
1

Laravel Framework Funda-
mentals

Building Modern PHP Applications
with Clean Architecture and Best Prac-
tices

2

Preface

When I first encountered Laravel, I experienced something rare in the world of

software development: a framework that felt like it was designed for the developer,

not the other way around. Laravel's elegant syntax, thoughtful conventions, and vi-

brant ecosystem have made it the most popular PHP framework in the world — and

for good reason. It empowers developers to build robust, modern web ap-

plications without drowning in boilerplate code or fighting against the tools meant

to help them.

Laravel Framework Fundamentals was written with a single, clear purpose: to

take you from your very first Laravel project to the confidence and competence of

a professional Laravel developer. Whether you're a PHP developer looking to

adopt a modern framework, a programmer transitioning from another language, or

a newcomer eager to build real web applications, this book provides the struc-

tured, practical foundation you need.

What This Book Covers
This book is organized as a progressive journey through the Laravel framework. We

begin by answering the essential question — Why Laravel? — and then walk through

setting up a proper development environment so you can start building immedi-

ately.

From there, we dive into Laravel's core building blocks: routing, controllers,

and the powerful Blade templating engine. You'll learn how Laravel handles

3

forms and HTTP requests with grace, and how its expressive tools make common

tasks feel effortless.

A significant portion of the book is dedicated to working with data. We explore

database configuration, the Eloquent ORM, advanced query techniques, model

relationships, and database best practices — because nearly every meaningful ap-

plication revolves around data, and Laravel provides one of the most elegant ap-

proaches to managing it.

Security and authentication are not afterthoughts here. You'll learn how to im-

plement authentication using Laravel's built-in systems and how to protect your

application against common vulnerabilities. We also cover building RESTful APIs,

an essential skill in today's interconnected world of single-page applications and

mobile clients.

The book rounds out with chapters on testing and deployment — two disci-

plines that separate hobbyist projects from professional-grade applications. Finally,

we chart a course for your continued growth as a Laravel developer, ensuring this

book is not an endpoint but a launchpad.

How to Use This Book
The chapters are designed to be read sequentially, with each one building on con-

cepts introduced earlier. However, if you already have experience with Laravel,

you'll find that individual chapters stand well on their own as focused references.

The five appendices — including a Laravel command cheat sheet, common Elo-

quent patterns, security configuration checklist, REST API design checklist, and a

curated learning path — are resources you'll return to long after you've finished

reading.

4

What You'll Gain
By the end of this book, you won't just know Laravel — you'll understand the princi-

ples and architectural patterns behind it. You'll write cleaner code, make better

design decisions, and approach new features with the confidence that comes from

a solid foundation. Laravel rewards developers who invest in understanding its

conventions, and this book is that investment.

Acknowledgments
This book would not exist without the extraordinary work of Taylor Otwell and the

Laravel community, whose commitment to developer experience and open-source

excellence continues to inspire millions of developers worldwide. I'm also deeply

grateful to the countless tutorial authors, package maintainers, and community

members whose shared knowledge has shaped the Laravel ecosystem into what it

is today.

To every reader picking up this book: thank you for choosing to learn Laravel.

You're joining a community that values elegant code, practical solutions, and the

belief that building for the web should be a creative, joyful endeavor.

Let's build something remarkable.

Happy coding — and welcome to Laravel.

Nico Brandt

5

Table of Contents

Chapter Title Page

1 Why Laravel? 6

2 Setting Up Your Development Environment 18

3 Routing Fundamentals 35

4 Controllers and Application Logic 54

5 Blade Templating Engine 74

6 Forms and Request Handling 92

7 Database Configuration 114

8 Eloquent ORM Fundamentals 133

9 Advanced Queries and Relationships 159

10 Database Best Practices 178

11 Authentication Basics 199

12 Application Security Essentials 228

13 Building RESTful APIs 248

14 Testing Laravel Applications 266

15 Deploying Laravel Applications 294

16 From Laravel Beginner to Professional Developer 311

App Laravel Command Cheat Sheet 332

App Common Eloquent Patterns 349

App Secure Configuration Checklist 369

App REST API Design Checklist 388

App Laravel Learning Path 406

6

Chapter 1: Why Laravel?

