
1

PostgreSQL Security & Ac-
cess Control

Hardening, Authentication, Authoriza-
tion, and Compliance in Production En-
vironments

2

Preface

Every database tells a story. It holds the financial records of a growing business, the

medical histories of patients, the personal details of millions of users who trusted

an organization with their data. PostgreSQL—one of the most powerful and widely

adopted open-source relational databases in the world—sits at the heart of count-

less such stories. And yet, too often, the security of a PostgreSQL deployment is

treated as an afterthought: a checkbox to be ticked after the schemas are de-

signed, the queries are tuned, and the application is live.

This book exists because that approach is no longer acceptable—if it ever was.

Why This Book
The threat landscape facing PostgreSQL deployments has grown more sophisticat-

ed and relentless with each passing year. Ransomware campaigns target exposed

database ports. Misconfigured pg_hba.conf files silently grant access to the

wrong networks. Overprivileged roles accumulate like technical debt. SQL injec-

tion remains stubbornly prevalent. Compliance frameworks such as GDPR, HIPAA,

SOC 2, and PCI DSS demand not just good intentions but demonstrable controls.

PostgreSQL Security & Access Control was written to bridge the gap be-

tween knowing that PostgreSQL security matters and knowing exactly what to do

about it. Whether you are a database administrator hardening a production cluster,

a developer building secure multi-tenant applications, or an architect designing

systems that must satisfy auditors and regulators, this book provides the practical,

PostgreSQL-specific guidance you need.

3

What You Will Find Inside
This book is organized into sixteen chapters and five appendices, structured to

take you on a deliberate journey from foundational concepts to advanced, produc-

tion-grade security practices.

We begin by establishing why database security is critical and examining Post-

greSQL's security architecture from the ground up. From there, we dive deep

into the mechanisms that govern who can connect and how—exploring pg_hba.-

conf configuration, authentication methods ranging from password-based

schemes to certificate and GSSAPI authentication, and the PostgreSQL role and

privilege system that controls what authenticated users can actually do.

The middle chapters address encryption in transit and at rest, equipping you

to enable SSL/TLS for PostgreSQL connections and protect sensitive data stored on

disk. We then turn to monitoring and defense: configuring PostgreSQL's logging

infrastructure for security auditing, detecting intrusions, mitigating threats, and pre-

venting SQL injection at both the database and application layers.

Later chapters tackle the architectural challenges of secure multi-tenant de-

sign within PostgreSQL, hardening postgresql.conf and related configuration,

securing replication and backup pipelines, and meeting the demands of compli-

ance and governance frameworks. The final chapter invites you to think beyond

day-to-day administration and evolve into a security-focused architect—someone

who embeds defense into every layer of a PostgreSQL deployment.

The appendices provide ready-to-use resources: secure pg_hba.conf tem-

plates, a role and privilege reference table, an SSL configuration checklist, a com-

prehensive security audit checklist, and a PostgreSQL hardening worksheet you

can adapt to your own environments.

4

How to Use This Book
You can read this book cover to cover for a complete education in PostgreSQL se-

curity, or you can treat individual chapters as targeted references when facing spe-

cific challenges. Each chapter is designed to be self-contained enough to be useful

on its own, while contributing to a coherent, cumulative understanding when read

in sequence.

Acknowledgments
This book would not exist without the extraordinary PostgreSQL community—the

developers, contributors, and documentation authors who have built and refined a

database engine that takes security seriously at its core. I am also deeply grateful to

the security researchers, DBAs, and architects whose real-world experiences and

hard-won lessons informed every chapter. Special thanks to the technical reviewers

who challenged assumptions, caught errors, and made this a stronger, more trust-

worthy resource.

A Final Word Before We Begin
Security is not a feature you install. It is a discipline you practice—continuously, de-

liberately, and with humility. PostgreSQL gives you remarkably powerful tools to

protect your data. This book will show you how to use them.

Let's get started.

