

 skills TEXT[] NOT NULL DEFAULT '{}',

 profile JSONB,

 joined_at TIMESTAMPTZ DEFAULT NOW(),

 active BOOLEAN DEFAULT TRUE

);

Note: The gen_random_uuid() function is available in PostgreSQL 13 and later

without any extension. For earlier versions, you would need to install the uuid-

ossp or pgcrypto extension. The CITEXT type requires the citext extension,

which you can enable with CREATE EXTENSION IF NOT EXISTS citext;.

Insert some sample data:

CREATE EXTENSION IF NOT EXISTS citext;

INSERT INTO developers (name, email, skills, profile) VALUES

 ('Alice Chen', 'alice@example.com',

 ARRAY['Python', 'PostgreSQL', 'Docker'],

 '{"experience_years": 8, "team": "Backend", "location": "San

Francisco"}'),

 ('Bob Martinez', 'bob@example.com',

 ARRAY['JavaScript', 'PostgreSQL', 'React'],

17

 '{"experience_years": 5, "team": "Frontend", "location":

"Austin"}'),

 ('Carol Singh', 'carol@example.com',

 ARRAY['Go', 'PostgreSQL', 'Kubernetes'],

 '{"experience_years": 12, "team": "Infrastructure",

"location": "London"}');

Now run some queries that showcase PostgreSQL's capabilities:

-- Query using array containment operator

SELECT name, skills

FROM developers

WHERE skills @> ARRAY['PostgreSQL'];

-- Query using JSONB extraction

SELECT name, profile->>'team' AS team,

 (profile->>'experience_years')::int AS experience

FROM developers

WHERE (profile->>'experience_years')::int > 6

ORDER BY experience DESC;

-- Use array_length to find developers with the most skills

SELECT name, array_length(skills, 1) AS skill_count

FROM developers

ORDER BY skill_count DESC;

-- Case-insensitive email lookup thanks to CITEXT

SELECT name, email

FROM developers

WHERE email = 'ALICE@EXAMPLE.COM';

The last query demonstrates the CITEXT type in action. Even though the email was

inserted as lowercase, the query matches it against an uppercase version without

needing any explicit case conversion. This is a small but meaningful convenience

that eliminates an entire category of bugs related to case sensitivity.

Explore the database structure using psql meta-commands:

\dt

\d developers

\timing

18

SELECT * FROM developers;

The \timing command will show you how long each query takes to execute,

which becomes invaluable as you begin optimizing queries later in this book.

The Road Ahead
This chapter has painted a broad picture of why PostgreSQL stands out as a devel-

oper-friendly database. Its adherence to SQL standards means your knowledge is

portable and your queries behave predictably. Its rich type system lets you model

complex data directly in the database without awkward workarounds. Its extensibil-

ity means you are never boxed in by the limitations of the core product. And its

ecosystem of tools and libraries ensures that you can work with PostgreSQL com-

fortably from any development environment.

But we have only scratched the surface. In the chapters that follow, you will

dive deep into writing efficient SQL queries that leverage PostgreSQL's query plan-

ner and execution engine. You will learn to build server-side logic using functions

and stored procedures written in PL/pgSQL and other languages. You will master

triggers that automate database workflows and enforce complex business rules.

And you will discover optimization techniques that ensure your PostgreSQL data-

bases perform well under real-world workloads.

PostgreSQL is more than a database. It is a platform for building robust, main-

tainable, and performant data-driven applications. The journey begins here, and

the destination is mastery of one of the most powerful tools in a developer's arse-

nal. Every concept introduced in this chapter will be expanded upon, practiced,

and refined as you progress through this book. The foundation you have built by

understanding PostgreSQL's philosophy and capabilities will serve you well as the

19

complexity of the material increases. Welcome to PostgreSQL, and welcome to a

better way of working with data.

