
1

Kubernetes Networking &
Service Mesh

Designing Secure, Scalable, and Ob-
servable Network Architectures for
Cloud-Native Systems

2

Preface

Kubernetes has fundamentally transformed how we build, deploy, and operate

software at scale. Yet for all the attention given to container orchestration, pod

scheduling, and declarative workload management, there is one domain that re-

mains persistently challenging—and persistently misunderstood: networking.

In a Kubernetes cluster, every pod must communicate. Every service must be

discoverable. Every byte of traffic must be routed, secured, and observed. The net-

working layer is not a peripheral concern; it is the connective tissue that holds

cloud-native systems together. When it works, it is invisible. When it fails, every-

thing fails.

This book exists because Kubernetes networking deserves more than a single

chapter in a general-purpose guide. It deserves deep, focused, and practical treat-

ment.

Why This Book
Over the past several years, I've watched teams adopt Kubernetes with enthusiasm

—only to hit a wall when confronted with the realities of network policies, ingress

configuration, CNI plugin selection, and the decision of whether to introduce a ser-

vice mesh. The documentation is scattered. The mental models are incomplete.

The gap between "my pods are running" and "my system is production-ready, se-

cure, and observable" is vast, and it is almost entirely a networking gap.

Kubernetes Networking & Service Mesh was written to close that gap. Whether

you are a platform engineer hardening a multi-tenant cluster, a developer trying to

3

understand why your service can't reach its dependency, or a networking profes-

sional transitioning into the cloud-native world, this book meets you where you are

and takes you further than you expected to go.

What You Will Learn
The book is organized into a deliberate progression across sixteen chapters and

five appendices, moving from foundational concepts to production-grade archi-

tectures:

-	 Chapters 1–4 establish the core Kubernetes networking model—how

pods communicate, how CNI plugins implement that model, how Kuber-

netes Services abstract network endpoints, and how ingress controllers

manage external traffic.

-	 Chapters 5–8 deepen the focus on security and reliability within Kuber-

netes, covering network policies, pod-to-pod encryption, load balancing

strategies, and the critical role of DNS and service discovery.

-	 Chapters 9–13 introduce the service mesh paradigm, exploring traffic

management, mutual TLS, authorization policies, and observability—all

within the context of Kubernetes workloads.

-	 Chapters 14–16 address the realities of running these systems in pro-

duction, including performance tuning, scaling considerations, and a

forward-looking chapter for professionals evolving from traditional net-

working roles into cloud-native architecture.

-	 Appendices A–E provide immediately usable references: cheat sheets,

network policy templates, service mesh configuration examples, trou-

bleshooting checklists, and a roadmap for continued learning.

4

Every concept is grounded in Kubernetes. Every example assumes a Kubernetes

environment. This is not a book about networking in the abstract—it is a book about

networking as Kubernetes demands it.

How to Read This Book
You can read sequentially for a comprehensive education, or jump directly to the

chapters that address your immediate challenges. The appendices are designed to

live next to your terminal. Use them often.

Acknowledgments
No technical book is written in isolation. I owe a debt of gratitude to the Kuber-

netes community—the contributors, maintainers, and practitioners who have built

and documented an extraordinary ecosystem. I am equally grateful to the early re-

viewers and technical editors whose sharp eyes and honest feedback made every

chapter stronger. To my family and colleagues who endured my late nights and

endless whiteboard diagrams of packet flows: thank you.

A Final Word Before We Begin
Kubernetes networking is not easy. But it is learnable, and once learned, it be-

comes one of the most powerful levers you have for building systems that are se-

cure, scalable, and truly observable. That understanding starts here.

Let's get into it.