Every developer reaches a crossroads at some point in their career. You have

learned the fundamentals of PHP, you have written scripts that connect to databas-

es, you have built small applications with raw code, and now you stand at the

threshold of something bigger. You need structure. You need organization. You

need a framework that does not just help you write code but helps you write better

code. This is where Laravel enters the conversation, and this is where your journey

as a modern PHP developer truly begins.

Before we write a single line of code, before we install anything on our ma-

chines, we need to understand why Laravel exists, what problems it solves, and

why millions of developers around the world have chosen it as their primary tool

for building web applications. This chapter is not about syntax or configuration. It is

about philosophy, context, and making an informed decision about the tool you

are about to invest significant time learning.

The Problem That Frameworks Solve
In the early days of PHP development, building a web application meant writing

everything from scratch. You would create a file called index.php, write your

HTML directly inside it, mix in database queries using raw mysqli or PDO calls,

handle form submissions with $_POST and $_GET superglobals, and manage user

sessions manually. For a small project, this approach worked well enough. But as

applications grew in complexity, this approach became a nightmare.

7

Consider what happens when you build a medium-sized application without a

framework. You need to handle routing, which means figuring out which code

should execute when a user visits a particular URL. You need to manage database

connections and write SQL queries safely to prevent injection attacks. You need to

validate user input, manage authentication, handle file uploads, send emails, and

dozens of other common tasks. Without a framework, you end up writing all of this

infrastructure code yourself, and you write it differently every single time.

The result is what experienced developers call "spaghetti code." Logic is tan-

gled together, business rules live next to presentation code, database queries are

scattered across dozens of files, and making a change in one place breaks some-

thing in another. Testing becomes nearly impossible, onboarding new team mem-

bers takes weeks instead of days, and the application becomes increasingly fragile

over time.

Frameworks exist to solve this exact problem. A framework provides a struc-

tured, organized, and tested foundation upon which you build your application. It

handles the repetitive infrastructure tasks so that you can focus on what makes

your application unique: your business logic, your features, and your users' experi-

ence.

The PHP Framework Landscape
PHP has no shortage of frameworks. Over the years, the ecosystem has produced

several notable options, each with its own philosophy and strengths. Understand-

ing where Laravel fits in this landscape helps you appreciate why it has become the

dominant choice.

8

Framework Initial Release Philosophy Primary Strength

CodeIgniter 2006 Simplicity and speed Lightweight, minimal
configuration

Symfony 2005 Enterprise-grade compo-
nents

Robust component li-
brary, corporate adop-
tion

CakePHP 2005 Convention over configu-
ration

Rapid prototyping, scaf-
folding

Zend/Laminas 2006 Enterprise architecture Modular design, corpo-
rate backing

Yii 2008 Performance Fast execution, caching
built-in

Laravel 2011 Developer happiness Elegant syntax, rich
ecosystem, modern tool-
ing

Laravel arrived later than most of its competitors, which turned out to be a signifi-

cant advantage. Taylor Otwell, the creator of Laravel, had the benefit of observing

what worked and what did not work in existing frameworks. He studied Code-

Igniter's simplicity, Symfony's powerful components, and Ruby on Rails' emphasis

on convention over configuration. He then synthesized these ideas into something

new, something that prioritized the developer experience above all else.

Laravel did not try to reinvent the wheel. In fact, it built directly on top of many

Symfony components, leveraging their stability and maturity while wrapping them

in a more expressive and intuitive interface. This decision was both pragmatic and

brilliant. It meant that Laravel inherited years of battle-tested code while presenting

it in a way that felt fresh and enjoyable to use.

