PostgreSQL Security & Ac-
cess Control

Hardening, Authentication, Authoriza-
tion, and Compliance in Production En-

vironments

Preface

Every database tells a story. It holds the financial records of a growing business, the
medical histories of patients, the personal details of millions of users who trusted
an organization with their data. PostgreSQL—one of the most powerful and widely
adopted open-source relational databases in the world—sits at the heart of count-
less such stories. And yet, too often, the security of a PostgreSQL deployment is
treated as an afterthought: a checkbox to be ticked after the schemas are de-
signed, the queries are tuned, and the application is live.

This book exists because that approach is no longer acceptable—if it ever was.

Why This Book

The threat landscape facing PostgreSQL deployments has grown more sophisticat-
ed and relentless with each passing year. Ransomware campaigns target exposed
database ports. Misconfigured pg hba.conf files silently grant access to the
wrong networks. Overprivileged roles accumulate like technical debt. SQL injec-
tion remains stubbornly prevalent. Compliance frameworks such as GDPR, HIPAA,
SOC 2, and PCI DSS demand not just good intentions but demonstrable controls.
PostgreSQL Security & Access Control was written to bridge the gap be-
tween knowing that PostgreSQL security matters and knowing exactly what to do
about it. Whether you are a database administrator hardening a production cluster,
a developer building secure multi-tenant applications, or an architect designing
systems that must satisfy auditors and regulators, this book provides the practical,

PostgreSQL-specific guidance you need.

What You Will Find Inside

This book is organized into sixteen chapters and five appendices, structured to
take you on a deliberate journey from foundational concepts to advanced, produc-
tion-grade security practices.

We begin by establishing why database security is critical and examining Post-
greSQL's security architecture from the ground up. From there, we dive deep
into the mechanisms that govern who can connect and how—exploring pg hba. -
conf configuration, authentication methods ranging from password-based
schemes to certificate and GSSAPI authentication, and the PostgreSQL role and
privilege system that controls what authenticated users can actually do.

The middle chapters address encryption in transit and at rest, equipping you
to enable SSL/TLS for PostgreSQL connections and protect sensitive data stored on
disk. We then turn to monitoring and defense: configuring PostgreSQL's logging
infrastructure for security auditing, detecting intrusions, mitigating threats, and pre-
venting SQL injection at both the database and application layers.

Later chapters tackle the architectural challenges of secure multi-tenant de-
sign within PostgreSQL, hardening postgresql.conf and related configuration,
securing replication and backup pipelines, and meeting the demands of compli-
ance and governance frameworks. The final chapter invites you to think beyond
day-to-day administration and evolve into a security-focused architect—someone
who embeds defense into every layer of a PostgreSQL deployment.

The appendices provide ready-to-use resources: secure pg hba.conf tem-
plates, a role and privilege reference table, an SSL configuration checklist, a com-
prehensive security audit checklist, and a PostgreSQL hardening worksheet you

can adapt to your own environments.

How to Use This Book

You can read this book cover to cover for a complete education in PostgreSQL se-
curity, or you can treat individual chapters as targeted references when facing spe-
cific challenges. Each chapter is designed to be self-contained enough to be useful
on its own, while contributing to a coherent, cumulative understanding when read

in sequence.

Acknowledgments

This book would not exist without the extraordinary PostgreSQL community—the
developers, contributors, and documentation authors who have built and refined a
database engine that takes security seriously at its core. | am also deeply grateful to
the security researchers, DBAs, and architects whose real-world experiences and
hard-won lessons informed every chapter. Special thanks to the technical reviewers
who challenged assumptions, caught errors, and made this a stronger, more trust-

worthy resource.

A Final Word Before We Begin

Security is not a feature you install. It is a discipline you practice—continuously, de-
liberately, and with humility. PostgreSQL gives you remarkably powerful tools to
protect your data. This book will show you how to use them.

Let's get started.

