
1

PostgreSQL Backup, Replica-
tion & High Availability

Designing Resilient, Fault-Tolerant, and
Disaster-Ready PostgreSQL Systems

2

Preface

Every organization that depends on PostgreSQL—whether powering a fast-growing

startup, a financial platform, or a global e-commerce operation—shares one non-

negotiable requirement: the data must survive. Servers fail, disks corrupt, net-

works partition, and entire data centers go dark. The question is never if something

will go wrong, but when—and whether your PostgreSQL infrastructure is ready for it.

This book was written to make sure you are.

Why This Book
PostgreSQL Backup, Replication & High Availability is a comprehensive, hands-

on guide to protecting your PostgreSQL databases against data loss and down-

time. It bridges the gap between knowing that backups and replication matter and

actually implementing them with confidence in production. Whether you are a

database administrator managing a single PostgreSQL instance or an architect de-

signing a multi-node, globally distributed PostgreSQL cluster, this book provides

the depth and practical guidance you need.

Too often, backup and high availability strategies are treated as afterthoughts—

configured once during initial setup and never revisited until disaster strikes. This

book challenges that mindset. It treats resilience as a first-class discipline, one that

demands the same rigor and attention as schema design or query optimization.

3

What You Will Learn
The book is organized into a deliberate progression. We begin with foundational

concepts—why backups and high availability matter, and how PostgreSQL's archi-

tecture uniquely supports them. From there, we move into the practical mechanics

of logical and physical backups, including a deep dive into PostgreSQL's Write-

Ahead Log (WAL) archiving and Point-in-Time Recovery (PITR), two capabilities that

set PostgreSQL apart.

The middle chapters focus on replication: setting up PostgreSQL streaming

replication, understanding the trade-offs between synchronous and asynchronous

modes, and mastering failover and switchover strategies. We explore load balanc-

ing and read scaling to help you extract maximum value from your replicas, and

we dedicate an entire chapter to monitoring and troubleshooting replication—

because a replication setup you can't observe is one you can't trust.

The later chapters elevate the conversation to architecture and operations:

multi-node high availability designs, backup automation and scheduling, security

considerations for backup and replication data, and capacity planning for growing

PostgreSQL deployments. The final chapter, From DBA to Resilience Architect, in-

vites you to think beyond individual tasks and embrace a holistic approach to Post-

greSQL resilience.

The appendices provide ready-to-use resources—checklists, configuration ref-

erences, monitoring queries, a disaster recovery runbook template, and an HA ar-

chitecture design worksheet—so you can move from reading to doing without de-

lay.

4

Who This Book Is For
This book is for PostgreSQL database administrators, systems engineers, DevOps

practitioners, site reliability engineers, and software architects who want to build

PostgreSQL environments that are not merely functional but durable. Some famil-

iarity with PostgreSQL administration is assumed, but each concept is explained

from first principles before diving into advanced territory.

A Note of Gratitude
No technical book is written in isolation. I owe a deep debt to the PostgreSQL

community—the developers, contributors, and documentation writers who have

built and maintained one of the most remarkable open-source databases in exis-

tence. I am also grateful to the countless DBAs and engineers whose real-world

war stories, shared in blog posts, conference talks, and late-night incident chan-

nels, informed the practical advice in these pages. Finally, my thanks to the techni-

cal reviewers whose sharp eyes and honest feedback made this book far better

than it would have been otherwise.

How to Read This Book
You can read this book cover to cover as a structured learning path, or you can

jump directly to the chapters that address your most pressing PostgreSQL chal-

lenges. Each chapter is designed to be self-contained while building on the

themes established earlier. Wherever possible, I have included concrete examples,

configuration snippets, and decision frameworks to keep the material grounded

and actionable.

5

PostgreSQL gives you extraordinary tools for resilience. This book shows you

how to use them.

Let's build systems that endure.

Thomas Ellison

6

Table of Contents

Chapter Title Page

1 Why Backups and HA Matter 7

2 PostgreSQL Architecture for HA 17

3 Logical Backups 34

4 Physical Backups 51

5 WAL Archiving Deep Dive 66

6 Performing Point-in-Time Recovery 77

7 Streaming Replication Setup 92

8 Synchronous vs Asynchronous Replication 106

9 Failover and Switchover Strategies 120

10 Load Balancing and Read Scaling 132

11 Replication Monitoring and Troubleshooting 145

12 Multi-Node HA Architectures 159

13 Backup Automation and Scheduling 174

14 Security in Backup and Replication 192

15 Capacity Planning and Scalability 206

16 From DBA to Resilience Architect 221

App Backup & HA Checklist 234

App WAL Configuration Reference 252

App Replication Monitoring Queries 267

App Disaster Recovery Runbook Template 284

App HA Architecture Design Worksheet 301

7

Chapter 1: Why Backups and
HA Matter

Every database administrator, whether seasoned or just beginning the journey,

eventually confronts a moment that defines their career. It might be a phone call at