9

The Philosophy of Developer Happi-
ness
What sets Laravel apart from other PHP frameworks is not a single feature or tech-

nical capability. It is a philosophy. Taylor Otwell has stated repeatedly that Laravel is

designed to make developers happy. This might sound like marketing language,

but when you begin working with Laravel, you feel it in every interaction with the

framework.

Developer happiness in the context of Laravel means several things. It means

that the syntax reads like natural language whenever possible. It means that com-

mon tasks require minimal boilerplate code. It means that the documentation is

thorough, well-written, and filled with practical examples. It means that the frame-

work anticipates what you need and provides elegant solutions before you even

realize you need them.

Consider a simple example. In raw PHP, reading a value from a configuration

file might involve parsing an array, checking if the key exists, providing a default

value if it does not, and handling potential errors. In Laravel, the same operation

looks like this:

$appName = config('app.name', 'My Application');

This single line reads the name value from the app configuration file and returns

'My Application' as a default if the value is not found. It is clean, readable, and

immediately understandable even to someone who has never seen Laravel before.

This principle of expressiveness and clarity runs through every aspect of the frame-

work.

Another example involves database queries. In raw PHP with PDO, fetching all

active users ordered by their name requires several lines of code involving pre-

10

pared statements, parameter binding, and result fetching. In Laravel, the same op-

eration reads like this:

$users = User::where('active', true)->orderBy('name')->get();

This is not just shorter. It is more readable, more maintainable, and less prone to er-

rors. The Eloquent ORM, which powers this syntax, handles SQL injection preven-

tion, connection management, and result hydration behind the scenes. You ex-

press what you want, and Laravel figures out how to do it.

The Ecosystem That Surrounds Laravel
One of the most compelling reasons to choose Laravel is not the framework itself

but the ecosystem that has grown around it. Laravel is not just a framework. It is a

complete platform for building, deploying, and managing web applications. Un-

derstanding this ecosystem is crucial because it means that as your needs grow,

Laravel has tools ready to meet them.

Tool Purpose Description

Laravel Forge Server Management Provisions and manages servers
on cloud providers like DigitalO-
cean, AWS, and Linode

Laravel Vapor Serverless Deployment Deploys Laravel applications to
AWS Lambda for auto-scaling
serverless architecture

Laravel Envoyer Zero-Downtime Deployment Handles deployment pipelines
with zero downtime for produc-
tion applications

Laravel Nova Administration Panel A beautifully designed admin pan-
el that integrates deeply with Elo-
quent models

11

Laravel Horizon Queue Monitoring Provides a dashboard for monitor-
ing Redis-powered queues

Laravel Telescope Debug Assistant Offers deep insight into requests,
exceptions, queries, and more
during development

Laravel Sanctum API Authentication Lightweight authentication system
for single-page applications and
simple APIs

Laravel Breeze Starter Kit Minimal authentication scaffolding
with Blade, Vue, or React

Laravel Jetstream Starter Kit Full-featured authentication scaf-
folding with teams, two-factor
auth, and more

Laravel Sail Docker Environment A lightweight command-line inter-
face for interacting with Laravel's
Docker configuration

Laravel Pint Code Style An opinionated PHP code style fix-
er built on top of PHP-CS-Fixer

Laravel Cashier Billing Provides an expressive interface to
Stripe and Paddle subscription
billing services

Laravel Scout Full-Text Search Adds full-text search capability to
Eloquent models using Algolia,
Meilisearch, or others

Laravel Socialite OAuth Authentication Handles authentication with Face-
book, Twitter, Google, GitHub, and
other OAuth providers

This ecosystem means that when you learn Laravel, you are not learning an isolated

tool. You are entering a world where common application needs, from payment

processing to real-time broadcasting to full-text search, have first-party solutions

that integrate seamlessly with the framework. This reduces the time you spend

evaluating third-party packages, reading incompatible documentation, and gluing

disparate tools together.

