Kubernetes Networking &
Service Mesh

Designing Secure, Scalable, and Ob-
servable Network Architectures for
Cloud-Native Systems

Preface

Kubernetes has fundamentally transformed how we build, deploy, and operate
software at scale. Yet for all the attention given to container orchestration, pod
scheduling, and declarative workload management, there is one domain that re-
mains persistently challenging—and persistently misunderstood: networking.

In a Kubernetes cluster, every pod must communicate. Every service must be
discoverable. Every byte of traffic must be routed, secured, and observed. The net-
working layer is not a peripheral concern; it is the connective tissue that holds
cloud-native systems together. When it works, it is invisible. When it fails, every-
thing fails.

This book exists because Kubernetes networking deserves more than a single
chapter in a general-purpose guide. It deserves deep, focused, and practical treat-

ment.

Why This Book

Over the past several years, I've watched teams adopt Kubernetes with enthusiasm
—only to hit a wall when confronted with the realities of network policies, ingress
configuration, CNI plugin selection, and the decision of whether to introduce a ser-
vice mesh. The documentation is scattered. The mental models are incomplete.
The gap between "my pods are running" and "my system is production-ready, se-
cure, and observable" is vast, and it is almost entirely a networking gap.
Kubernetes Networking & Service Mesh was written to close that gap. Whether

you are a platform engineer hardening a multi-tenant cluster, a developer trying to

understand why your service can't reach its dependency, or a networking profes-
sional transitioning into the cloud-native world, this book meets you where you are

and takes you further than you expected to go.

What You Will Learn

The book is organized into a deliberate progression across sixteen chapters and
five appendices, moving from foundational concepts to production-grade archi-

tectures:

- Chapters 1-4 establish the core Kubernetes networking model-how
pods communicate, how CNI plugins implement that model, how Kuber-
netes Services abstract network endpoints, and how ingress controllers
manage external traffic.

- Chapters 5-8 deepen the focus on security and reliability within Kuber-
netes, covering network policies, pod-to-pod encryption, load balancing
strategies, and the critical role of DNS and service discovery.

- Chapters 9-13 introduce the service mesh paradigm, exploring traffic
management, mutual TLS, authorization policies, and observability—all
within the context of Kubernetes workloads.

- Chapters 14-16 address the realities of running these systems in pro-
duction, including performance tuning, scaling considerations, and a
forward-looking chapter for professionals evolving from traditional net-
working roles into cloud-native architecture.

- Appendices A-E provide immediately usable references: cheat sheets,
network policy templates, service mesh configuration examples, trou-

bleshooting checklists, and a roadmap for continued learning.

Every concept is grounded in Kubernetes. Every example assumes a Kubernetes
environment. This is not a book about networking in the abstract—it is a book about

networking as Kubernetes demands it.

How to Read This Book

You can read sequentially for a comprehensive education, or jump directly to the
chapters that address your immediate challenges. The appendices are designed to

live next to your terminal. Use them often.

Acknowledgments

No technical book is written in isolation. | owe a debt of gratitude to the Kuber-
netes community—the contributors, maintainers, and practitioners who have built
and documented an extraordinary ecosystem. | am equally grateful to the early re-
viewers and technical editors whose sharp eyes and honest feedback made every
chapter stronger. To my family and colleagues who endured my late nights and

endless whiteboard diagrams of packet flows: thank you.

A Final Word Before We Begin

Kubernetes networking is not easy. But it is learnable, and once learned, it be-
comes one of the most powerful levers you have for building systems that are se-
cure, scalable, and truly observable. That understanding starts here.

Let's getinto it.

Dorian Thorne

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Kubernetes Networking Model Explained
Container Network Interfaces (CNI)
Kubernetes Services Deep Dive
Ingress and External Traffic

Network Policies

Securing Pod Communication

Load Balancing Strategies

DNS and Service Discovery

What Is a Service Mesh?

