PostgreSQL Backup, Replica-
tion & High Availability

Designing Resilient, Fault-Tolerant, and
Disaster-Ready PostgreSQL Systems

Preface

Every organization that depends on PostgreSQL-whether powering a fast-growing
startup, a financial platform, or a global e-commerce operation—shares one non-
negotiable requirement: the data must survive. Servers fail, disks corrupt, net-
works partition, and entire data centers go dark. The question is never if something
will go wrong, but when—and whether your PostgreSQL infrastructure is ready for it.

This book was written to make sure you are.

Why This Book

PostgreSQL Backup, Replication & High Availability is a comprehensive, hands-
on guide to protecting your PostgreSQL databases against data loss and down-
time. It bridges the gap between knowing that backups and replication matter and
actually implementing them with confidence in production. Whether you are a
database administrator managing a single PostgreSQL instance or an architect de-
signing a multi-node, globally distributed PostgreSQL cluster, this book provides
the depth and practical guidance you need.

Too often, backup and high availability strategies are treated as afterthoughts—
configured once during initial setup and never revisited until disaster strikes. This
book challenges that mindset. It treats resilience as a first-class discipline, one that

demands the same rigor and attention as schema design or query optimization.

What You Will Learn

The book is organized into a deliberate progression. We begin with foundational
concepts—why backups and high availability matter, and how PostgreSQL's archi-
tecture uniquely supports them. From there, we move into the practical mechanics
of logical and physical backups, including a deep dive into PostgreSQL's Write-
Ahead Log (WAL) archiving and Point-in-Time Recovery (PITR), two capabilities that
set PostgreSQL apart.

The middle chapters focus on replication: setting up PostgreSQL streaming
replication, understanding the trade-offs between synchronous and asynchronous
modes, and mastering failover and switchover strategies. We explore load balanc-
ing and read scaling to help you extract maximum value from your replicas, and
we dedicate an entire chapter to monitoring and troubleshooting replication—
because a replication setup you can't observe is one you can't trust.

The later chapters elevate the conversation to architecture and operations:
multi-node high availability designs, backup automation and scheduling, security
considerations for backup and replication data, and capacity planning for growing
PostgreSQL deployments. The final chapter, From DBA to Resilience Architect, in-
vites you to think beyond individual tasks and embrace a holistic approach to Post-
greSQL resilience.

The appendices provide ready-to-use resources—checklists, configuration ref-
erences, monitoring queries, a disaster recovery runbook template, and an HA ar-

chitecture design worksheet—so you can move from reading to doing without de-

lay.

Who This Book Is For

This book is for PostgreSQL database administrators, systems engineers, DevOps
practitioners, site reliability engineers, and software architects who want to build
PostgreSQL environments that are not merely functional but durable. Some famil-
iarity with PostgreSQL administration is assumed, but each concept is explained

from first principles before diving into advanced territory.

A Note of Gratitude

No technical book is written in isolation. | owe a deep debt to the PostgreSQL
community—-the developers, contributors, and documentation writers who have
built and maintained one of the most remarkable open-source databases in exis-
tence. | am also grateful to the countless DBAs and engineers whose real-world
war stories, shared in blog posts, conference talks, and late-night incident chan-
nels, informed the practical advice in these pages. Finally, my thanks to the techni-
cal reviewers whose sharp eyes and honest feedback made this book far better

than it would have been otherwise.

How to Read This Book

You can read this book cover to cover as a structured learning path, or you can
jump directly to the chapters that address your most pressing PostgreSQL chal-
lenges. Each chapter is designed to be self-contained while building on the
themes established earlier. Wherever possible, | have included concrete examples,
configuration snippets, and decision frameworks to keep the material grounded

and actionable.

PostgreSQL gives you extraordinary tools for resilience. This book shows you
how to use them.
Let's build systems that endure.

Thomas Ellison

Table of Contents

Chapter Title Page
1 Why Backups and HA Matter 7

2 PostgreSQL Architecture for HA 17
3 Logical Backups 34
4 Physical Backups 51
5 WAL Archiving Deep Dive 66
6 Performing Point-in-Time Recovery 77
7 Streaming Replication Setup 92
8 Synchronous vs Asynchronous Replication 106
9 Failover and Switchover Strategies 120
10 Load Balancing and Read Scaling 132
11 Replication Monitoring and Troubleshooting 145
12 Multi-Node HA Architectures 159
13 Backup Automation and Scheduling 174
14 Security in Backup and Replication 192
15 Capacity Planning and Scalability 206
16 From DBA to Resilience Architect 221
App Backup & HA Checklist 234
App WAL Configuration Reference 252
App Replication Monitoring Queries 267
App Disaster Recovery Runbook Template 284