12

The Community and Learning Re-
sources
A framework is only as strong as the community behind it, and Laravel has one of

the largest and most active communities in the PHP world. This matters for practical

reasons. When you encounter a problem, the likelihood that someone else has en-

countered and solved the same problem is high. When you search for a solution,

you find blog posts, forum discussions, video tutorials, and Stack Overflow answers

in abundance.

The official Laravel documentation is widely regarded as some of the best doc-

umentation in the open-source world. It is written in clear, accessible language, up-

dated with every release, and filled with practical code examples that you can use

directly in your projects. This is not accidental. The Laravel team considers docu-

mentation a first-class concern, not an afterthought.

Beyond the official documentation, the Laravel community produces an ex-

traordinary volume of educational content. Laracasts, a video tutorial platform cre-

ated by Jeffrey Way, offers thousands of screencasts covering Laravel and related

technologies. The platform has become so popular that many developers consider

it an essential companion to the official documentation. Conferences like Laracon

bring developers together from around the world to share knowledge, techniques,

and inspiration.

The community also contributes thousands of open-source packages through

Composer, PHP's dependency manager. The Packalyst website catalogs these

packages, making it easy to find solutions for nearly any requirement. Need to gen-

erate PDF files? There is a Laravel package for that. Need to implement role-based

access control? There are several well-maintained packages to choose from. Need

to add multi-tenancy to your application? The community has you covered.

13

The Architecture That Makes Laravel
Powerful
Laravel follows the Model-View-Controller architectural pattern, commonly known

as MVC. This pattern separates your application into three distinct layers, each with

a clear responsibility.

The Model layer represents your data and business logic. In Laravel, models

are PHP classes that correspond to database tables. They define relationships be-

tween data, contain validation rules, and encapsulate the business rules that gov-

ern how your data behaves. When you create a User model in Laravel, it automati-

cally knows how to interact with the users table in your database, how to create

new records, how to update existing ones, and how to define relationships with

other models.

The View layer handles the presentation of data to the user. Laravel uses a

templating engine called Blade, which allows you to write clean, readable tem-

plates that combine HTML with simple PHP directives. Blade templates are com-

piled into plain PHP and cached for performance, meaning that the elegance of

the syntax comes with no performance penalty.

The Controller layer acts as the intermediary between models and views. Con-

trollers receive incoming HTTP requests, interact with models to retrieve or modify

data, and return responses, usually in the form of rendered views. They are the traf-

fic directors of your application, coordinating the flow of data between the user in-

terface and the database.

This separation of concerns is not unique to Laravel, but Laravel implements it

in a way that feels natural and unforced. You never feel like you are fighting the

framework to organize your code properly. The directory structure, naming con-

ventions, and built-in tools all guide you toward clean architecture without requir-

ing you to read a textbook on design patterns.

14

Beyond MVC, Laravel incorporates several other architectural patterns that

contribute to its power and flexibility. The Service Container, which we will explore

in detail in later chapters, provides a powerful dependency injection system that

makes your code modular and testable. The Facade pattern gives you a conve-

nient, static-like syntax for accessing services while maintaining the testability of

dependency injection. The middleware system allows you to filter HTTP requests

entering your application, providing a clean mechanism for authentication, log-

ging, CORS handling, and more.

What You Will Build With Laravel
To make this learning journey concrete, let us consider the types of applications

that Laravel excels at building. Laravel is a general-purpose web framework, mean-

ing it can handle virtually any web application you can imagine, but it particularly

shines in certain areas.

Content management systems, e-commerce platforms, social networks, SaaS

applications, REST APIs, real-time applications with WebSockets, job boards, learn-

ing management systems, project management tools, and customer relationship

management systems are all well within Laravel's capabilities. Companies of all

sizes use Laravel in production, from solo developers building their first SaaS prod-

uct to large enterprises managing millions of users.