Thomas Ellison

5

Table of Contents

Chapter Title Page

1 Why Database Security Is Critical 6

2 PostgreSQL Security Architecture 17

3 Understanding pg_hba.conf 30

4 Authentication Methods 45

5 Roles, Privileges, and Ownership 58

6 Implementing Least Privilege 74

7 Enabling SSL/TLS Encryption 85

8 Protecting Data at Rest 103

9 Logging and Auditing Security Events 117

10 Intrusion Detection and Threat Mitigation 136

11 Preventing SQL Injection 158

12 Secure Multi-Tenant Design 179

13 Hardening PostgreSQL Configuration 197

14 Security in Replication and Backup 214

15 Compliance and Governance 228

16 From DBA to Security-Focused Architect 245

App pg_hba.conf Secure Templates 263

App Role and Privilege Reference Table 279

App SSL Configuration Checklist 301

App Security Audit Checklist 318

App PostgreSQL Security Hardening Worksheet 334

6

Chapter 1: Why Database Se-
curity Is Critical

The moment a PostgreSQL database goes live in a production environment, it be-

comes a target. This is not an exaggeration or a scare tactic designed to sell securi-

ty products. It is a plain, observable truth that anyone who has managed a publicly

accessible database server can confirm within hours of deployment. Automated

scanners sweep the internet continuously, probing default ports, testing common

credentials, and looking for misconfigured services. PostgreSQL, being one of the

most widely adopted open-source relational database management systems in the

world, sits squarely in the crosshairs of these automated attacks and, far more dan-

gerously, of deliberate, targeted intrusions carried out by sophisticated adver-

saries.

Understanding why database security is critical requires more than a surface-

level acknowledgment that "security matters." It demands a deep appreciation of

what is at stake, how breaches occur, what PostgreSQL offers natively to defend

against threats, and what responsibilities fall on the shoulders of database adminis-

trators, developers, and architects who design and maintain these systems. This

chapter lays that foundation. Before we configure a single parameter, write a single

policy, or modify a single authentication rule, we must internalize the gravity of the

problem and the landscape in which we operate.

7

The Value of What PostgreSQL Protects
Every database exists to store, organize, and serve data. That data, in a production

environment, almost always has tangible value. Consider the types of information

commonly housed in PostgreSQL databases across industries. Financial institutions

store transaction records, account balances, and personal identification numbers.

Healthcare organizations maintain patient records that include diagnoses, medica-

tions, and insurance details. E-commerce platforms hold credit card numbers, ship-

ping addresses, and purchase histories. Government agencies manage citizen

records, tax filings, and classified operational data. Even a modest startup running

a SaaS application likely stores email addresses, hashed passwords, API keys, and

behavioral analytics that represent both intellectual property and personal data

subject to legal protection.

The value of this data is not abstract. It translates directly into financial loss

when compromised. The IBM Cost of a Data Breach Report, published annually,

consistently places the average cost of a data breach in the millions of dollars.

These costs include incident response, forensic investigation, legal fees, regulatory

fines, customer notification, credit monitoring services, lost business due to reputa-

tional damage, and the long-term erosion of customer trust. For organizations op-

erating under regulatory frameworks such as the General Data Protection Regula-

tion (GDPR), the Health Insurance Portability and Accountability Act (HIPAA), the

Payment Card Industry Data Security Standard (PCI DSS), or the Sarbanes-Oxley

Act (SOX), the penalties for failing to protect data can be severe and, in some juris-

dictions, existential.

PostgreSQL, as the system entrusted with this data, is not merely a technical

component. It is the custodian of an organization's most sensitive assets. When we

talk about PostgreSQL security, we are talking about the protection of those assets

at the layer where they are most concentrated and most vulnerable.

8

The Threat Landscape for PostgreSQL
Deployments
To protect a PostgreSQL database effectively, one must understand the threats it

faces. These threats can be categorized broadly into external attacks, internal

threats, and accidental exposure, each of which manifests in specific ways within

PostgreSQL environments.