three in the morning, a frantic message from a colleague, or a silent realization

while staring at a terminal that something has gone terribly wrong. The data is

gone. The server is unresponsive. The application that thousands of users depend

on has ground to a halt. In that moment, the difference between a catastrophe and

a minor inconvenience comes down to one thing: preparation. This chapter lays

the foundation for understanding why backups and high availability are not option-

al luxuries in PostgreSQL environments but rather essential pillars of any responsi-

ble data management strategy.

PostgreSQL, as one of the most advanced open-source relational database

management systems in the world, powers everything from small personal projects

to massive enterprise applications handling billions of transactions. Its reputation

for reliability, data integrity, and standards compliance has earned it a place at the

heart of critical infrastructure across industries. Yet no matter how robust Postgre-

SQL is by design, it cannot protect itself from every threat. Hardware fails. Human

operators make mistakes. Natural disasters strike data centers. Malicious actors ex-

ploit vulnerabilities. The question is never whether something will go wrong, but

when, and whether you will be ready.

To truly understand why backups and high availability matter, we must first ap-

preciate what is at stake. Consider a financial services company that processes

credit card transactions through a PostgreSQL database. Every second of down-

8

time translates directly into lost revenue, damaged customer trust, and potential

regulatory penalties. Consider a healthcare organization whose patient records live

in PostgreSQL. Data loss in that context is not merely an inconvenience; it can en-

danger human lives. Even for a small e-commerce startup, losing its product cata-

log, customer orders, and transaction history could mean the end of the business

entirely.

The cost of data loss extends far beyond the immediate technical challenge of

recovery. There are direct financial costs, including lost sales, contractual penalties,

and the expense of emergency recovery efforts. There are indirect costs such as

reputational damage, loss of customer confidence, and the erosion of competitive

advantage. Regulatory frameworks like GDPR, HIPAA, and PCI-DSS impose strict

requirements on data protection, and failure to comply can result in severe fines.

The following table illustrates some of the dimensions of impact that data loss or

extended downtime can have on an organization.

Dimension of Impact Description Example in PostgreSQL
Context

Financial Loss Direct revenue loss during
downtime and cost of recov-
ery operations

An e-commerce platform
loses $10,000 per hour
when its PostgreSQL-backed
order system is offline

Reputational Damage Loss of customer and part-
ner trust that may take years
to rebuild

A SaaS provider experiences
data loss, causing customers
to migrate to competitors

Regulatory Penalties Fines and sanctions imposed
by regulatory bodies for
non-compliance

A healthcare application los-
es patient data stored in
PostgreSQL, violating HIPAA
requirements

Operational Disruption Inability of employees and
systems to function without
access to data

Internal tools dependent on
PostgreSQL cannot process
payroll or inventory

9

Legal Liability Lawsuits and legal actions
resulting from data breaches
or loss

Customers sue after person-
al information stored in Post-
greSQL is permanently lost

Recovery Time Cost The human and computa-
tional resources required to
restore service

A team of engineers works
around the clock for 48
hours to rebuild a Postgre-
SQL cluster

Understanding these stakes makes it clear that backups and high availability are

not merely technical exercises. They are business imperatives. They are the insur-

ance policy that every PostgreSQL deployment must carry.

Let us now examine the specific threats that PostgreSQL environments face.

These threats can be broadly categorized into several groups, each requiring dif-

ferent mitigation strategies.

Hardware failures represent one of the most common and unpredictable

threats. Hard drives fail, memory modules develop errors, power supplies burn out,

and network interfaces stop responding. PostgreSQL stores its data on physical

storage media, and when that media fails, the data can become inaccessible or

corrupted. While modern storage technologies like RAID arrays and solid-state dri-

ves have improved reliability, they have not eliminated the risk. A RAID controller

failure can take an entire array offline. An SSD can suffer from sudden firmware

bugs that render it unreadable. The only true protection against hardware failure is

having copies of your data on separate physical devices, ideally in separate physi-

cal locations.

Software bugs, while less frequent in a mature system like PostgreSQL, still

pose a real threat. PostgreSQL has an outstanding track record of stability and cor-

rectness, but no software is perfect. Operating system bugs, filesystem corruption,

or issues in third-party extensions can all lead to data corruption or loss. Even a

seemingly minor kernel update can introduce a regression that affects how Post-

10

greSQL interacts with the storage subsystem. Maintaining regular backups ensures

that you can recover from such scenarios by restoring to a known good state.