Thomas Ellison

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Why Database Security Is Critical
PostgreSQL Security Architecture
Understanding pg_hba.conf
Authentication Methods

Roles, Privileges, and Ownership
Implementing Least Privilege

Enabling SSL/TLS Encryption

Protecting Data at Rest

Logging and Auditing Security Events
Intrusion Detection and Threat Mitigation
Preventing SQL Injection

Secure Multi-Tenant Design

Hardening PostgreSQL Configuration
Security in Replication and Backup
Compliance and Governance

From DBA to Security-Focused Architect
pg_hba.conf Secure Templates

Role and Privilege Reference Table

SSL Configuration Checklist

Security Audit Checklist

Page

6
17
30
45
58
74
85
103
117
136
158
179
197
214
228
245
263
279
301
318

PostgreSQL Security Hardening Worksheet 334

Chapter 1: Why Database Se-
curity Is Critical

The moment a PostgreSQL database goes live in a production environment, it be-
comes a target. This is not an exaggeration or a scare tactic designed to sell securi-
ty products. It is a plain, observable truth that anyone who has managed a publicly
accessible database server can confirm within hours of deployment. Automated
scanners sweep the internet continuously, probing default ports, testing common
credentials, and looking for misconfigured services. PostgreSQL, being one of the
most widely adopted open-source relational database management systems in the
world, sits squarely in the crosshairs of these automated attacks and, far more dan-
gerously, of deliberate, targeted intrusions carried out by sophisticated adver-
saries.

Understanding why database security is critical requires more than a surface-
level acknowledgment that "security matters." It demands a deep appreciation of
what is at stake, how breaches occur, what PostgreSQL offers natively to defend
against threats, and what responsibilities fall on the shoulders of database adminis-
trators, developers, and architects who design and maintain these systems. This
chapter lays that foundation. Before we configure a single parameter, write a single
policy, or modify a single authentication rule, we must internalize the gravity of the

problem and the landscape in which we operate.

The Value of What PostgreSQL Protects

Every database exists to store, organize, and serve data. That data, in a production
environment, almost always has tangible value. Consider the types of information
commonly housed in PostgreSQL databases across industries. Financial institutions
store transaction records, account balances, and personal identification numbers.
Healthcare organizations maintain patient records that include diagnoses, medica-
tions, and insurance details. E-commerce platforms hold credit card numbers, ship-
ping addresses, and purchase histories. Government agencies manage citizen
records, tax filings, and classified operational data. Even a modest startup running
a SaaS$ application likely stores email addresses, hashed passwords, API keys, and
behavioral analytics that represent both intellectual property and personal data
subject to legal protection.

The value of this data is not abstract. It translates directly into financial loss
when compromised. The IBM Cost of a Data Breach Report, published annually,
consistently places the average cost of a data breach in the millions of dollars.
These costs include incident response, forensic investigation, legal fees, regulatory
fines, customer notification, credit monitoring services, lost business due to reputa-
tional damage, and the long-term erosion of customer trust. For organizations op-
erating under regulatory frameworks such as the General Data Protection Regula-
tion (GDPR), the Health Insurance Portability and Accountability Act (HIPAA), the
Payment Card Industry Data Security Standard (PCI DSS), or the Sarbanes-Oxley
Act (SOX), the penalties for failing to protect data can be severe and, in some juris-
dictions, existential.

PostgreSQL, as the system entrusted with this data, is not merely a technical
component. It is the custodian of an organization's most sensitive assets. When we
talk about PostgreSQL security, we are talking about the protection of those assets

at the layer where they are most concentrated and most vulnerable.

The Threat Landscape for PostgreSQL
Deployments

To protect a PostgreSQL database effectively, one must understand the threats it
faces. These threats can be categorized broadly into external attacks, internal
threats, and accidental exposure, each of which manifests in specific ways within
PostgreSQL environments.