External attacks include brute-force authentication attempts against the Post-

greSQL listener, SQL injection through application layers that interact with the

database, exploitation of known vulnerabilities in unpatched PostgreSQL versions,

and network-level interception of unencrypted database traffic. An attacker who

gains access to a PostgreSQL superuser account effectively owns the entire data-

base cluster, including every database, every schema, every table, and every piece

of data within it. They can read sensitive information, modify records, drop entire

databases, or install backdoors using PostgreSQL's extensibility features such as

custom functions written in procedural languages.

Internal threats are statistically more common and often more damaging than

external attacks. A disgruntled employee with legitimate database credentials can

exfiltrate data gradually over weeks or months without triggering obvious alarms. A

developer with overly broad permissions might accidentally or intentionally access

production data they have no business seeing. A contractor given temporary ac-

cess that is never revoked becomes a persistent vulnerability. PostgreSQL's role-

based access control system provides the mechanisms to mitigate these risks, but

only if those mechanisms are deliberately configured and continuously maintained.

Accidental exposure represents a category of threat that is entirely preventable

yet remarkably common. Databases deployed with default configurations, supe-

ruser accounts left with well-known passwords, PostgreSQL instances bound to all

network interfaces without firewall restrictions, unencrypted connections transmit-

9

ting credentials and query results in plaintext, backup files stored without encryp-

tion on shared storage, and verbose error messages that reveal schema details to

application users are all examples of accidental exposure. Each of these represents

a door left open, not by an attacker, but by the people responsible for securing the

system.

The following table summarizes common threat vectors specific to PostgreSQL

environments and their potential impact:

Threat Vector Description Potential Impact PostgreSQL Rele-
vance

Brute-force authen-
tication

Automated tools at-
tempt thousands of
username and pass-
word combinations
against the Postgre-
SQL port

Unauthorized supe-
ruser access lead-
ing to full data com-
promise

PostgreSQL listens
on port 5432 by de-
fault and accepts
password-based
authentication un-
less configured oth-
erwise

SQL injection Malicious SQL
statements injected
through application
input fields reach
the database en-
gine

Data exfiltration,
modification, or de-
struction; potential
command execu-
tion via procedural
languages

PostgreSQL exe-
cutes injected SQL
with the privileges
of the connecting
application role

Unpatched vulnera-
bilities

Known security
flaws in specific
PostgreSQL ver-
sions are exploited
before patches are
applied

Remote code exe-
cution, privilege es-
calation, denial of
service

The PostgreSQL
Global Develop-
ment Group pub-
lishes security up-
dates regularly; un-
patched systems re-
main exposed

Unencrypted con-
nections

Database traffic
transmitted without
TLS/SSL encryption
is intercepted on
the network

Credential theft,
query result inter-
ception, session hi-
jacking

PostgreSQL sup-
ports SSL natively
but does not en-
force it by default

10

Excessive privileges Users or application
roles granted more
permissions than
required for their
function

Unauthorized data
access, accidental
data modification
or deletion

PostgreSQL's de-
fault behavior for
newly created roles
varies; superuser
privileges are par-
ticularly dangerous

Unrestricted net-
work access

PostgreSQL bound
to all interfaces with
permissive pg_h-
ba.conf rules

Any host on the
network or internet
can attempt con-
nections

The listen_address-
es parameter and
pg_hba.conf file
control network ac-
cessibility

Backup exposure Database backups
stored without en-
cryption or access
controls

Complete data
compromise from a
single stolen
backup file

pg_dump and
pg_basebackup
produce unencrypt-
ed output by de-
fault

Insider data theft Authorized users
with legitimate ac-
cess exfiltrate data
beyond their role
requirements

Regulatory viola-
tions, competitive
intelligence loss,
privacy breaches

Without granular
role configuration
and auditing, insid-
er activity is difficult
to detect

PostgreSQL's Native Security Architec-
ture
One of the reasons PostgreSQL is trusted in security-conscious environments is

that it provides a comprehensive, layered security architecture out of the box. Un-

derstanding this architecture at a high level is essential before diving into the de-

tailed configuration chapters that follow.