Human error is, statistically, one of the most common causes of data loss across

all database systems, and PostgreSQL is no exception. A mistyped SQL command

can have devastating consequences. Consider the following scenario:

DELETE FROM customers;

This single statement, executed without a WHERE clause, removes every row from

the customers table. If the operator intended to delete a single customer record

but forgot to include the condition, the result is catastrophic. Similarly, a poorly

tested migration script might drop a column or table that is still needed. An admin-

istrator might accidentally run a command against a production database when

they thought they were connected to a development instance. These are not hypo-

thetical scenarios. They happen in organizations of every size, every day.

PostgreSQL provides some safeguards against human error. Transaction isola-

tion allows you to wrap dangerous operations in explicit transactions and roll them

back if something goes wrong:

BEGIN;

DELETE FROM customers WHERE customer_id = 12345;

-- Verify the result before committing

SELECT count(*) FROM customers;

-- If something looks wrong:

ROLLBACK;

-- If everything is correct:

COMMIT;

However, once a transaction is committed, the change is permanent within the

database. Without an external backup, there is no undo button. This is precisely

why Point-in-Time Recovery, which we will explore in depth in later chapters, is such

a critical capability. It allows you to restore a PostgreSQL database to any specific

11

moment before the error occurred, provided that you have maintained a base

backup and a continuous archive of Write-Ahead Log (WAL) files.

Security threats and malicious attacks represent another category of risk that

has grown dramatically in recent years. Ransomware attacks specifically targeting

database servers have become increasingly common. In such attacks, a malicious

actor gains access to the PostgreSQL server, encrypts or deletes the data, and de-

mands payment for its return. Without offline or isolated backups, the victim has no

recourse. SQL injection attacks, while primarily an application-level vulnerability,

can also result in data modification or deletion within PostgreSQL. A comprehen-

sive backup strategy that includes offsite and offline copies provides the last line of

defense against these threats.

Natural disasters and infrastructure failures round out the threat landscape.

Floods, fires, earthquakes, and power grid failures can destroy entire data centers.

Even less dramatic events like a prolonged power outage or a cooling system fail-

ure can take servers offline for extended periods. Geographic redundancy, where

copies of your PostgreSQL data exist in physically separate locations, is the only ef-

fective mitigation for these scenarios.

Having established the threats, let us now define the key concepts that will

guide our approach to PostgreSQL resilience throughout this book.

Recovery Point Objective (RPO) defines the maximum acceptable amount of

data loss measured in time. If your RPO is one hour, it means your organization can

tolerate losing up to one hour of data. If your RPO is zero, it means no data loss is

acceptable under any circumstances. RPO directly influences your backup and

replication strategy. A daily backup gives you an RPO of up to 24 hours. Continu-

ous WAL archiving can reduce your RPO to minutes or even seconds. Synchronous

replication can achieve an RPO of zero.

Recovery Time Objective (RTO) defines the maximum acceptable duration of

downtime. If your RTO is 15 minutes, your systems must be back online within 15

12

minutes of a failure. RTO influences your high availability architecture. A cold

standby that requires manual intervention might give you an RTO of hours. A hot

standby with automatic failover can achieve an RTO of seconds.

The following table summarizes how different PostgreSQL strategies map to

RPO and RTO goals:

Strategy Typical RPO Typical RTO Description

pg_dump (Logical
Backup)

Up to 24 hours (de-
pending on sched-
ule)

Hours (depends on
database size)

Creates a logical
snapshot of the
database that can
be restored with
psql or pg_restore

Filesystem-Level
Backup

Up to 24 hours Minutes to hours Copies the Postgre-
SQL data directory
at the filesystem
level

Continuous WAL Ar-
chiving with Base
Backup

Seconds to minutes Minutes to hours Combines periodic
base backups with
continuous WAL ar-
chiving for Point-in-
Time Recovery

Streaming Replica-
tion (Asynchronous)

Seconds Minutes (with man-
ual failover)

A standby server
continuously re-
ceives and replays
WAL from the pri-
mary

Streaming Replica-
tion (Synchronous)

Zero Minutes (with man-
ual failover)

The primary waits
for the standby to
confirm receipt of
WAL before com-
mitting

Automatic Failover
with Patroni or rep-
mgr

Seconds to zero Seconds to minutes Combines stream-
ing replication with
automated failover
management

13

Each of these strategies involves trade-offs in complexity, performance, and cost. A

simple pg_dump script running nightly via cron might be perfectly adequate for a

small internal application with modest data and relaxed recovery requirements. At

the other end of the spectrum, a mission-critical financial system might require syn-

chronous replication across multiple data centers with automated failover, continu-

ous WAL archiving to a separate cloud storage provider, and regular logical

backups for additional safety. The art of designing a resilient PostgreSQL architec-

ture lies in understanding your specific requirements and choosing the combina-

tion of strategies that meets them.