External attacks include brute-force authentication attempts against the Post-
greSQL listener, SQL injection through application layers that interact with the
database, exploitation of known vulnerabilities in unpatched PostgreSQL versions,
and network-level interception of unencrypted database traffic. An attacker who
gains access to a PostgreSQL superuser account effectively owns the entire data-
base cluster, including every database, every schema, every table, and every piece
of data within it. They can read sensitive information, modify records, drop entire
databases, or install backdoors using PostgreSQL's extensibility features such as
custom functions written in procedural languages.

Internal threats are statistically more common and often more damaging than
external attacks. A disgruntled employee with legitimate database credentials can
exfiltrate data gradually over weeks or months without triggering obvious alarms. A
developer with overly broad permissions might accidentally or intentionally access
production data they have no business seeing. A contractor given temporary ac-
cess that is never revoked becomes a persistent vulnerability. PostgreSQL's role-
based access control system provides the mechanisms to mitigate these risks, but
only if those mechanisms are deliberately configured and continuously maintained.

Accidental exposure represents a category of threat that is entirely preventable
yet remarkably common. Databases deployed with default configurations, supe-
ruser accounts left with well-known passwords, PostgreSQL instances bound to all

network interfaces without firewall restrictions, unencrypted connections transmit-

ting credentials and query results in plaintext, backup files stored without encryp-
tion on shared storage, and verbose error messages that reveal schema details to
application users are all examples of accidental exposure. Each of these represents
a door left open, not by an attacker, but by the people responsible for securing the
system.

The following table summarizes common threat vectors specific to PostgreSQL

environments and their potential impact:

Threat Vector Description Potential Impact PostgreSQL Rele-

vance

Brute-force authen- Automated tools at- Unauthorized supe-
tication

PostgreSQL listens
on port 5432 by de-
fault and accepts
password-based
authentication un-

tempt thousands of ruser access lead-
username and pass- ing to full data com-
word combinations promise

against the Postgre-

SQL port less configured oth-
erwise
SQL injection Malicious SQL Data exfiltration, PostgreSQL exe-

statements injected modification, or de-
through application struction; potential
command execu-

cutes injected SQL
with the privileges

Unpatched vulnera-
bilities

Unencrypted con-
nections

input fields reach
the database en-
gine

Known security
flaws in specific
PostgreSQL ver-
sions are exploited
before patches are
applied

Database traffic
transmitted without
TLS/SSL encryption
is intercepted on
the network

tion via procedural
languages

Remote code exe-
cution, privilege es-
calation, denial of
service

Credential theft,
query result inter-
ception, session hi-

jacking

of the connecting
application role

The PostgreSQL
Global Develop-
ment Group pub-
lishes security up-
dates regularly; un-
patched systems re-
main exposed

PostgreSQL sup-
ports SSL natively
but does not en-
force it by default

Excessive privileges Users or application Unauthorized data PostgreSQL's de-
roles granted more access, accidental fault behavior for
permissions than data modification newly created roles
required for their or deletion varies; superuser
function privileges are par-

ticularly dangerous

Unrestricted net- PostgreSQL bound Any host on the The listen_address-

work access to all interfaces with network or internet es parameter and
permissive pg_h- can attemptcon- pg_hba.conf file
ba.conf rules nections control network ac-
cessibility
Backup exposure Database backups Complete data pg_dump and
stored without en- compromise from a pg_basebackup
cryption or access single stolen produce unencrypt-
controls backup file ed output by de-
fault
Insider data theft ~ Authorized users Regulatory viola- ~ Without granular
with legitimate ac- tions, competitive role configuration
cess exfiltrate data intelligence loss, and auditing, insid-
beyond theirrole privacy breaches er activity is difficult
requirements to detect

PostgreSQL's Native Security Architec-
ture

One of the reasons PostgreSQL is trusted in security-conscious environments is
that it provides a comprehensive, layered security architecture out of the box. Un-
derstanding this architecture at a high level is essential before diving into the de-
tailed configuration chapters that follow.