The first layer is network-level access control. PostgreSQL uses a configuration

file called pg_hba.conf (host-based authentication) to determine which hosts are

allowed to connect, which databases they can access, which users they can authen-

11

ticate as, and what authentication method is required. This file acts as a gatekeeper

before any authentication credentials are even evaluated. A properly configured

pg_hba.conf file can restrict access to specific IP addresses or subnets, require

SSL for all connections, and enforce different authentication methods for local ver-

sus remote connections.

The second layer is authentication. PostgreSQL supports multiple authentica-

tion methods, including password-based methods (md5 and scram-sha-256), cer-

tificate-based authentication, LDAP, RADIUS, GSSAPI (Kerberos), PAM, and peer au-

thentication for local connections. The choice of authentication method has pro-

found implications for security. The older md5 method, for example, is vulnerable

to replay attacks and should be replaced with scram-sha-256 in all new deploy-

ments. Certificate-based authentication eliminates passwords entirely and is con-

sidered the gold standard for machine-to-machine database connections.

The third layer is authorization, implemented through PostgreSQL's role-based

access control (RBAC) system. Every connection to PostgreSQL is made as a specif-

ic role, and that role's privileges determine what actions are permitted. Privileges

can be granted at the database level, schema level, table level, column level, and

even at the row level using Row-Level Security (RLS) policies. This granularity allows

administrators to implement the principle of least privilege with precision, ensuring

that each user or application can access only the specific data and operations re-

quired for their function.

The fourth layer is encryption. PostgreSQL supports SSL/TLS encryption for

data in transit, protecting credentials and query results from network interception.

For data at rest, PostgreSQL does not provide native transparent data encryption

(TDE) in the community edition as of the current major releases, but this can be

achieved through filesystem-level encryption, third-party extensions, or enterprise

distributions that add this capability.

12

The fifth layer is auditing and monitoring. While PostgreSQL's default logging

captures certain events, comprehensive audit logging requires additional configu-

ration or the use of extensions such as pgaudit, which provides detailed session

and object audit logging that satisfies regulatory requirements. Understanding

who accessed what data, when, and from where is not merely a compliance check-

box; it is a fundamental security capability that enables detection of unauthorized

activity and supports forensic investigation after incidents.

Consider the following basic example that illustrates how these layers work to-

gether. When an application server attempts to connect to a PostgreSQL database:

Step 1: PostgreSQL checks pg_hba.conf to determine if the source

IP address

 is permitted to connect to the requested database as the

requested user.

Step 2: If the connection is permitted, PostgreSQL enforces the

authentication

 method specified in pg_hba.conf (e.g., scram-sha-256).

Step 3: The client provides credentials, which PostgreSQL

validates against

 its internal catalog (pg_authid) or an external

authentication provider.

Step 4: Upon successful authentication, the session operates

under the

 privileges assigned to the authenticated role.

Step 5: Every SQL statement executed is checked against the

role's privileges

 on the target objects. Row-Level Security policies, if

defined, further

 filter the visible and modifiable rows.

Step 6: If audit logging is configured, the statement, its

parameters, the

13

 executing role, and the timestamp are recorded in the

audit log.

This layered approach means that a failure at any single layer does not necessarily

result in a complete compromise. If an attacker bypasses network controls, they still

face authentication. If they obtain credentials, they are still constrained by the role's

privileges. If they find a privilege escalation path, audit logging can detect the

anomalous activity. Defense in depth is not just a theoretical principle in Postgre-

SQL; it is built into the system's architecture.

The Cost of Neglecting PostgreSQL Se-
curity
The consequences of failing to secure a PostgreSQL database extend far beyond

the immediate technical impact of a breach. Organizations that experience data

breaches face a cascade of consequences that unfold over months and years.

Immediate consequences include the cost of incident response. When a

breach is detected, organizations must engage forensic specialists to determine

the scope of the compromise, identify the attack vector, and assess what data was

accessed or exfiltrated. PostgreSQL's transaction logs, if properly configured, can

assist in this investigation, but if logging was minimal or logs were stored on the

compromised system, forensic analysis becomes significantly more difficult and ex-

pensive.