Dorian Thorne

5

Table of Contents

Chapter Title Page

1 Kubernetes Networking Model Explained 6

2 Container Network Interfaces (CNI) 22

3 Kubernetes Services Deep Dive 38

4 Ingress and External Traffic 57

5 Network Policies 79

6 Securing Pod Communication 96

7 Load Balancing Strategies 111

8 DNS and Service Discovery 126

9 What Is a Service Mesh? 143

10 Traffic Management with Service Mesh 158

11 Mutual TLS (mTLS) 175

12 Authorization and Policy Enforcement 192

13 Monitoring Service Mesh Traffic 210

14 Performance Tuning and Scaling 226

15 Service Mesh in Production 245

16 From Networking Engineer to Cloud-Native Architect 261

App Kubernetes Networking Cheat Sheet 277

App Network Policy Templates 297

App Service Mesh Configuration Examples 318

App Troubleshooting Checklist 337

App Cloud-Native Networking Roadmap 350

6

Chapter 1: Kubernetes Net-
working Model Explained

Networking is the backbone of any distributed system, and Kubernetes is no ex-

ception. When you deploy applications on Kubernetes, every Pod, every Service,

and every node must communicate seamlessly. Yet the networking model that

makes this possible is one of the most misunderstood aspects of the entire plat-

form. This chapter takes you on a thorough journey through the Kubernetes net-

working model, starting from the fundamental principles and building up to the

practical realities of how packets traverse a cluster. By the end of this chapter, you

will have a solid mental model of how Kubernetes networking works, why it was

designed the way it was, and how the various components interact to deliver reli-

able connectivity.

Understanding Kubernetes networking is not optional knowledge for anyone

operating or developing on the platform. Whether you are a developer deploying

microservices, a platform engineer building internal developer platforms, or a net-

work engineer integrating Kubernetes into your existing infrastructure, the net-

working model affects everything you do. Misunderstanding it leads to misconfigu-

rations, security vulnerabilities, and hours of painful debugging. Understanding it

well, on the other hand, gives you the confidence to design robust, scalable, and

secure architectures.

7

The Foundational Principles of Kuber-
netes Networking
Before diving into the mechanics, it is essential to understand the design philoso-

phy that guides Kubernetes networking. The Kubernetes networking model was

built on a set of deliberate principles that distinguish it from traditional container

networking approaches, such as those used in early Docker deployments where

port mapping and network address translation were the norm.

Kubernetes establishes three fundamental networking requirements that every

cluster implementation must satisfy:

First Requirement: Every Pod gets its own unique IP address. In Kuber-

netes, each Pod is assigned a unique IP address within the cluster. This is not a

shared IP with port-based multiplexing. Each Pod operates as if it were a stand-

alone host on the network, with its own network namespace and its own IP. This de-

sign decision was intentional. It eliminates the complexity of port mapping and

makes it straightforward for applications to discover and communicate with each

other.

Second Requirement: Pods on any node can communicate with Pods on

any other node without NAT. This is perhaps the most important principle. Re-

gardless of which node a Pod is running on, it must be able to reach any other Pod

in the cluster using that Pod's IP address directly. There is no network address

translation in between. The IP address that a Pod sees as its own is the same IP ad-

dress that every other Pod in the cluster sees when communicating with it. This flat

networking model dramatically simplifies application design because applications

do not need to be aware of the underlying infrastructure topology.

Third Requirement: Agents on a node can communicate with all Pods on

that node. System daemons and agents, such as the kubelet, must be able to com-

8

municate with Pods running on the same node. This ensures that node-level ser-

vices can interact with workloads without restriction.

These three requirements together create what is often called a "flat network"

model. Every Pod can reach every other Pod, and the IP addresses are consistent

and routable across the cluster. This is a significant departure from the Docker de-

fault networking model, where containers on different hosts could not communi-

cate without explicit port forwarding or overlay configurations.

The following table summarizes the key differences between the traditional

Docker networking approach and the Kubernetes networking model:

Aspect Traditional Docker Net-
working

Kubernetes Networking
Model

IP Assignment Containers share the host
IP; ports are mapped

Each Pod receives a
unique cluster-wide IP

Cross-Host Communica-
tion

Requires explicit port map-
ping or overlay setup

Pods communicate directly
without NAT

Port Conflicts Applications must avoid
port conflicts on the host

Each Pod has its own port
namespace

Service Discovery Manual or requires exter-
nal tooling

Built into the platform via
DNS and Services

Network Complexity High due to port transla-
tion layers

Simplified flat network
model

Application Awareness Applications may need to
know mapped ports

Applications use standard
ports freely

This flat networking model is not implemented by Kubernetes itself. Instead, Ku-

bernetes defines the requirements and delegates the actual implementation to a

Container Network Interface (CNI) plugin. This is a critical architectural decision

that we will explore in detail later in this chapter.