Traffic Management with Service Mesh
Mutual TLS (mTLS)

Authorization and Policy Enforcement
Monitoring Service Mesh Traffic
Performance Tuning and Scaling

Service Mesh in Production

Page

6
22
38
57
79
96
111
126
143
158
175
192
210
226
245

From Networking Engineer to Cloud-Native Architect 261

Kubernetes Networking Cheat Sheet
Network Policy Templates

Service Mesh Configuration Examples
Troubleshooting Checklist

Cloud-Native Networking Roadmap

277
297
318
337
350

Chapter 1: Kubernetes Net-
working Model Explained

Networking is the backbone of any distributed system, and Kubernetes is no ex-
ception. When you deploy applications on Kubernetes, every Pod, every Service,
and every node must communicate seamlessly. Yet the networking model that
makes this possible is one of the most misunderstood aspects of the entire plat-
form. This chapter takes you on a thorough journey through the Kubernetes net-
working model, starting from the fundamental principles and building up to the
practical realities of how packets traverse a cluster. By the end of this chapter, you
will have a solid mental model of how Kubernetes networking works, why it was
designed the way it was, and how the various components interact to deliver reli-
able connectivity.

Understanding Kubernetes networking is not optional knowledge for anyone
operating or developing on the platform. Whether you are a developer deploying
microservices, a platform engineer building internal developer platforms, or a net-
work engineer integrating Kubernetes into your existing infrastructure, the net-
working model affects everything you do. Misunderstanding it leads to misconfigu-
rations, security vulnerabilities, and hours of painful debugging. Understanding it
well, on the other hand, gives you the confidence to design robust, scalable, and

secure architectures.

The Foundational Principles of Kuber-
netes Networking

Before diving into the mechanics, it is essential to understand the design philoso-
phy that guides Kubernetes networking. The Kubernetes networking model was
built on a set of deliberate principles that distinguish it from traditional container
networking approaches, such as those used in early Docker deployments where
port mapping and network address translation were the norm.

Kubernetes establishes three fundamental networking requirements that every
cluster implementation must satisfy:

First Requirement: Every Pod gets its own unique IP address. In Kuber-
netes, each Pod is assigned a unique IP address within the cluster. This is not a
shared IP with port-based multiplexing. Each Pod operates as if it were a stand-
alone host on the network, with its own network namespace and its own IP. This de-
sign decision was intentional. It eliminates the complexity of port mapping and
makes it straightforward for applications to discover and communicate with each
other.

Second Requirement: Pods on any node can communicate with Pods on
any other node without NAT. This is perhaps the most important principle. Re-
gardless of which node a Pod is running on, it must be able to reach any other Pod
in the cluster using that Pod's IP address directly. There is no network address
translation in between. The IP address that a Pod sees as its own is the same [P ad-
dress that every other Pod in the cluster sees when communicating with it. This flat
networking model dramatically simplifies application design because applications
do not need to be aware of the underlying infrastructure topology.

Third Requirement: Agents on a node can communicate with all Pods on

that node. System daemons and agents, such as the kubelet, must be able to com-

municate with Pods running on the same node. This ensures that node-level ser-
vices can interact with workloads without restriction.

These three requirements together create what is often called a "flat network"
model. Every Pod can reach every other Pod, and the IP addresses are consistent
and routable across the cluster. This is a significant departure from the Docker de-
fault networking model, where containers on different hosts could not communi-
cate without explicit port forwarding or overlay configurations.

The following table summarizes the key differences between the traditional

Docker networking approach and the Kubernetes networking model:

Traditional Docker Net-
working

Aspect Kubernetes Networking

Model

Each Pod receives a
unique cluster-wide IP

Containers share the host
IP; ports are mapped

IP Assignment

Cross-Host Communica- Requires explicit port map- Pods communicate directly

tion

Port Conflicts

Service Discovery

Network Complexity

ping or overlay setup

Applications must avoid
port conflicts on the host

Manual or requires exter-
nal tooling

High due to port transla-
tion layers

without NAT

Each Pod has its own port
namespace

Built into the platform via
DNS and Services

Simplified flat network
model

Application Awareness Applications may need to Applications use standard

know mapped ports ports freely

This flat networking model is not implemented by Kubernetes itself. Instead, Ku-
bernetes defines the requirements and delegates the actual implementation to a
Container Network Interface (CNI) plugin. This is a critical architectural decision

that we will explore in detail later in this chapter.