Throughout this book, we will build progressively complex applications that ex-

ercise different aspects of the framework. You will start with simple routes and

views, progress to database-driven applications with full CRUD operations, imple-

ment authentication and authorization, build APIs, work with queues and back-

ground jobs, and eventually deploy your application to a production server. Each

chapter builds on the previous one, and by the end, you will have a comprehensive

15

understanding of Laravel and the confidence to build professional-grade ap-

plications.

Setting Expectations for This Book
This book assumes that you have a working knowledge of PHP. You should be com-

fortable with variables, arrays, functions, classes, and basic object-oriented pro-

gramming concepts. You do not need to be an expert, but you should be able to

read and write PHP code without constantly referring to the language documenta-

tion.

You should also have a basic understanding of HTML, CSS, and how web ap-

plications work at a high level. You should know what HTTP requests and respons-

es are, what a database is, and what SQL does, even if you are not proficient in writ-

ing complex queries.

If you are completely new to PHP, I recommend spending some time with the

fundamentals before diving into Laravel. The framework will make much more

sense when you understand the language it is built upon. If you have experience

with another framework, whether in PHP or another language like Ruby on Rails,

Django, or Express.js, you will find many familiar concepts in Laravel, and you may

be able to move through the early chapters more quickly.

Note: Every command, configuration option, and code example in this book is

specific to Laravel. When we discuss concepts that exist in other frameworks or lan-

guages, we always bring the discussion back to how Laravel implements those

concepts. This is a Laravel book through and through.

16

Exercise: Reflecting on Your Develop-
ment Journey
Before we move to the next chapter where we will install Laravel and set up our de-

velopment environment, take a moment to complete this reflective exercise. Write

down your answers to the following questions. They will help you establish a base-

line for your learning and give you something to look back on as you progress

through the book.

1.	 What is the largest PHP application you have built without a framework?

What challenges did you face as it grew in complexity?

2.	 List three repetitive tasks you find yourself doing in every PHP project.

How do you think a framework like Laravel might help with these tasks?

3.	 What type of application do you want to build with Laravel? Be specific

about the features it would need.

4.	 Look at the ecosystem table earlier in this chapter. Which three tools in-

terest you the most, and why?

5.	 On a scale of one to ten, how comfortable are you with object-oriented

PHP? This will help you gauge how much additional study you might

need alongside this book.

There are no right or wrong answers to these questions. They are designed to acti-

vate your thinking and connect the abstract concepts in this chapter to your per-

sonal experience and goals. Keep your answers somewhere accessible because

we will revisit them at the end of the book to measure how far you have come.

The next chapter marks the beginning of our hands-on work. We will install

PHP, Composer, and Laravel itself. We will explore the directory structure of a fresh

Laravel project, understand what each folder and file does, and run our application

17

for the first time. The philosophy and context from this chapter will come alive as

you see Laravel in action. Let us move forward.

18

Chapter 2: Setting Up Your
Development Environment

Before you can write a single line of Laravel code, you need a properly configured

development environment. This chapter walks you through every step of that

process, from installing the foundational tools to creating your first Laravel project

and understanding the structure of what gets generated. Think of this chapter as

building the workshop before you start crafting furniture. A well-organized, correct-

ly configured environment will save you countless hours of frustration and allow

you to focus on what truly matters: building excellent applications.

Many developers, especially those new to modern PHP development, underes-

timate the importance of this stage. They rush through installations, skip configura-

tion steps, and then spend days debugging problems that have nothing to do with

their application logic. We are going to take a different approach here. We will

move deliberately, understand what each tool does and why it matters, and by the

end of this chapter, you will have a rock-solid foundation on which to build every-

thing that follows in this book.

Understanding the Prerequisites
Laravel is a PHP framework, which means PHP itself is the first and most fundamen-

tal requirement. However, Laravel does not work with just any version of PHP. Each

major release of Laravel specifies a minimum PHP version, and as of Laravel 11,

you need PHP 8.2 or higher. This is not an arbitrary restriction. Laravel takes advan-

19

tage of modern PHP features such as enums, fibers, readonly properties, and inter-

section types that only exist in recent versions of the language.