9

Pod Networking in Depth
To truly understand Kubernetes networking, you need to understand what hap-

pens at the Pod level. A Pod is the smallest deployable unit in Kubernetes, and it

can contain one or more containers. All containers within a single Pod share the

same network namespace. This means they share the same IP address, the same

set of network interfaces, and the same port space.

When a Pod is created, Kubernetes (through the container runtime and the CNI

plugin) creates a new network namespace for that Pod. A virtual ethernet pair

(commonly called a veth pair) is created: one end is placed inside the Pod's net-

work namespace, and the other end is attached to a network bridge or virtual

switch on the host node. The Pod's end of the veth pair is typically named eth0 in-

side the Pod, and it is assigned the Pod's unique IP address.

Let us look at this practically. If you exec into a running Pod and inspect its net-

work interfaces, you will see something like this:

kubectl exec -it my-pod -- ip addr show

The output will typically show:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state

UNKNOWN

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 scope host lo

 valid_lft forever preferred_lft forever

3: eth0@if7: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc

noqueue state UP

 link/ether 02:42:0a:f4:00:05 brd ff:ff:ff:ff:ff:ff

 inet 10.244.0.5/24 scope global eth0

 valid_lft forever preferred_lft forever

Here you can see the loopback interface and the eth0 interface with the Pod's as-

signed IP address (10.244.0.5 in this example). The @if7 notation indicates that

10

this is one end of a veth pair, with the other end being interface index 7 on the

host.

When multiple containers run within the same Pod, they communicate with

each other over localhost. For example, if one container runs a web server on

port 8080 and another container in the same Pod needs to access it, it simply con-

nects to 127.0.0.1:8080. This is because they share the same network name-

space. This shared namespace is actually created by a special "pause" container

(sometimes called the infrastructure container) that is started before any of the ap-

plication containers. The pause container's sole purpose is to hold the network

namespace open so that application containers can join it.

The following table describes the networking behavior within and between

Pods:

Communication
Path

Mechanism NAT Required Example

Container to contain-
er within the same
Pod

Localhost (127.0.0.1) No App container calling
sidecar on local-
host:9090

Pod to Pod on the
same node

Virtual bridge or di-
rect routing

No Pod A (10.244.0.5) to
Pod B (10.244.0.6)

Pod to Pod on differ-
ent nodes

Overlay network or
direct routing via CNI

No Pod on Node 1
(10.244.0.5) to Pod
on Node 2
(10.244.1.3)

Pod to external ser-
vice

Node's network inter-
face with SNAT

Yes (typically) Pod accessing an ex-
ternal API endpoint

External client to Pod NodePort, LoadBal-
ancer, or Ingress

Yes (typically) Browser accessing a
web application

11

Node-Level Networking and How Pods
Communicate Across Nodes
Each node in a Kubernetes cluster is assigned a subnet (a CIDR block) from which

Pod IP addresses are allocated. For example, Node 1 might be assigned the range

10.244.0.0/24, Node 2 might get 10.244.1.0/24, and so on. When a Pod is sched-

uled on a particular node, it receives an IP from that node's allocated range.

Communication between Pods on the same node is relatively straightforward.

The veth pairs from each Pod connect to a common bridge (such as cbr0 or cni0),

and traffic between Pods is routed through this bridge. The bridge acts like a virtual

switch, forwarding frames between the connected veth interfaces based on MAC

addresses.

Cross-node communication is where things become more interesting and

where the CNI plugin plays its crucial role. When Pod A on Node 1 wants to send a

packet to Pod B on Node 2, the packet must leave Node 1's network namespace,

traverse the physical (or virtual) network between the nodes, and arrive at Node 2

where it is delivered to Pod B. The CNI plugin is responsible for setting up the net-

working infrastructure that makes this possible.

There are generally two approaches to cross-node Pod networking:

Overlay Networking: In this approach, the CNI plugin encapsulates Pod-to-

Pod traffic in an outer packet that uses the node IP addresses. Technologies like

VXLAN, Geneve, or IP-in-IP are commonly used. The original packet (with Pod IP

addresses) is wrapped inside a new packet (with node IP addresses) for transit

across the physical network. When the packet arrives at the destination node, it is

decapsulated and delivered to the target Pod. This approach works well in environ-

ments where you cannot modify the underlying network routing, such as many

cloud environments or legacy data centers. The trade-off is a small overhead due

to encapsulation.