The first layer is network-level access control. PostgreSQL uses a configuration
file called pg hba.conf (host-based authentication) to determine which hosts are

allowed to connect, which databases they can access, which users they can authen-

10

ticate as, and what authentication method is required. This file acts as a gatekeeper
before any authentication credentials are even evaluated. A properly configured
pg_hba.conf file can restrict access to specific IP addresses or subnets, require
SSL for all connections, and enforce different authentication methods for local ver-
sus remote connections.

The second layer is authentication. PostgreSQL supports multiple authentica-
tion methods, including password-based methods (md5 and scram-sha-256), cer-
tificate-based authentication, LDAP, RADIUS, GSSAPI (Kerberos), PAM, and peer au-
thentication for local connections. The choice of authentication method has pro-
found implications for security. The older md5 method, for example, is vulnerable
to replay attacks and should be replaced with scram-sha-256 in all new deploy-
ments. Certificate-based authentication eliminates passwords entirely and is con-
sidered the gold standard for machine-to-machine database connections.

The third layer is authorization, implemented through PostgreSQL's role-based
access control (RBAC) system. Every connection to PostgreSQL is made as a specif-
ic role, and that role's privileges determine what actions are permitted. Privileges
can be granted at the database level, schema level, table level, column level, and
even at the row level using Row-Level Security (RLS) policies. This granularity allows
administrators to implement the principle of least privilege with precision, ensuring
that each user or application can access only the specific data and operations re-
quired for their function.

The fourth layer is encryption. PostgreSQL supports SSL/TLS encryption for
data in transit, protecting credentials and query results from network interception.
For data at rest, PostgreSQL does not provide native transparent data encryption
(TDE) in the community edition as of the current major releases, but this can be
achieved through filesystem-level encryption, third-party extensions, or enterprise

distributions that add this capability.

11

The fifth layer is auditing and monitoring. While PostgreSQL's default logging
captures certain events, comprehensive audit logging requires additional configu-
ration or the use of extensions such as pgaudit, which provides detailed session
and object audit logging that satisfies regulatory requirements. Understanding
who accessed what data, when, and from where is not merely a compliance check-
box; it is a fundamental security capability that enables detection of unauthorized
activity and supports forensic investigation after incidents.

Consider the following basic example that illustrates how these layers work to-

gether. When an application server attempts to connect to a PostgreSQL database:

Step 1: PostgreSQL checks pg hba.conf to determine if the source
IP address
is permitted to connect to the requested database as the

requested user.

Step 2: If the connection is permitted, PostgreSQL enforces the
authentication

method specified in pg hba.conf (e.g., scram-sha-256).

Step 3: The client provides credentials, which PostgreSQL
validates against
its internal catalog (pg authid) or an external

authentication provider.

Step 4: Upon successful authentication, the session operates
under the

privileges assigned to the authenticated role.

Step 5: Every SQL statement executed is checked against the
role's privileges

on the target objects. Row-Level Security policies, if
defined, further

filter the visible and modifiable rows.

Step 6: If audit logging is configured, the statement, its

parameters, the

12

executing role, and the timestamp are recorded in the

audit log.

This layered approach means that a failure at any single layer does not necessarily
result in a complete compromise. If an attacker bypasses network controls, they still
face authentication. If they obtain credentials, they are still constrained by the role's
privileges. If they find a privilege escalation path, audit logging can detect the
anomalous activity. Defense in depth is not just a theoretical principle in Postgre-

SQL; itis built into the system's architecture.

The Cost of Neglecting PostgreSQL Se-
curity

The consequences of failing to secure a PostgreSQL database extend far beyond
the immediate technical impact of a breach. Organizations that experience data
breaches face a cascade of consequences that unfold over months and years.

Immediate consequences include the cost of incident response. When a
breach is detected, organizations must engage forensic specialists to determine
the scope of the compromise, identify the attack vector, and assess what data was
accessed or exfiltrated. PostgreSQL's transaction logs, if properly configured, can
assist in this investigation, but if logging was minimal or logs were stored on the
compromised system, forensic analysis becomes significantly more difficult and ex-
pensive.