App HA Architecture Design Worksheet 301

Chapter 1: Why Backups and
HA Matter

Every database administrator, whether seasoned or just beginning the journey,
eventually confronts a moment that defines their career. It might be a phone call at
three in the morning, a frantic message from a colleague, or a silent realization
while staring at a terminal that something has gone terribly wrong. The data is
gone. The server is unresponsive. The application that thousands of users depend
on has ground to a halt. In that moment, the difference between a catastrophe and
a minor inconvenience comes down to one thing: preparation. This chapter lays
the foundation for understanding why backups and high availability are not option-
al luxuries in PostgreSQL environments but rather essential pillars of any responsi-
ble data management strategy.

PostgreSQL, as one of the most advanced open-source relational database
management systems in the world, powers everything from small personal projects
to massive enterprise applications handling billions of transactions. Its reputation
for reliability, data integrity, and standards compliance has earned it a place at the
heart of critical infrastructure across industries. Yet no matter how robust Postgre-
SQL is by design, it cannot protect itself from every threat. Hardware fails. Human
operators make mistakes. Natural disasters strike data centers. Malicious actors ex-
ploit vulnerabilities. The question is never whether something will go wrong, but
when, and whether you will be ready.

To truly understand why backups and high availability matter, we must first ap-
preciate what is at stake. Consider a financial services company that processes

credit card transactions through a PostgreSQL database. Every second of down-

time translates directly into lost revenue, damaged customer trust, and potential
regulatory penalties. Consider a healthcare organization whose patient records live
in PostgreSQL. Data loss in that context is not merely an inconvenience; it can en-
danger human lives. Even for a small e-commerce startup, losing its product cata-
log, customer orders, and transaction history could mean the end of the business
entirely.

The cost of data loss extends far beyond the immediate technical challenge of
recovery. There are direct financial costs, including lost sales, contractual penalties,
and the expense of emergency recovery efforts. There are indirect costs such as
reputational damage, loss of customer confidence, and the erosion of competitive
advantage. Regulatory frameworks like GDPR, HIPAA, and PCI-DSS impose strict
requirements on data protection, and failure to comply can result in severe fines.
The following table illustrates some of the dimensions of impact that data loss or

extended downtime can have on an organization.

Dimension of Impact Description Example in PostgreSQL
Context
Financial Loss Direct revenue loss during ~ An e-commerce platform
downtime and cost of recov- loses $10,000 per hour
ery operations when its PostgreSQL-backed

order system is offline

Reputational Damage Loss of customer and part- A SaaS provider experiences
ner trust that may take years data loss, causing customers
to rebuild to migrate to competitors

Regulatory Penalties Fines and sanctions imposed A healthcare application los-
by regulatory bodies for es patient data stored in
non-compliance PostgreSQL, violating HIPAA

requirements

Operational Disruption Inability of employees and Internal tools dependent on
systems to function without PostgreSQL cannot process
access to data payroll or inventory

Legal Liability Lawsuits and legal actions ~ Customers sue after person-
resulting from data breaches al information stored in Post-

or loss greSQL is permanently lost
Recovery Time Cost ~ The human and computa- A team of engineers works
tional resources required to around the clock for 48
restore service hours to rebuild a Postgre-
SQL cluster

Understanding these stakes makes it clear that backups and high availability are
not merely technical exercises. They are business imperatives. They are the insur-
ance policy that every PostgreSQL deployment must carry.

Let us now examine the specific threats that PostgreSQL environments face.
These threats can be broadly categorized into several groups, each requiring dif-
ferent mitigation strategies.

Hardware failures represent one of the most common and unpredictable
threats. Hard drives fail, memory modules develop errors, power supplies burn out,
and network interfaces stop responding. PostgreSQL stores its data on physical
storage media, and when that media fails, the data can become inaccessible or
corrupted. While modern storage technologies like RAID arrays and solid-state dri-
ves have improved reliability, they have not eliminated the risk. A RAID controller
failure can take an entire array offline. An SSD can suffer from sudden firmware
bugs that render it unreadable. The only true protection against hardware failure is
having copies of your data on separate physical devices, ideally in separate physi-
cal locations.