Pod Networking in Depth

To truly understand Kubernetes networking, you need to understand what hap-
pens at the Pod level. A Pod is the smallest deployable unit in Kubernetes, and it
can contain one or more containers. All containers within a single Pod share the
same network namespace. This means they share the same IP address, the same
set of network interfaces, and the same port space.

When a Pod is created, Kubernetes (through the container runtime and the CNI
plugin) creates a new network namespace for that Pod. A virtual ethernet pair
(commonly called a veth pair) is created: one end is placed inside the Pod's net-
work namespace, and the other end is attached to a network bridge or virtual
switch on the host node. The Pod's end of the veth pair is typically named etho0 in-
side the Pod, and it is assigned the Pod's unique IP address.

Let us look at this practically. If you exec into a running Pod and inspect its net-

work interfaces, you will see something like this:

kubectl exec -it my-pod -- ip addr show

The output will typically show:

1: lo: <LOOPBACK,UP,LOWER UP> mtu 65536 gdisc noqueue state
UNKNOWN

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

inet 127.0.0.1/8 scope host lo

valid 1ft forever preferred 1ft forever

3: ethO@if7: <BROADCAST,MULTICAST,UP,LOWER UP> mtu 1500 gdisc
noqueue state UP

link/ether 02:42:0a:f4:00:05 brd ff:ff:ff:ff:ff:ff

inet 10.244.0.5/24 scope global ethO

valid 1ft forever preferred 1ft forever

Here you can see the loopback interface and the etho interface with the Pod's as-

signed IP address (10.244.0.5 in this example). The @if7 notation indicates that

this is one end of a veth pair, with the other end being interface index 7 on the
host.

When multiple containers run within the same Pod, they communicate with
each other over localhost. For example, if one container runs a web server on
port 8080 and another container in the same Pod needs to access it, it simply con-
nects to 127.0.0.1:8080. This is because they share the same network name-
space. This shared namespace is actually created by a special "pause" container
(sometimes called the infrastructure container) that is started before any of the ap-
plication containers. The pause container's sole purpose is to hold the network
namespace open so that application containers can join it.

The following table describes the networking behavior within and between

Pods:

Communication Mechanism NAT Required Example

Path

Container to contain- Localhost(127.0.0.1) No App container calling

er within the same sidecar on local-

Pod host:2090

Pod to Pod on the Virtual bridge or di- No Pod A(10.244.0.5) to

same node rect routing Pod B (10.244.0.6)

Pod to Pod on differ- Overlay network or No Pod on Node 1

ent nodes direct routing via CNI (10.244.0.5) to Pod
on Node 2
(10.244.1.3)

Pod to external ser- Node's network inter- Yes (typically) Pod accessing an ex-

vice face with SNAT ternal APl endpoint

External clientto Pod NodePort, LoadBal- Yes (typically) Browser accessing a

ancer, or Ingress web application

10

Node-Level Networking and How Pods
Communicate Across Nodes

Each node in a Kubernetes cluster is assigned a subnet (a CIDR block) from which
Pod IP addresses are allocated. For example, Node 1 might be assigned the range
10.244.0.0/24, Node 2 might get 10.244.1.0/24, and so on. When a Pod is sched-
uled on a particular node, it receives an IP from that node's allocated range.

Communication between Pods on the same node is relatively straightforward.
The veth pairs from each Pod connect to a common bridge (such as cbr0 or cni0),
and traffic between Pods is routed through this bridge. The bridge acts like a virtual
switch, forwarding frames between the connected veth interfaces based on MAC
addresses.