Regulatory consequences follow. Under GDPR, organizations that fail to protect
personal data of European residents face fines of up to 4% of annual global
turnover or 20 million euros, whichever is greater. HIPAA violations can result in
fines ranging from $100 to $50,000 per violation, with annual maximums of $1.5

million per violation category. PClI DSS non-compliance can result in fines from

13

payment card brands ranging from $5,000 to $100,000 per month. These are not
theoretical penalties; they are actively enforced.

Reputational consequences are perhaps the most enduring. Customers who
learn that their personal data was compromised due to a preventable security fail-
ure, such as a PostgreSQL superuser account with a weak password or an unen-
crypted database connection, lose trust in the organization. Rebuilding that trust
takes years and may never fully succeed.

Legal consequences include class-action lawsuits from affected individuals,
contractual penalties from business partners whose data was exposed, and poten-
tial criminal liability for executives who were aware of security deficiencies and
failed to act.

The following table provides a reference for common regulatory frameworks

and their specific requirements that relate to PostgreSQL database security:

Regulatory Framework Key Database Security = PostgreSQL Capabilities
Requirements

GDPR (General Data Pro- Data minimization, access Role-based access control,

tection Regulation) controls, encryption, SSL/TLS encryption, pgau-
breach notification, right to dit extension, column-level
erasure, audit trails privileges, Row-Level Se-
curity

HIPAA (Health Insurance Access controls, audit con- Authentication methods,

Portability and Account- trols, integrity controls, pg_hba.conf network con-
ability Act) transmission security, en- trols, SSL encryption,
cryption of PHI pgaudit, checksums for

data integrity

PCI DSS (Payment Card In- Restrict access on a need- Role-based access control,
dustry Data Security Stan- to-know basis, unique IDs individual role accounts,
dard) for each user, encrypt SSL/TLS, comprehensive

transmission of cardholder logging and pgaudit

data, track and monitor all

access

14

SOX (Sarbanes-Oxley Act) Internal controls over fi- Schema-level and table-

nancial reporting, audit level privileges, pgaudit
trails, access restrictions to for audit trails, role separa-
financial data tion
SOC 2 (Service Organiza- Logical access controls, pg_hba.conf, role manage-
tion Control) system monitoring, en- ment, SSL, logging config-
cryption, change manage- uration, pgaudit
ment

The Mindset Required for PostgreSQL
Security

Securing a PostgreSQL database is not a one-time activity. It is not something that
is "done" during initial setup and then forgotten. Security is a continuous process
that requires ongoing attention, regular review, and adaptation to evolving threats.
The chapters that follow in this book will provide detailed, practical guidance on
every aspect of PostgreSQL security, from hardening the server configuration to
implementing fine-grained access controls, from configuring encryption to estab-
lishing audit logging that satisfies regulatory requirements.

However, all of that technical knowledge is only effective when applied with
the right mindset. That mindset includes several key principles.

The principle of least privilege dictates that every role in PostgreSQL should
have the minimum permissions necessary to perform its intended function. Appli-
cation roles should not be superusers. Read-only reporting roles should not have
write access. Administrative roles should be used only for administrative tasks, not
for routine application connections.

The principle of defense in depth means that security should not depend on

any single control. Network restrictions, strong authentication, granular authoriza-

15

tion, encryption, and audit logging should all be implemented together, each pro-
viding protection even if another layer fails.

The principle of secure defaults means that every new PostgreSQL deployment
should start from a hardened baseline configuration rather than relying on the de-
fault settings, which are designed for ease of initial setup rather than production
security.

The principle of continuous monitoring means that security events should be
logged, aggregated, analyzed, and alerted upon in real time. A breach that is de-
tected in minutes causes far less damage than one that persists undetected for
months.

As we proceed through this book, each chapter will build upon these princi-
ples, translating them into specific PostgreSQL configurations, commands, policies,
and practices. The goal is not merely to understand PostgreSQL security in theory
but to implement it in practice, creating production environments that protect the
data entrusted to them against the full spectrum of threats they face.