It is worth noting that backups and high availability serve complementary but

distinct purposes. High availability is about keeping the system running. It address-

es the question: "How do we ensure that users can continue to access the data-

base even when something fails?" Replication and failover mechanisms are the pri-

mary tools for achieving high availability. Backups, on the other hand, are about

preserving data. They address the question: "How do we recover our data if it is

lost or corrupted?" A common and dangerous misconception is that replication

eliminates the need for backups. This is categorically false. If a destructive com-

mand is executed on the primary server, that command is faithfully replicated to

every standby. If a table is dropped on the primary, it is dropped on the replicas as

well. Replication protects against hardware failure; it does not protect against logi-

cal errors. Only backups, particularly those with Point-in-Time Recovery capability,

can protect against the full spectrum of threats.

To make this concrete, consider the following PostgreSQL command that veri-

fies your current WAL archiving configuration:

SHOW archive_mode;

SHOW archive_command;

SHOW wal_level;

14

If archive_mode is off, your PostgreSQL server is not archiving WAL files, and

you have no ability to perform Point-in-Time Recovery. If wal_level is set to min-

imal, you cannot support replication or WAL archiving. These settings, which we

will configure in detail in subsequent chapters, are the foundation upon which all

backup and high availability strategies are built.

The postgresql.conf file is where these fundamental settings live. A mini-

mal configuration for enabling WAL archiving might look like this:

wal_level = replica

archive_mode = on

archive_command = 'cp %p /var/lib/postgresql/wal_archive/%f'

The wal_level = replica setting ensures that PostgreSQL writes enough infor-

mation into the WAL to support both archiving and replication. The archive_-

mode = on tells PostgreSQL to archive completed WAL segments. The

archive_command specifies the shell command used to copy each completed

WAL segment to an archive location. In a production environment, this command

would typically copy files to a remote server or cloud storage rather than a local di-

rectory, but this example illustrates the concept.

Note that changing wal_level or archive_mode requires a restart of the

PostgreSQL server, not merely a reload. This is an important operational considera-

tion, as restarts involve brief downtime:

sudo systemctl restart postgresql

After restarting, you can verify the settings took effect:

SELECT name, setting FROM pg_settings

WHERE name IN ('wal_level', 'archive_mode', 'archive_command');

This query against the pg_settings system view confirms your configuration

without needing to read the configuration file directly.

15

As we close this foundational chapter, it is essential to internalize a principle

that will guide everything that follows: defense in depth. No single backup

method, no single replication topology, and no single monitoring tool is sufficient

on its own. A truly resilient PostgreSQL deployment employs multiple layers of pro-

tection. It combines logical backups with physical backups. It pairs replication with

WAL archiving. It supplements automated failover with regular recovery testing. It

monitors not just whether backups are running, but whether they can actually be

restored.

The most dangerous backup is the one that has never been tested. An organi-

zation might dutifully run pg_dump every night for years, only to discover during

an actual emergency that the backup files are corrupted, incomplete, or stored on

the same failed storage system as the database itself. Regular restoration testing is

not optional. It is as critical as the backup itself.

Throughout this book, we will build from these foundational concepts toward a

comprehensive understanding of PostgreSQL backup, replication, and high avail-

ability. We will explore each tool and technique in detail, with practical examples

and real-world configurations. We will design architectures that can withstand

hardware failures, human errors, security breaches, and natural disasters. But it all

begins here, with the recognition that your data is valuable, that threats are real

and inevitable, and that preparation is the only reliable defense.

The chapters ahead will take you through logical backups with pg_dump and

pg_dumpall, physical backups with pg_basebackup, continuous archiving and

Point-in-Time Recovery, streaming replication in both asynchronous and syn-

chronous modes, high availability tools like Patroni and repmgr, connection pool-

ing with PgBouncer, monitoring and alerting, and disaster recovery planning. Each

chapter builds upon the previous ones, and by the end of this book, you will have

the knowledge and practical skills to design, implement, and maintain a Postgre-

SQL infrastructure that is truly resilient, fault-tolerant, and disaster-ready.

16

The journey begins now. Your data depends on it.