Software bugs, while less frequent in a mature system like PostgreSQL, still
pose a real threat. PostgreSQL has an outstanding track record of stability and cor-
rectness, but no software is perfect. Operating system bugs, filesystem corruption,
or issues in third-party extensions can all lead to data corruption or loss. Even a

seemingly minor kernel update can introduce a regression that affects how Post-

greSQL interacts with the storage subsystem. Maintaining regular backups ensures

that you can recover from such scenarios by restoring to a known good state.
Human error is, statistically, one of the most common causes of data loss across

all database systems, and PostgreSQL is no exception. A mistyped SQL command

can have devastating consequences. Consider the following scenario:

DELETE FROM customers;

This single statement, executed without a WHERE clause, removes every row from
the customers table. If the operator intended to delete a single customer record
but forgot to include the condition, the result is catastrophic. Similarly, a poorly
tested migration script might drop a column or table that is still needed. An admin-
istrator might accidentally run a command against a production database when
they thought they were connected to a development instance. These are not hypo-
thetical scenarios. They happen in organizations of every size, every day.
PostgreSQL provides some safeguards against human error. Transaction isola-
tion allows you to wrap dangerous operations in explicit transactions and roll them

back if something goes wrong:

BEGIN;

DELETE FROM customers WHERE customer id = 12345;
-- Verify the result before committing

SELECT count (*) FROM customers;

-- If something looks wrong:

ROLLBACK;

-- If everything is correct:

COMMIT;

However, once a transaction is committed, the change is permanent within the
database. Without an external backup, there is no undo button. This is precisely
why Point-in-Time Recovery, which we will explore in depth in later chapters, is such

a critical capability. It allows you to restore a PostgreSQL database to any specific

10

moment before the error occurred, provided that you have maintained a base
backup and a continuous archive of Write-Ahead Log (WAL) files.

Security threats and malicious attacks represent another category of risk that
has grown dramatically in recent years. Ransomware attacks specifically targeting
database servers have become increasingly common. In such attacks, a malicious
actor gains access to the PostgreSQL server, encrypts or deletes the data, and de-
mands payment for its return. Without offline or isolated backups, the victim has no
recourse. SQL injection attacks, while primarily an application-level vulnerability,
can also result in data modification or deletion within PostgreSQL. A comprehen-
sive backup strategy that includes offsite and offline copies provides the last line of
defense against these threats.

Natural disasters and infrastructure failures round out the threat landscape.
Floods, fires, earthquakes, and power grid failures can destroy entire data centers.
Even less dramatic events like a prolonged power outage or a cooling system fail-
ure can take servers offline for extended periods. Geographic redundancy, where
copies of your PostgreSQL data exist in physically separate locations, is the only ef-
fective mitigation for these scenarios.

Having established the threats, let us now define the key concepts that will
guide our approach to PostgreSQL resilience throughout this book.

Recovery Point Objective (RPO) defines the maximum acceptable amount of
data loss measured in time. If your RPO is one hour, it means your organization can
tolerate losing up to one hour of data. If your RPO is zero, it means no data loss is
acceptable under any circumstances. RPO directly influences your backup and
replication strategy. A daily backup gives you an RPO of up to 24 hours. Continu-
ous WAL archiving can reduce your RPO to minutes or even seconds. Synchronous
replication can achieve an RPO of zero.

Recovery Time Objective (RTO) defines the maximum acceptable duration of

downtime. If your RTO is 15 minutes, your systems must be back online within 15

11

minutes of a failure. RTO influences your high availability architecture. A cold

standby that requires manual intervention might give you an RTO of hours. A hot

standby with automatic failover can achieve an RTO of seconds.

The following table summarizes how different PostgreSQL strategies map to

RPO and RTO goals:

Strategy

pg_dump (Logical
Backup)

Filesystem-Level
Backup

Typical RPO

Typical RTO

Description

Up to 24 hours (de- Hours (depends on Creates a logical
pending on sched- database size)

ule)

Up to 24 hours

Minutes to hours

Continuous WAL Ar- Seconds to minutes Minutes to hours

chiving with Base
Backup

Streaming Replica-
tion (Asynchronous)

Streaming Replica-
tion (Synchronous)

Automatic Failover
with Patroni or rep-
mgr

Seconds

Zero

Seconds to zero

Minutes (with man-
ual failover)

Minutes (with man-
ual failover)

Seconds to minutes

snapshot of the
database that can
be restored with
psql or pg_restore

Copies the Postgre-
SQL data directory
at the filesystem
level

Combines periodic
base backups with
continuous WAL ar-
chiving for Point-in-
Time Recovery

A standby server
continuously re-
ceives and replays

WAL from the pri-
mary

The primary waits
for the standby to
confirm receipt of
WAL before com-
mitting

Combines stream-
ing replication with
automated failover
management

12

Each of these strategies involves trade-offs in complexity, performance, and cost. A
simple pg_dump script running nightly via cron might be perfectly adequate for a
small internal application with modest data and relaxed recovery requirements. At
the other end of the spectrum, a mission-critical financial system might require syn-
chronous replication across multiple data centers with automated failover, continu-
ous WAL archiving to a separate cloud storage provider, and regular logical
backups for additional safety. The art of designing a resilient PostgreSQL architec-
ture lies in understanding your specific requirements and choosing the combina-
tion of strategies that meets them.