Regulatory consequences follow. Under GDPR, organizations that fail to protect

personal data of European residents face fines of up to 4% of annual global

turnover or 20 million euros, whichever is greater. HIPAA violations can result in

fines ranging from $100 to $50,000 per violation, with annual maximums of $1.5

million per violation category. PCI DSS non-compliance can result in fines from

14

payment card brands ranging from $5,000 to $100,000 per month. These are not

theoretical penalties; they are actively enforced.

Reputational consequences are perhaps the most enduring. Customers who

learn that their personal data was compromised due to a preventable security fail-

ure, such as a PostgreSQL superuser account with a weak password or an unen-

crypted database connection, lose trust in the organization. Rebuilding that trust

takes years and may never fully succeed.

Legal consequences include class-action lawsuits from affected individuals,

contractual penalties from business partners whose data was exposed, and poten-

tial criminal liability for executives who were aware of security deficiencies and

failed to act.

The following table provides a reference for common regulatory frameworks

and their specific requirements that relate to PostgreSQL database security:

Regulatory Framework Key Database Security
Requirements

PostgreSQL Capabilities

GDPR (General Data Pro-
tection Regulation)

Data minimization, access
controls, encryption,
breach notification, right to
erasure, audit trails

Role-based access control,
SSL/TLS encryption, pgau-
dit extension, column-level
privileges, Row-Level Se-
curity

HIPAA (Health Insurance
Portability and Account-
ability Act)

Access controls, audit con-
trols, integrity controls,
transmission security, en-
cryption of PHI

Authentication methods,
pg_hba.conf network con-
trols, SSL encryption,
pgaudit, checksums for
data integrity

PCI DSS (Payment Card In-
dustry Data Security Stan-
dard)

Restrict access on a need-
to-know basis, unique IDs
for each user, encrypt
transmission of cardholder
data, track and monitor all
access

Role-based access control,
individual role accounts,
SSL/TLS, comprehensive
logging and pgaudit

15

SOX (Sarbanes-Oxley Act) Internal controls over fi-
nancial reporting, audit
trails, access restrictions to
financial data

Schema-level and table-
level privileges, pgaudit
for audit trails, role separa-
tion

SOC 2 (Service Organiza-
tion Control)

Logical access controls,
system monitoring, en-
cryption, change manage-
ment

pg_hba.conf, role manage-
ment, SSL, logging config-
uration, pgaudit

The Mindset Required for PostgreSQL
Security
Securing a PostgreSQL database is not a one-time activity. It is not something that

is "done" during initial setup and then forgotten. Security is a continuous process

that requires ongoing attention, regular review, and adaptation to evolving threats.

The chapters that follow in this book will provide detailed, practical guidance on

every aspect of PostgreSQL security, from hardening the server configuration to

implementing fine-grained access controls, from configuring encryption to estab-

lishing audit logging that satisfies regulatory requirements.

However, all of that technical knowledge is only effective when applied with

the right mindset. That mindset includes several key principles.

The principle of least privilege dictates that every role in PostgreSQL should

have the minimum permissions necessary to perform its intended function. Appli-

cation roles should not be superusers. Read-only reporting roles should not have

write access. Administrative roles should be used only for administrative tasks, not

for routine application connections.

The principle of defense in depth means that security should not depend on

any single control. Network restrictions, strong authentication, granular authoriza-

16

tion, encryption, and audit logging should all be implemented together, each pro-

viding protection even if another layer fails.

The principle of secure defaults means that every new PostgreSQL deployment

should start from a hardened baseline configuration rather than relying on the de-

fault settings, which are designed for ease of initial setup rather than production

security.

The principle of continuous monitoring means that security events should be

logged, aggregated, analyzed, and alerted upon in real time. A breach that is de-

tected in minutes causes far less damage than one that persists undetected for

months.

As we proceed through this book, each chapter will build upon these princi-

ples, translating them into specific PostgreSQL configurations, commands, policies,

and practices. The goal is not merely to understand PostgreSQL security in theory

but to implement it in practice, creating production environments that protect the

data entrusted to them against the full spectrum of threats they face.