Cross-node communication is where things become more interesting and
where the CNI plugin plays its crucial role. When Pod A on Node 1 wants to send a
packet to Pod B on Node 2, the packet must leave Node 1's network namespace,
traverse the physical (or virtual) network between the nodes, and arrive at Node 2
where it is delivered to Pod B. The CNI plugin is responsible for setting up the net-
working infrastructure that makes this possible.

There are generally two approaches to cross-node Pod networking:

Overlay Networking: In this approach, the CNI plugin encapsulates Pod-to-
Pod traffic in an outer packet that uses the node IP addresses. Technologies like
VXLAN, Geneve, or IP-in-IP are commonly used. The original packet (with Pod IP
addresses) is wrapped inside a new packet (with node IP addresses) for transit
across the physical network. When the packet arrives at the destination node, it is
decapsulated and delivered to the target Pod. This approach works well in environ-
ments where you cannot modify the underlying network routing, such as many
cloud environments or legacy data centers. The trade-off is a small overhead due

to encapsulation.

11

Direct Routing: In this approach, the underlying network infrastructure is con-
figured to route Pod subnet traffic directly to the appropriate nodes. This can be
achieved through BGP (Border Gateway Protocol) peering, static routes, or cloud
provider route tables. For example, the network knows that traffic destined for
10.244.1.0/24 should be sent to Node 2's IP address. This approach avoids encap-
sulation overhead and can provide better performance, but it requires more inte-
gration with the underlying network.

To inspect the networking configuration on a node, you can use standard Linux

networking commands:

View the network bridges on a node

ip link show type bridge

View the routing table on a node

ip route show

View the veth pairs
ip link show type wveth

View the iptables rules (used for Service networking)

iptables -t nat -L -n -v

Understanding these node-level networking constructs is essential for trou-
bleshooting. When a Pod cannot communicate with another Pod, the problem of-
ten lies in the routing table, the bridge configuration, or the overlay tunnel be-

tween nodes.

The Container Network Interface (CNI)

The Container Network Interface is a specification and a set of libraries for config-
uring network interfaces in Linux containers. Kubernetes uses CNI as its standard

for network plugin integration. When the kubelet needs to set up networking for a

12

new Pod, it calls the configured CNI plugin, which handles all the necessary net-
work plumbing.

The CNI plugin is responsible for:

1. Allocating an IP address to the Pod from the node's assigned CIDR
range (IPAM, or IP Address Management).

2. Creating the veth pair and placing one end in the Pod's network name-
space.

3. Configuring the bridge or routing rules on the host.

4. Setting up any overlay tunnels or routing entries needed for cross-node
communication.

5. Cleaning up network resources when a Pod is deleted.

CNI configuration is typically stored in /etc/cni/net.d/ on each node, and the
CNI plugin binaries are located in /opt/cni/bin/. Atypical CNI configuration file

looks like this:

"cniVersion": "0.4.0",
"name": "my-network",
"type": "bridge",
"bridge": "cniO",

"isGateway": true,

"ipMasqg": true,

"ipam": {
"type": "host-local",
"subnet": "10.244.0.0/24",
"routes": [

{ "dst": "0.0.0.0/0" }

13

This configuration tells the CNI plugin to create a bridge named cni0, assign IP
addresses from the 10.244.0.0/24 subnet using the host-local IPAM plugin, and set
up IP masquerading for outbound traffic.

Several popular CNI plugins are available for Kubernetes, each with different

characteristics:

CNI Plugin Networking Ap- Key Features Best Suited For
proach

Flannel Overlay (VXLAN) or Simple setup, minimal Small to medium clus-
host-gw configuration ters, learning environ-

ments

Calico Direct routing (BGP) Network policies, Production clusters
or overlay (VXLAN/IP- high performance, requiring network
in-1P) flexible policies

Cilium eBPF-based data- Advanced observabil- Large-scale produc-
plane ity, security, service tion, security-focused

mesh capabilities deployments

Weave Net Overlay (custom pro- Automatic mesh, en- Multi-cloud or hybrid

tocol) cryption support deployments
AWS VPC CNI Native VPC network- Pods get VPC IP ad- Amazon EKS clusters
ing dresses, high perfor-
mance

Azure CNI Native Azure VNet Pods get VNet IP ad- Azure AKS clusters

networking dresses
Antrea Open vSwitch based VMware integration, VMware Tanzu envi-
rich feature set ronments

Choosing the right CNI plugin is one of the most important decisions when setting
up a Kubernetes cluster. The choice affects performance, security capabilities, ob-
servability, and operational complexity.