It is worth noting that backups and high availability serve complementary but
distinct purposes. High availability is about keeping the system running. It address-
es the question: "How do we ensure that users can continue to access the data-
base even when something fails?" Replication and failover mechanisms are the pri-
mary tools for achieving high availability. Backups, on the other hand, are about
preserving data. They address the question: "How do we recover our data if it is
lost or corrupted?” A common and dangerous misconception is that replication
eliminates the need for backups. This is categorically false. If a destructive com-
mand is executed on the primary server, that command is faithfully replicated to
every standby. If a table is dropped on the primary, it is dropped on the replicas as
well. Replication protects against hardware failure; it does not protect against logi-
cal errors. Only backups, particularly those with Point-in-Time Recovery capability,
can protect against the full spectrum of threats.

To make this concrete, consider the following PostgreSQL command that veri-
fies your current WAL archiving configuration:

SHOW archive mode;

SHOW archive command;
SHOW wal level;

13

If archive mode is off, your PostgreSQL server is not archiving WAL files, and
you have no ability to perform Point-in-Time Recovery. If wal level is set to min-
imal, you cannot support replication or WAL archiving. These settings, which we
will configure in detail in subsequent chapters, are the foundation upon which all
backup and high availability strategies are built.

The postgresgl.conf file is where these fundamental settings live. A mini-

mal configuration for enabling WAL archiving might look like this:

wal level = replica
archive mode = on

archive command = 'cp %p /var/lib/postgresqgl/wal archive/$f'

The wal level = replica setting ensures that PostgreSQL writes enough infor-
mation into the WAL to support both archiving and replication. The archive -
mode = on tells PostgreSQL to archive completed WAL segments. The
archive command specifies the shell command used to copy each completed
WAL segment to an archive location. In a production environment, this command
would typically copy files to a remote server or cloud storage rather than a local di-
rectory, but this example illustrates the concept.

Note that changing wal level or archive mode requires a restart of the
PostgreSQL server, not merely a reload. This is an important operational considera-

tion, as restarts involve brief downtime:

sudo systemctl restart postgresqgl

After restarting, you can verify the settings took effect:

SELECT name, setting FROM pg settings

WHERE name IN ('wal level', 'archive mode', 'archive command') ;

This query against the pg settings system view confirms your configuration

without needing to read the configuration file directly.

14

As we close this foundational chapter, it is essential to internalize a principle
that will guide everything that follows: defense in depth. No single backup
method, no single replication topology, and no single monitoring tool is sufficient
on its own. A truly resilient PostgreSQL deployment employs multiple layers of pro-
tection. It combines logical backups with physical backups. It pairs replication with
WAL archiving. It supplements automated failover with regular recovery testing. It
monitors not just whether backups are running, but whether they can actually be
restored.

The most dangerous backup is the one that has never been tested. An organi-
zation might dutifully run pg_dump every night for years, only to discover during
an actual emergency that the backup files are corrupted, incomplete, or stored on
the same failed storage system as the database itself. Regular restoration testing is
not optional. It is as critical as the backup itself.

Throughout this book, we will build from these foundational concepts toward a
comprehensive understanding of PostgreSQL backup, replication, and high avail-
ability. We will explore each tool and technique in detail, with practical examples
and real-world configurations. We will design architectures that can withstand
hardware failures, human errors, security breaches, and natural disasters. But it all
begins here, with the recognition that your data is valuable, that threats are real
and inevitable, and that preparation is the only reliable defense.

The chapters ahead will take you through logical backups with pg_dump and
pg_dumpall, physical backups with pg_basebackup, continuous archiving and
Point-in-Time Recovery, streaming replication in both asynchronous and syn-
chronous modes, high availability tools like Patroni and repmgr, connection pool-
ing with PgBouncer, monitoring and alerting, and disaster recovery planning. Each
chapter builds upon the previous ones, and by the end of this book, you will have
the knowledge and practical skills to design, implement, and maintain a Postgre-

SQL infrastructure that is truly resilient, fault-tolerant, and disaster-ready.

15

The journey begins now. Your data depends on it.

16