The stakes are real. The threats are active. The tools that PostgreSQL provides

are powerful. What remains is the knowledge and discipline to use them effective-

ly. That journey begins now.

17

Chapter 2: PostgreSQL Secu-
rity Architecture

Understanding the security architecture of PostgreSQL is not merely an academic

exercise. It is a foundational requirement for every database administrator, devel-

oper, and security engineer who is entrusted with protecting organizational data.

PostgreSQL, unlike many commercial database systems, was designed from its ear-

liest days with a layered security model that gives administrators granular control

over who can connect, how they authenticate, and what they are permitted to do

once inside the system. This chapter takes you on a thorough journey through the

internal security architecture of PostgreSQL, examining each layer in detail, ex-

plaining how the components interact with one another, and providing practical

examples that you can apply directly in production environments.

When we talk about the "security architecture" of PostgreSQL, we are referring

to the entire ecosystem of mechanisms, configurations, processes, and internal

structures that collectively determine how the database system protects itself and

the data it stores. This is not a single feature or a single configuration file. It is a

carefully orchestrated set of layers, each serving a distinct purpose, and each de-

pending on the others to create a comprehensive defense. To truly harden a Post-

greSQL installation, you must understand every one of these layers, how they fit to-

gether, and where the boundaries of each layer begin and end.

18

The Layered Security Model
PostgreSQL implements what is best described as a defense-in-depth strategy.

Rather than relying on a single point of security enforcement, the system applies

multiple independent layers of protection. Each layer acts as a checkpoint, and a

request must successfully pass through every layer before it can access or modify

data. If any single layer denies access, the request is stopped regardless of what

the other layers might allow.

The outermost layer is the network and operating system layer. Before Postgre-

SQL even becomes aware of a connection attempt, the operating system's firewall

rules, network segmentation, and TCP/IP configuration determine whether a

packet can reach the PostgreSQL server process. This is not technically part of Post-

greSQL itself, but it is an inseparable component of the overall security architecture

because PostgreSQL cannot protect against connections that it never sees, and

conversely, a misconfigured network layer can expose the database to threats that

PostgreSQL's internal mechanisms were never designed to handle alone.

The next layer inward is the connection and authentication layer. This is where

PostgreSQL's pg_hba.conf file plays its critical role. When a client connection ar-

rives at the PostgreSQL server, the system consults this file to determine whether

the connection should be allowed and, if so, what authentication method should

be used. This layer answers two fundamental questions: Is this client allowed to

connect at all, and how must this client prove its identity?

Beyond authentication lies the authorization layer, which is the realm of roles,

privileges, and permissions. Once a client has successfully authenticated, Postgre-

SQL must determine what that client is allowed to do. This is where the role-based

access control system comes into play, governing access to databases, schemas,

tables, columns, functions, and virtually every other object within the system.

19

Finally, at the innermost layer, PostgreSQL provides row-level security policies,

column-level permissions, and security-defining functions that allow administrators

to implement fine-grained access control at the data level itself. This innermost lay-

er ensures that even users who have general access to a table can be restricted to

seeing or modifying only specific rows or columns.

The following table summarizes these layers and their primary responsibilities:

Layer Primary Mecha-
nism

Configuration Lo-
cation

Purpose

Network and OS Firewall rules, TCP
wrappers, network
segmentation

iptables, firewalld,
OS configuration

Prevent unautho-
rized network ac-
cess to the server

Connection and Au-
thentication

Host-based access
control, authentica-
tion methods

pg_hba.conf, post-
gresql.conf

Control who can
connect and how
they prove identity

Authorization Roles, privileges,
GRANT and RE-
VOKE statements

SQL commands,
system catalogs

Determine what au-
thenticated users
can do

Data-Level Security Row-level security,
column privileges,
security definer
functions

SQL policies,
GRANT on columns

Restrict access to
specific rows and
columns

Understanding this layered model is essential because security failures almost al-

ways occur when one or more layers are misconfigured or missing entirely. A com-

mon mistake, for example, is to focus exclusively on strong passwords while leav-

ing the network layer wide open, or to carefully configure pg_hba.conf while ne-

glecting to set appropriate object-level privileges.