Beyond PHP itself, Laravel depends on several PHP extensions that must be in-

stalled and enabled. The following table provides a comprehensive overview of

the required and commonly recommended extensions:

Extension Purpose Required

OpenSSL Encryption and secure communication Yes

PDO Database abstraction layer Yes

Mbstring Multibyte string handling for internationalization Yes

Tokenizer PHP code tokenization for Blade templates Yes

XML XML parsing and generation Yes

Ctype Character type checking Yes

JSON JSON encoding and decoding Yes

BCMath Arbitrary precision mathematics Yes

Fileinfo File type detection Yes

cURL HTTP requests to external services Recommended

GD or Imagick Image manipulation Recommended

Zip Archive handling for package management Recommended

You can verify which extensions are currently installed on your system by running

the following command in your terminal:

php -m

This will output a list of all loaded PHP modules. To check your current PHP version,

use:

php -v

20

The output should show something like PHP 8.2.x or higher. If your version is

older, you will need to upgrade before proceeding.

The second critical tool is Composer, the dependency manager for PHP. If you

have worked with Node.js, think of Composer as the PHP equivalent of npm. It han-

dles downloading packages, resolving dependency trees, and autoloading classes.

Laravel itself is installed through Composer, and virtually every third-party package

you will use in your Laravel projects is managed by it.

To install Composer, visit the official website at getcomposer.org and follow

the installation instructions for your operating system. On macOS and Linux, the

process typically looks like this:

php -r "copy('https://getcomposer.org/installer', 'composer-

setup.php');"

php composer-setup.php

php -r "unlink('composer-setup.php');"

sudo mv composer.phar /usr/local/bin/composer

After installation, verify that Composer is accessible globally:

composer --version

You should see output indicating the Composer version, such as Composer ver-

sion 2.7.x. Make sure you are running Composer 2, as it offers significant per-

formance improvements over the original version.

A database server is the third essential component. Laravel supports multiple

database systems out of the box, including MySQL, PostgreSQL, SQLite, and SQL

Server. For local development, SQLite is the simplest option because it requires no

separate server process and stores the entire database in a single file. However, if

your production environment will use MySQL or PostgreSQL, it is wise to develop

against the same database engine to avoid subtle compatibility issues. The follow-

ing table summarizes the supported databases:

21

Database Default Port Best For

SQLite N/A (file-based) Quick prototyping, small applications, testing

MySQL 3306 General web applications, widely supported hosting

PostgreSQL 5432 Complex queries, advanced data types, enterprise
applications

SQL Server 1433 Enterprise environments with Microsoft infrastructure

Finally, you need Node.js and npm for frontend asset compilation. Even if you are

building a purely API-driven application, Laravel's default scaffolding includes Vite

for asset bundling, and many development commands expect Node.js to be

present. Install the LTS (Long Term Support) version from nodejs.org:

node -v

npm -v

Installing Laravel Using Composer
With all prerequisites in place, you are ready to install Laravel. There are two prima-

ry methods for creating a new Laravel project, and understanding both is impor-

tant.

The first and most straightforward method uses the composer create-

project command. This tells Composer to download the Laravel project skeleton

along with all its dependencies:

composer create-project laravel/laravel my-first-app

Let us break down this command piece by piece. The create-project directive

tells Composer you want to create a new project from a package template. The

laravel/laravel argument specifies the package to use as the template, which

22

is the official Laravel application skeleton. The my-first-app argument is the

name of the directory that will be created to hold your project. You can name this

anything you like.

This command will take a minute or two depending on your internet connec-

tion. Composer downloads the Laravel skeleton, resolves all dependencies, down-

loads those as well, and then runs post-installation scripts that generate your appli-

cation key and set up initial configuration.