The stakes are real. The threats are active. The tools that PostgreSQL provides
are powerful. What remains is the knowledge and discipline to use them effective-

ly. That journey begins now.

16

Chapter 2: PostgreSQL Secu-
rity Architecture

Understanding the security architecture of PostgreSQL is not merely an academic
exercise. It is a foundational requirement for every database administrator, devel-
oper, and security engineer who is entrusted with protecting organizational data.
PostgreSQL, unlike many commercial database systems, was designed from its ear-
liest days with a layered security model that gives administrators granular control
over who can connect, how they authenticate, and what they are permitted to do
once inside the system. This chapter takes you on a thorough journey through the
internal security architecture of PostgreSQL, examining each layer in detail, ex-
plaining how the components interact with one another, and providing practical
examples that you can apply directly in production environments.

When we talk about the "security architecture" of PostgreSQL, we are referring
to the entire ecosystem of mechanisms, configurations, processes, and internal
structures that collectively determine how the database system protects itself and
the data it stores. This is not a single feature or a single configuration file. It is a
carefully orchestrated set of layers, each serving a distinct purpose, and each de-
pending on the others to create a comprehensive defense. To truly harden a Post-
greSQL installation, you must understand every one of these layers, how they fit to-

gether, and where the boundaries of each layer begin and end.

17

The Layered Security Model

PostgreSQL implements what is best described as a defense-in-depth strategy.
Rather than relying on a single point of security enforcement, the system applies
multiple independent layers of protection. Each layer acts as a checkpoint, and a
request must successfully pass through every layer before it can access or modify
data. If any single layer denies access, the request is stopped regardless of what
the other layers might allow.

The outermost layer is the network and operating system layer. Before Postgre-
SQL even becomes aware of a connection attempt, the operating system's firewall
rules, network segmentation, and TCP/IP configuration determine whether a
packet can reach the PostgreSQL server process. This is not technically part of Post-
greSQL itself, but it is an inseparable component of the overall security architecture
because PostgreSQL cannot protect against connections that it never sees, and
conversely, a misconfigured network layer can expose the database to threats that
PostgreSQL's internal mechanisms were never designed to handle alone.

The next layer inward is the connection and authentication layer. This is where
PostgreSQL's pg hba.conf file plays its critical role. When a client connection ar-
rives at the PostgreSQL server, the system consults this file to determine whether
the connection should be allowed and, if so, what authentication method should
be used. This layer answers two fundamental questions: Is this client allowed to
connect at all, and how must this client prove its identity?

Beyond authentication lies the authorization layer, which is the realm of roles,
privileges, and permissions. Once a client has successfully authenticated, Postgre-
SQL must determine what that client is allowed to do. This is where the role-based
access control system comes into play, governing access to databases, schemas,

tables, columns, functions, and virtually every other object within the system.

18

Finally, at the innermost layer, PostgreSQL provides row-level security policies,

column-level permissions, and security-defining functions that allow administrators

to implement fine-grained access control at the data level itself. This innermost lay-

er ensures that even users who have general access to a table can be restricted to

seeing or modifying only specific rows or columns.

The following table summarizes these layers and their primary responsibilities:

Layer

Network and OS

Connection and Au-

thentication

Authorization

Data-Level Security

Primary Mecha-
nism

Firewall rules, TCP
wrappers, network
segmentation

Host-based access
control, authentica-
tion methods

Roles, privileges,
GRANT and RE-
VOKE statements

Row-level security,
column privileges,
security definer
functions

Configuration Lo-
cation

iptables, firewalld,
OS configuration

pg_hba.conf, post-
gresqgl.conf

SQL commands,
system catalogs

SQL policies,
GRANT on columns

Purpose

Prevent unautho-
rized network ac-
cess to the server

Control who can
connect and how
they prove identity

Determine what au-
thenticated users
can do

Restrict access to
specific rows and
columns

Understanding this layered model is essential because security failures almost al-

ways occur when one or more layers are misconfigured or missing entirely. A com-

mon mistake, for example, is to focus exclusively on strong passwords while leav-

ing the network layer wide open, or to carefully configure pg_hba.conf while ne-

glecting to set appropriate object-level privileges.