20

The PostgreSQL Server Process and Se-
curity Context
To appreciate how security enforcement actually works at runtime, you need to un-

derstand the PostgreSQL process architecture. When the PostgreSQL server starts,

it launches a primary process traditionally called the postmaster. This process lis-

tens for incoming connections on a configured port, which by default is 5432.

When a client connection arrives, the postmaster forks a new backend process

dedicated to serving that specific client.

Each backend process runs under the security context of the operating system

user that owns the PostgreSQL installation, which is typically a user named post-

gres. However, within the database system itself, each backend process operates

under the identity of the database role that the client authenticated as. This distinc-

tion is important: at the OS level, all backend processes look identical, but at the

database level, each one carries the identity and privileges of a specific role.

You can observe this behavior by querying the pg_stat_activity system

view, which shows all active backend processes along with the role they are run-

ning as:

SELECT pid, usename, datname, client_addr, backend_start, state

FROM pg_stat_activity

WHERE backend_type = 'client backend';

This query returns output similar to the following:

 pid | usename | datname | client_addr | backend_start

| state

-------+----------+------------+---------------

+----------------------------+--------

 12345 | app_user | production | 192.168.1.100 | 2024-01-15

10:23:45.123+00 | active

 12346 | analyst | reporting | 192.168.1.101 | 2024-01-15

10:25:12.456+00 | idle

21

 12347 | postgres | postgres | 127.0.0.1 | 2024-01-15

09:00:01.789+00 | active

Each row represents a separate backend process, and you can see that each one is

associated with a specific user, database, and client address. The security decisions

that PostgreSQL makes for each of these processes are entirely independent. The

app_user process cannot access objects that only analyst has privileges on,

even though both processes are running as the same OS user.

The postmaster process itself plays a security role during connection establish-

ment. When a new connection arrives, the postmaster consults pg_hba.conf be-

fore forking the backend process. If the connection is rejected at this stage, no

backend process is ever created, which means that rejected connections consume

minimal server resources. This design is intentional and helps protect against cer-

tain types of denial-of-service attacks.

System Catalogs and Security Metada-
ta
PostgreSQL stores all security-related metadata in system catalogs, which are spe-

cial tables that exist in every database. These catalogs are the authoritative source

of truth for all security decisions. When PostgreSQL needs to determine whether a

role has permission to perform an action, it consults these catalogs.

The most important security-related system catalogs are described in the fol-

lowing table:

Catalog Name Purpose Key Columns

pg_authid Stores all roles and their prop-
erties

rolname, rolsuper, rolcreate-
role, rolcreatedb, rolcanlogin,
rolpassword

22

pg_auth_members Records role membership rela-
tionships

roleid, member, grantor, ad-
min_option

pg_database Stores database-level proper-
ties including access control

datname, datdba, datacl

pg_namespace Stores schema information in-
cluding permissions

nspname, nspowner, nspacl

pg_class Stores table and index infor-
mation including permissions

relname, relowner, relacl

pg_proc Stores function and procedure
information

proname, proowner, proacl,
prosecdef

pg_default_acl Stores default access privi-
leges

defaclrole, defaclnamespace,
defaclobjtype, defaclacl

pg_policy Stores row-level security poli-
cies

polname, polrelid, polcmd,
polroles, polqual, polwith-
check

You can query these catalogs directly to understand the current security configura-

tion of your database. For example, to see all roles and their key security proper-

ties:

SELECT rolname,

 rolsuper,

 rolcreaterole,

 rolcreatedb,

 rolcanlogin,

 rolreplication,

 rolbypassrls,

 rolconnlimit,

 rolvaliduntil

FROM pg_authid

ORDER BY rolname;

This query reveals critical information about each role. The rolsuper column indi-

cates whether a role has superuser privileges, which effectively bypass all access

checks. The rolcanlogin column distinguishes between roles that can directly

23

authenticate (login roles) and roles that exist solely for privilege grouping (group

roles). The rolbypassrls column shows whether a role can bypass row-level se-

curity policies, which is a powerful and potentially dangerous privilege.