12

Direct Routing: In this approach, the underlying network infrastructure is con-

figured to route Pod subnet traffic directly to the appropriate nodes. This can be

achieved through BGP (Border Gateway Protocol) peering, static routes, or cloud

provider route tables. For example, the network knows that traffic destined for

10.244.1.0/24 should be sent to Node 2's IP address. This approach avoids encap-

sulation overhead and can provide better performance, but it requires more inte-

gration with the underlying network.

To inspect the networking configuration on a node, you can use standard Linux

networking commands:

View the network bridges on a node

ip link show type bridge

View the routing table on a node

ip route show

View the veth pairs

ip link show type veth

View the iptables rules (used for Service networking)

iptables -t nat -L -n -v

Understanding these node-level networking constructs is essential for trou-

bleshooting. When a Pod cannot communicate with another Pod, the problem of-

ten lies in the routing table, the bridge configuration, or the overlay tunnel be-

tween nodes.

The Container Network Interface (CNI)
The Container Network Interface is a specification and a set of libraries for config-

uring network interfaces in Linux containers. Kubernetes uses CNI as its standard

for network plugin integration. When the kubelet needs to set up networking for a

13

new Pod, it calls the configured CNI plugin, which handles all the necessary net-

work plumbing.

The CNI plugin is responsible for:

1.	 Allocating an IP address to the Pod from the node's assigned CIDR

range (IPAM, or IP Address Management).

2.	 Creating the veth pair and placing one end in the Pod's network name-

space.

3.	 Configuring the bridge or routing rules on the host.

4.	 Setting up any overlay tunnels or routing entries needed for cross-node

communication.

5.	 Cleaning up network resources when a Pod is deleted.

CNI configuration is typically stored in /etc/cni/net.d/ on each node, and the

CNI plugin binaries are located in /opt/cni/bin/. A typical CNI configuration file

looks like this:

{

 "cniVersion": "0.4.0",

 "name": "my-network",

 "type": "bridge",

 "bridge": "cni0",

 "isGateway": true,

 "ipMasq": true,

 "ipam": {

 "type": "host-local",

 "subnet": "10.244.0.0/24",

 "routes": [

 { "dst": "0.0.0.0/0" }

]

 }

}

14

This configuration tells the CNI plugin to create a bridge named cni0, assign IP

addresses from the 10.244.0.0/24 subnet using the host-local IPAM plugin, and set

up IP masquerading for outbound traffic.

Several popular CNI plugins are available for Kubernetes, each with different

characteristics:

CNI Plugin Networking Ap-
proach

Key Features Best Suited For

Flannel Overlay (VXLAN) or
host-gw

Simple setup, minimal
configuration

Small to medium clus-
ters, learning environ-
ments

Calico Direct routing (BGP)
or overlay (VXLAN/IP-
in-IP)

Network policies,
high performance,
flexible

Production clusters
requiring network
policies

Cilium eBPF-based data-
plane

Advanced observabil-
ity, security, service
mesh capabilities

Large-scale produc-
tion, security-focused
deployments

Weave Net Overlay (custom pro-
tocol)

Automatic mesh, en-
cryption support

Multi-cloud or hybrid
deployments

AWS VPC CNI Native VPC network-
ing

Pods get VPC IP ad-
dresses, high perfor-
mance

Amazon EKS clusters

Azure CNI Native Azure VNet
networking

Pods get VNet IP ad-
dresses

Azure AKS clusters

Antrea Open vSwitch based VMware integration,
rich feature set

VMware Tanzu envi-
ronments

Choosing the right CNI plugin is one of the most important decisions when setting

up a Kubernetes cluster. The choice affects performance, security capabilities, ob-

servability, and operational complexity.

Note: You can verify which CNI plugin is installed on your cluster by examining

the DaemonSet or Deployment in the kube-system namespace. For example:

15

kubectl get pods -n kube-system | grep -E "calico|flannel|cilium|

weave"

You can also check the CNI configuration directly on a node:

ls /etc/cni/net.d/

cat /etc/cni/net.d/10-flannel.conflist

Cluster DNS and Service Discovery
While Pod IP addresses provide direct connectivity, they are ephemeral. Pods are

created and destroyed frequently, and their IP addresses change each time. Kuber-

netes solves this problem through Services, which provide stable virtual IP address-

es (called ClusterIPs) that front a set of Pods. We will explore Services in depth in

later chapters, but it is important to understand their role in the networking model

at this stage.