The second method involves installing the Laravel Installer globally, which pro-

vides a dedicated laravel command:

composer global require laravel/installer

After this, make sure your global Composer vendor bin directory is in your system

PATH. On macOS and Linux, add this to your shell profile:

export PATH="$HOME/.composer/vendor/bin:$PATH"

On Windows, the path is typically %USERPROFILE%\AppData\Roaming\Compos-

er\vendor\bin. Once configured, you can create new projects with:

laravel new my-first-app

The Laravel installer provides an interactive experience that asks you several ques-

tions about how you want to configure your project. It will prompt you to choose a

starter kit (such as Breeze or Jetstream for authentication scaffolding), your pre-

ferred testing framework (Pest or PHPUnit), your database engine, and whether you

want to initialize a Git repository. For now, you can accept the defaults or choose

"None" for the starter kit, as we will explore those options in later chapters.

Regardless of which method you choose, the end result is the same: a fully

functional Laravel application in your specified directory.

23

A note about version selection: If you need a specific version of Laravel, you

can specify it with the Composer method:

composer create-project laravel/laravel my-first-app "11.*"

This ensures you get the latest patch release within the Laravel 11 series.

Choosing a Local Development Server
Once your project is created, you need a way to serve it locally. Laravel provides

several options, each with different levels of complexity and capability.

The simplest option is Laravel's built-in development server, which you can

start with the Artisan command:

cd my-first-app

php artisan serve

This starts a lightweight PHP development server on http://localhost:8000.

The terminal will display a message confirming the server is running, and you can

visit that URL in your browser to see the Laravel welcome page. This server is per-

fectly adequate for learning and simple development, but it handles only one re-

quest at a time, making it unsuitable for testing concurrent operations.

For a more robust local development experience, Laravel offers several official

tools. The most prominent among them are Laravel Herd and Laravel Sail.

Laravel Herd is a native desktop application available for macOS and Win-

dows. It bundles PHP, Nginx, and other services into a single, easy-to-manage ap-

plication. Herd requires no Docker knowledge and provides a seamless experience

where your Laravel sites are automatically available at http://your-project-

name.test. Installation is as simple as downloading the application from herd.lar-

avel.com and running the installer.

24

Laravel Sail is a Docker-based development environment that comes pre-con-

figured with your Laravel project. If you are comfortable with Docker or want an en-

vironment that closely mirrors a production server, Sail is an excellent choice. To set

up Sail with a new project:

cd my-first-app

composer require laravel/sail --dev

php artisan sail:install

The installer will ask which services you want to include, such as MySQL, Postgre-

SQL, Redis, Memcached, MeiliSearch, MinIO, and Mailpit. Select the ones relevant

to your project. Once installed, start the environment with:

./vendor/bin/sail up

This command downloads the necessary Docker images and starts all selected ser-

vices. Your application becomes available at http://localhost. To run Artisan

commands within the Sail environment, prefix them with sail:

./vendor/bin/sail artisan migrate

./vendor/bin/sail composer require some/package

./vendor/bin/sail npm install

The following table compares these development server options:

Feature php artisan serve Laravel Herd Laravel Sail

Setup Complexity Minimal Low Medium

Requires Docker No No Yes

Multiple Sites No Yes Yes (with configura-
tion)

Database Included No Optional Yes

Redis/Queue Support No Optional Yes

Production Parity Low Medium High

25

Performance Good Excellent Good

Custom PHP Version System PHP Bundled versions Docker-based versions

For beginners following this book, php artisan serve is perfectly sufficient to

get started. As your projects grow more complex, consider transitioning to Herd or

Sail.

Exploring the Laravel Directory Struc-
ture
Navigate into your newly created project directory and take a careful look at what

was generated. Understanding the directory structure is essential because Laravel

follows a convention-over-configuration philosophy, and knowing where things be-

long will make you dramatically more productive.

my-first-app/

 app/

 bootstrap/

 config/

 database/

 public/

 resources/

 routes/

 storage/

 tests/

 vendor/

 .env

 artisan

 composer.json

 package.json

 vite.config.js