To examine the access control lists on specific tables, you can query pg_-

class:

SELECT n.nspname AS schema_name,

 c.relname AS table_name,

 c.relacl AS access_privileges,

 pg_get_userbyid(c.relowner) AS owner

FROM pg_class c

JOIN pg_namespace n ON n.oid = c.relnamespace

WHERE c.relkind = 'r'

 AND n.nspname NOT IN ('pg_catalog', 'information_schema')

ORDER BY n.nspname, c.relname;

The relacl column contains the access control list in PostgreSQL's compact ACL

notation. For example, an entry like {app_user=arwdDxt/postgres} means that

the role app_user has been granted SELECT (r), INSERT (a), UPDATE (w), DELETE

(d), TRUNCATE (D), REFERENCES (x), and TRIGGER (t) privileges by the role post-

gres. Understanding this notation is essential for auditing database security.

The following table explains each privilege character in PostgreSQL's ACL no-

tation:

Character Privilege Applicable Objects

r SELECT (read) Tables, views, sequences

a INSERT (append) Tables, views

w UPDATE (write) Tables, views, sequences

d DELETE Tables, views

D TRUNCATE Tables

x REFERENCES Tables

t TRIGGER Tables, views

24

X EXECUTE Functions, procedures

U USAGE Schemas, sequences, types, domains, foreign data
wrappers, foreign servers

C CREATE Databases, schemas, tablespaces

c CONNECT Databases

T TEMPORARY Databases

Note: The asterisk (*) after a privilege character indicates that the role has the abili-

ty to grant that privilege to others (WITH GRANT OPTION). For example, r* means

the role has SELECT privilege and can grant SELECT to other roles.

The Authentication Pipeline in Detail
When a client attempts to connect to PostgreSQL, the authentication process fol-

lows a precise sequence of steps. Understanding this sequence is critical for trou-

bleshooting connection issues and for ensuring that your authentication configura-

tion is secure.

First, the client establishes a TCP connection to the server (or a Unix domain

socket connection on the local machine). The postmaster accepts this connection

and reads the startup message from the client, which contains the requested data-

base name, the role name, and various connection parameters.

Second, the postmaster searches pg_hba.conf from top to bottom, looking

for the first entry that matches the connection type, client address, requested data-

base, and requested role. This is a crucial point: PostgreSQL uses the first matching

entry, not the best matching entry or the most specific entry. The order of entries in

pg_hba.conf matters enormously.

Consider the following example pg_hba.conf configuration:

25

TYPE DATABASE USER ADDRESS

METHOD

local all postgres

peer

local all all

md5

host production app_user 192.168.1.0/24

scram-sha-256

host all all 192.168.1.0/24

reject

host all all 10.0.0.0/8

scram-sha-256

hostssl all all 0.0.0.0/0

scram-sha-256

host all all 0.0.0.0/0

reject

In this configuration, a connection from 192.168.1.100 as app_user to the pro-

duction database would match the third line and be required to authenticate us-

ing SCRAM-SHA-256. However, a connection from the same address as analyst

to any database would match the fourth line and be rejected outright, even though

the fifth line would allow connections from the broader 10.0.0.0/8 network. This

is because the fourth line matches first.

Third, once the matching pg_hba.conf entry is found, PostgreSQL applies the

specified authentication method. The available methods range from completely

trusting the client (the trust method, which should never be used in production)

to requiring cryptographic proof of identity through methods like scram-

sha-256, cert, or integration with external authentication systems like LDAP, GSS-

API, or RADIUS.

Fourth, if authentication succeeds, PostgreSQL checks whether the authenticat-

ed role actually exists in pg_authid and whether it has the LOGIN privilege. A role

without LOGIN cannot be used for direct connections even if authentication suc-

ceeds.