Every Kubernetes cluster runs a DNS server (typically CoreDNS) as a cluster

add-on. This DNS server automatically creates DNS records for Services and, op-

tionally, for Pods. When a Pod wants to communicate with a Service, it can use the

Service's DNS name rather than tracking individual Pod IP addresses.

For example, if you have a Service named backend in the production name-

space, any Pod in the cluster can reach it using the DNS name backend.produc-

tion.svc.cluster.local. Pods within the same namespace can use the shorter

form backend.

You can verify DNS resolution from within a Pod:

kubectl exec -it my-pod -- nslookup

backend.production.svc.cluster.local

The output will show the ClusterIP assigned to the Service:

16

Server: 10.96.0.10

Address: 10.96.0.10#53

Name: backend.production.svc.cluster.local

Address: 10.96.45.123

The DNS server address (10.96.0.10 in this example) is configured in each Pod's /

etc/resolv.conf file by the kubelet. You can inspect it:

kubectl exec -it my-pod -- cat /etc/resolv.conf

nameserver 10.96.0.10

search production.svc.cluster.local svc.cluster.local

cluster.local

options ndots:5

The search domains allow short DNS names to be resolved. The ndots:5 option

tells the resolver to append search domains to any name with fewer than 5 dots

before trying the name as an absolute query. This is a common source of confusion

and can impact DNS performance in clusters with high query volumes.

Note: The ndots:5 setting means that a query for api.example.com (which

has only 2 dots) will first try api.example.com.production.svc.cluster.lo-

cal, then api.example.com.svc.cluster.local, then api.example.com.-

cluster.local, and finally api.example.com as an absolute name. This can re-

sult in multiple unnecessary DNS queries for external domain names. You can opti-

mize this by setting ndots:2 in the Pod spec's dnsConfig field or by using fully

qualified domain names (with a trailing dot) in your application configurations.

17

Practical Exercise: Exploring the Ku-
bernetes Networking Model
This exercise will help you observe the networking model in action on a real Kuber-

netes cluster. You will create Pods on different nodes and verify that the networking

principles discussed in this chapter hold true.

Step 1: Create two Pods and ensure they are scheduled on different

nodes.

Create a file named networking-lab.yaml:

apiVersion: v1

kind: Pod

metadata:

 name: pod-alpha

 labels:

 app: networking-lab

spec:

 containers:

 - name: nettools

 image: nicolaka/netshoot

 command: ["sleep", "3600"]

 nodeName: "" # Will be auto-scheduled

apiVersion: v1

kind: Pod

metadata:

 name: pod-beta

 labels:

 app: networking-lab

spec:

 containers:

 - name: nettools

 image: nicolaka/netshoot

 command: ["sleep", "3600"]

 affinity:

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

18

 matchLabels:

 app: networking-lab

 topologyKey: kubernetes.io/hostname

Apply the manifest:

kubectl apply -f networking-lab.yaml

Step 2: Verify the Pods are running on different nodes and note their IP ad-

dresses.

kubectl get pods -o wide

You should see output similar to:

NAME READY STATUS RESTARTS AGE IP NODE

pod-alpha 1/1 Running 0 30s 10.244.0.12

node-1

pod-beta 1/1 Running 0 30s 10.244.1.8

node-2

Step 3: Test Pod-to-Pod communication across nodes.

From pod-alpha, ping pod-beta using its IP address

kubectl exec pod-alpha -- ping -c 3 10.244.1.8

You should see successful ping responses, confirming that cross-node Pod com-

munication works without NAT.

Step 4: Verify that the source IP is preserved (no NAT).

Start a TCP listener on pod-beta

kubectl exec pod-beta -- nc -l -p 8080 &

Connect from pod-alpha and check the source IP seen by pod-beta

kubectl exec pod-alpha -- sh -c "echo hello | nc 10.244.1.8 8080"

Step 5: Inspect the network configuration inside a Pod.

kubectl exec pod-alpha -- ip addr show

kubectl exec pod-alpha -- ip route show

19

kubectl exec pod-alpha -- cat /etc/resolv.conf

Step 6: Clean up.

kubectl delete -f networking-lab.yaml

This exercise demonstrates the core principles of the Kubernetes networking mod-

el: unique Pod IPs, direct cross-node communication without NAT, and DNS-based

service discovery.