19

The PostgreSQL Server Process and Se-
curity Context

To appreciate how security enforcement actually works at runtime, you need to un-
derstand the PostgreSQL process architecture. When the PostgreSQL server starts,
it launches a primary process traditionally called the postmaster. This process lis-
tens for incoming connections on a configured port, which by default is 5432.
When a client connection arrives, the postmaster forks a new backend process
dedicated to serving that specific client.

Each backend process runs under the security context of the operating system
user that owns the PostgreSQL installation, which is typically a user named post-
gres. However, within the database system itself, each backend process operates
under the identity of the database role that the client authenticated as. This distinc-
tion is important: at the OS level, all backend processes look identical, but at the
database level, each one carries the identity and privileges of a specific role.

You can observe this behavior by querying the pg stat activity system
view, which shows all active backend processes along with the role they are run-
ning as:

SELECT pid, usename, datname, client addr, backend start, state

FROM pg stat activity
WHERE backend type = 'client backend';

This query returns output similar to the following:

pid | usename | datname | client addr | backend start

12345 | app user | production | 192.168.1.100 | 2024-01-15
10:23:45.123400 | active

12346 | analyst | reporting | 192.168.1.101 | 2024-01-15
10:25:12.456+00 | idle

20

12347 | postgres | postgres | 127.0.0.1 | 2024-01-15
09:00:01.7894+00 | active

Each row represents a separate backend process, and you can see that each one is
associated with a specific user, database, and client address. The security decisions
that PostgreSQL makes for each of these processes are entirely independent. The
app_user process cannot access objects that only analyst has privileges on,
even though both processes are running as the same OS user.

The postmaster process itself plays a security role during connection establish-
ment. When a new connection arrives, the postmaster consults pg _hba.conf be-
fore forking the backend process. If the connection is rejected at this stage, no
backend process is ever created, which means that rejected connections consume
minimal server resources. This design is intentional and helps protect against cer-

tain types of denial-of-service attacks.

System Catalogs and Security Metada-
ta

PostgreSQL stores all security-related metadata in system catalogs, which are spe-
cial tables that exist in every database. These catalogs are the authoritative source
of truth for all security decisions. When PostgreSQL needs to determine whether a
role has permission to perform an action, it consults these catalogs.

The most important security-related system catalogs are described in the fol-

lowing table:

Catalog Name Purpose Key Columns
pg_authid Stores all roles and their prop- rolname, rolsuper, rolcreate-
erties role, rolcreatedb, rolcanlogin,

rolpassword

21

pg_auth_members Records role membership rela- roleid, member, grantor, ad-
tionships min_option

pg_database Stores database-level proper- datname, datdba, datacl
ties including access control

pg_namespace Stores schema information in- nspname, nspowner, nspacl
cluding permissions

pg_class Stores table and index infor- relname, relowner, relacl
mation including permissions

pg_proc Stores function and procedure proname, proowner, proacl,
information prosecdef
pg_default_acl Stores default access privi- defaclrole, defaclnamespace,
leges defaclobjtype, defaclacl
pg_policy Stores row-level security poli- polname, polrelid, polcmd,
cies polroles, polqual, polwith-
check

You can query these catalogs directly to understand the current security configura-
tion of your database. For example, to see all roles and their key security proper-

ties:

SELECT rolname,
rolsuper,
rolcreaterole,
rolcreatedb,
rolcanlogin,
rolreplication,
rolbypassrls,
rolconnlimit,
rolvaliduntil

FROM pg_authid

ORDER BY rolname;

This query reveals critical information about each role. The rolsuper column indi-
cates whether a role has superuser privileges, which effectively bypass all access

checks. The rolcanlogin column distinguishes between roles that can directly

22

authenticate (login roles) and roles that exist solely for privilege grouping (group
roles). The rolbypassrls column shows whether a role can bypass row-level se-
curity policies, which is a powerful and potentially dangerous privilege.