Common Networking Troubleshooting
Approaches
When networking issues arise in a Kubernetes cluster, having a systematic ap-

proach to diagnosis is invaluable. The following table outlines common symptoms,

their likely causes, and the commands you can use to investigate:

Symptom Likely Cause Investigation Commands

Pod cannot reach another
Pod on the same node

Bridge misconfiguration or
CNI issue

ip link show type
bridge, brctl show,
check CNI logs

Pod cannot reach Pods on
other nodes

Overlay tunnel or routing
issue

ip route show, check
CNI pod logs, verify node-
to-node connectivity

DNS resolution fails inside
Pods

CoreDNS not running or
misconfigured

kubectl get pods -n
kube-system -l k8s-
app=kube-dns, kubectl
logs on CoreDNS pods

Service ClusterIP not
reachable

kube-proxy misconfigura-
tion or iptables issues

iptables -t nat -L
-n, ipvsadm -Ln (if using
IPVS mode), check kube-
proxy logs

20

Intermittent connectivity MTU mismatch in overlay
network

Check MTU settings on
Pod interfaces and overlay
tunnels, compare with
node MTU

Pod can reach cluster re-
sources but not external
internet

Missing IP masquerade
rules or network policy
blocking egress

iptables -t nat -L
POSTROUTING -n, check
NetworkPolicy resources

Note: The nicolaka/netshoot container image used in the exercise above is an

excellent troubleshooting tool. It includes utilities like ping, traceroute, dig,

nslookup, curl, tcpdump, iperf, netstat, and many others. Keeping a trou-

bleshooting Pod available in your cluster can save significant time when diagnos-

ing network issues.

Quick troubleshooting Pod

kubectl run netshoot --rm -it --image=nicolaka/netshoot -- /bin/

bash

Summary and Looking Ahead
This chapter has laid the groundwork for understanding Kubernetes networking.

You have learned that the Kubernetes networking model is built on the principle of

a flat network where every Pod gets a unique IP address and can communicate di-

rectly with any other Pod without network address translation. You have seen how

this is implemented at the Pod level through network namespaces and veth pairs,

at the node level through bridges and routing, and across nodes through CNI plu-

gins that provide either overlay networking or direct routing.

You have also explored how DNS and service discovery fit into this model, pro-

viding stable names for ephemeral workloads. And you have gained practical ex-

perience inspecting and verifying the networking model on a live cluster.

21

In the chapters that follow, we will build on this foundation. We will explore Ku-

bernetes Services in detail, examining how ClusterIP, NodePort, and LoadBalancer

services work under the hood. We will dive into Ingress controllers and how exter-

nal traffic enters the cluster. We will examine Network Policies for securing Pod-to-

Pod communication. And ultimately, we will explore service mesh architectures that

add sophisticated traffic management, security, and observability capabilities on

top of this networking foundation.

Every concept in the chapters ahead depends on the networking model de-

scribed here. Take the time to internalize these principles, experiment with the ex-

ercises, and build your intuition for how packets flow through a Kubernetes cluster.

That intuition will serve you well as we tackle increasingly complex networking sce-

narios.

22

Chapter 2: Container Net-
work Interfaces (CNI)

Every Kubernetes cluster, no matter how small or large, depends on a functioning

network to connect its Pods, Services, and external clients. At the heart of this net-

working layer lies a specification that many administrators interact with daily yet

rarely examine in depth: the Container Network Interface, or CNI. This chapter

takes you on a thorough journey through the CNI specification, its architecture, the

way Kubernetes leverages it, and the practical considerations you must weigh

when choosing and configuring a CNI plugin for production workloads. By the end

of this chapter, you will not only understand how CNI works under the hood but

also possess the hands-on knowledge to install, configure, troubleshoot, and com-

pare the most widely adopted CNI plugins in the Kubernetes ecosystem.

The Origin and Purpose of CNI
Before Kubernetes existed in its current form, container runtimes such as Docker

handled networking internally. Each runtime implemented its own networking

model, which created fragmentation. If you moved from one orchestrator to anoth-

er, or even from one container runtime to another, your networking configuration

and assumptions would break. The Cloud Native Computing Foundation recog-

nized this problem early and supported the development of a standard interface

that any container runtime or orchestrator could use to configure network connec-

tivity for containers.