To examine the access control lists on specific tables, you can query pg -

class:

SELECT n.nspname AS schema name,
c.relname AS table name,
c.relacl AS access privileges,
Pg _get userbyid(c.relowner) AS owner
FROM pg class c
JOIN pg namespace n ON n.oid = c.relnamespace
WHERE c.relkind = 'r'
AND n.nspname NOT IN ('pg catalog', 'information schema')

ORDER BY n.nspname, c.relname;

The relacl column contains the access control list in PostgreSQL's compact ACL
notation. For example, an entry like {app user=arwdDxt/postgres} means that
the role app user has been granted SELECT (r), INSERT (a), UPDATE (w), DELETE
(d), TRUNCATE (D), REFERENCES (x), and TRIGGER (t) privileges by the role post-
gres. Understanding this notation is essential for auditing database security.

The following table explains each privilege character in PostgreSQL's ACL no-

tation:

Character Privilege Applicable Objects

r SELECT (read) Tables, views, sequences
a INSERT (append) Tables, views

w UPDATE (write) Tables, views, sequences
d DELETE Tables, views

D TRUNCATE Tables

X REFERENCES Tables

t TRIGGER Tables, views

23

X EXECUTE Functions, procedures

USAGE Schemas, sequences, types, domains, foreign data
wrappers, foreign servers

C CREATE Databases, schemas, tablespaces
C CONNECT Databases
T TEMPORARY Databases

Note: The asterisk (*) after a privilege character indicates that the role has the abili-
ty to grant that privilege to others (WITH GRANT OPTION). For example, r* means
the role has SELECT privilege and can grant SELECT to other roles.

The Authentication Pipeline in Detail

When a client attempts to connect to PostgreSQL, the authentication process fol-
lows a precise sequence of steps. Understanding this sequence is critical for trou-
bleshooting connection issues and for ensuring that your authentication configura-
tion is secure.

First, the client establishes a TCP connection to the server (or a Unix domain
socket connection on the local machine). The postmaster accepts this connection
and reads the startup message from the client, which contains the requested data-
base name, the role name, and various connection parameters.

Second, the postmaster searches pg hba.conf from top to bottom, looking
for the first entry that matches the connection type, client address, requested data-
base, and requested role. This is a crucial point: PostgreSQL uses the first matching
entry, not the best matching entry or the most specific entry. The order of entries in
pg_hba.conf matters enormously.

Consider the following example pg_hba.conf configuration:

24

TYPE DATABASE USER ADDRESS

METHOD

local all postgres

peer

local all all

mdb5

host production app_user 192.168.1.0/24
scram-sha-256

host all all 192.168.1.0/24
reject

host all all 10.0.0.0/8
scram-sha-256

hostssl all all 0.0.0.0/0
scram-sha-256

host all all 0.0.0.0/0
reject

In this configuration, a connection from 192.168.1.100 as app _user to the pro-
duction database would match the third line and be required to authenticate us-
ing SCRAM-SHA-256. However, a connection from the same address as analyst
to any database would match the fourth line and be rejected outright, even though
the fifth line would allow connections from the broader 10.0.0.0/8 network. This
is because the fourth line matches first.

Third, once the matching pg hba.conf entry is found, PostgreSQL applies the
specified authentication method. The available methods range from completely
trusting the client (the trust method, which should never be used in production)
to requiring cryptographic proof of identity through methods like scram-
sha-256, cert, or integration with external authentication systems like LDAP, GSS-
API, or RADIUS

Fourth, if authentication succeeds, PostgreSQL checks whether the authenticat-
ed role actually exists in pg_authid and whether it has the LOGIN privilege. A role
without LOGIN cannot be used for direct connections even if authentication suc-

ceeds.

25