23

The Container Network Interface specification emerged as that standard. CNI

defines a simple contract between the container runtime and a network plugin.

The runtime calls the plugin when a container is created or destroyed, and the

plugin is responsible for attaching or detaching the container to or from the net-

work. This separation of concerns is powerful: Kubernetes does not need to know

the details of how IP addresses are assigned, how routes are configured, or how

overlay networks are constructed. It simply calls the CNI plugin and trusts it to do

the right thing.

The CNI specification itself is deliberately minimal. It defines a set of opera-

tions, a configuration format, and a set of expected behaviors. This minimalism is

intentional because it allows plugin authors tremendous flexibility in how they im-

plement networking. Whether a plugin uses VXLAN tunnels, BGP peering, eBPF

programs, or simple Linux bridges, it can conform to the CNI specification as long

as it fulfills the basic contract.

Understanding the CNI Specification
The CNI specification revolves around a few core concepts that every Kubernetes

administrator should internalize. At its most fundamental level, CNI is a set of Go li-

braries and a specification for how executables (plugins) are invoked by a contain-

er runtime.

When the kubelet on a Kubernetes node needs to set up networking for a new

Pod, it does not do so directly. Instead, it delegates this task to the container run-

time (such as containerd or CRI-O), which in turn invokes the configured CNI plug-

in. The plugin receives information about the container through environment vari-

ables and a JSON configuration passed via standard input.

The specification defines the following primary operations:

24

Operation Description When It Is Called

ADD Attaches a container to a network,
assigns an IP address, and sets up
necessary routes and interfaces

When a new Pod sandbox is creat-
ed on the node

DEL Removes a container from a net-
work, releases the IP address, and
cleans up interfaces and routes

When a Pod sandbox is being de-
stroyed on the node

CHECK Verifies that the container network-
ing is still correctly configured and
functional

Periodically or on demand to vali-
date network health

VERSION Reports the CNI specification ver-
sions that the plugin supports

During initialization to ensure com-
patibility

The ADD operation is the most critical. When called, the plugin must create a virtu-

al ethernet (veth) pair, place one end inside the container network namespace, as-

sign an IP address from the configured range, set up default routes inside the con-

tainer, and optionally configure the host side of the connection. The plugin then re-

turns a JSON result to the runtime that includes the assigned IP address, the gate-

way, and any DNS configuration.

The configuration file for a CNI plugin is typically stored in /etc/cni/net.d/

on each node. The kubelet reads the configuration files from this directory and

uses them to determine which plugin to invoke. A simple configuration file might

look like this:

{

 "cniVersion": "1.0.0",

 "name": "my-cluster-network",

 "type": "bridge",

 "bridge": "cni0",

 "isGateway": true,

 "ipMasq": true,

 "ipam": {

 "type": "host-local",

 "subnet": "10.244.1.0/24",

25

 "routes": [

 { "dst": "0.0.0.0/0" }

]

 }

}

In this configuration, the type field tells the runtime which plugin binary to exe-

cute. The binary must be located in the CNI binary directory, which is typically /

opt/cni/bin/. The ipam block specifies how IP address management is handled.

In this case, the host-local IPAM plugin manages a local subnet and assigns ad-

dresses from it.

Note: The CNI plugin binaries are standalone executables. They are not long-

running daemons. Each time a Pod is created or destroyed, the binary is invoked,

performs its work, and exits. Some CNI solutions do run additional daemons for co-

ordination and route distribution, but the CNI plugin itself is always an executable

that follows the invoke-and-exit pattern.

How Kubernetes Invokes CNI Plugins
Understanding the exact sequence of events when a Pod is scheduled to a node

helps demystify the networking layer. Let us walk through the process step by step.

First, the Kubernetes scheduler assigns a Pod to a specific node. The kubelet

on that node receives the Pod specification and begins the process of creating the

Pod sandbox. The sandbox is a pause container that holds the network namespace

for all containers in the Pod.

Second, the kubelet instructs the container runtime (for example, containerd)

to create the sandbox. The runtime creates a new network namespace for the

sandbox.