Note: You can verify which CNI plugin is installed on your cluster by examining

the DaemonSet or Deployment in the kube-system namespace. For example:

14

kubectl get pods -n kube-system | grep -E "calico]|flannel|cilium]|

weave"

You can also check the CNI configuration directly on a node:

ls /etc/cni/net.d/
cat /etc/cni/net.d/10-flannel.conflist

Cluster DNS and Service Discovery

While Pod IP addresses provide direct connectivity, they are ephemeral. Pods are
created and destroyed frequently, and their IP addresses change each time. Kuber-
netes solves this problem through Services, which provide stable virtual IP address-
es (called ClusterlPs) that front a set of Pods. We will explore Services in depth in
later chapters, but it is important to understand their role in the networking model
at this stage.

Every Kubernetes cluster runs a DNS server (typically CoreDNS) as a cluster
add-on. This DNS server automatically creates DNS records for Services and, op-
tionally, for Pods. When a Pod wants to communicate with a Service, it can use the
Service's DNS name rather than tracking individual Pod IP addresses.

For example, if you have a Service named backend in the production name-
space, any Pod in the cluster can reach it using the DNS name backend.produc-
tion.svc.cluster.local. Pods within the same namespace can use the shorter
form backend.

You can verify DNS resolution from within a Pod:

kubectl exec -it my-pod -- nslookup

backend.production.svc.cluster.local

The output will show the ClusterlP assigned to the Service:

15

Server: 10.96.0.10
Address: 10.96.0.10#53

Name: backend.production.svc.cluster.local
Address: 10.96.45.123

The DNS server address (10.96.0.10 in this example) is configured in each Pod's /

etc/resolv.conf file by the kubelet. You can inspect it:

kubectl exec -it my-pod -- cat /etc/resolv.conf

nameserver 10.96.0.10
search production.svc.cluster.local svc.cluster.local
cluster.local

options ndots:5

The search domains allow short DNS names to be resolved. The ndots: 5 option
tells the resolver to append search domains to any name with fewer than 5 dots
before trying the name as an absolute query. This is a common source of confusion
and can impact DNS performance in clusters with high query volumes.

Note: The ndots: 5 setting means that a query for api.example.com (which
has only 2 dots) will first try api .example.com.production.svc.cluster.lo-
cal, then api.example.com.svc.cluster.local, then api.example.com.-
cluster.local, and finally api.example.com as an absolute name. This can re-
sult in multiple unnecessary DNS queries for external domain names. You can opti-
mize this by setting ndots:2 in the Pod spec's dnsConfig field or by using fully

qualified domain names (with a trailing dot) in your application configurations.

16

Practical Exercise: Exploring the Ku-
bernetes Networking Model

This exercise will help you observe the networking model in action on a real Kuber-
netes cluster. You will create Pods on different nodes and verify that the networking
principles discussed in this chapter hold true.

Step 1: Create two Pods and ensure they are scheduled on different
nodes.

Create a file named networking-lab.yaml:

apiVersion: vl
kind: Pod
metadata:
name: pod-alpha
labels:
app: networking-lab
spec:
containers:
- name: nettools
image: nicolaka/netshoot
command: ["sleep", "3600"]
nodeName: "" # Will be auto-scheduled
apiVersion: vl
kind: Pod
metadata:
name: pod-beta
labels:
app: networking-lab
spec:
containers:
- name: nettools

image: nicolaka/netshoot

command: ["sleep", "3600"]
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

17

matchLabels:
app: networking-lab

topologyKey: kubernetes.io/hostname

Apply the manifest:

kubectl apply -f networking-lab.yaml

Step 2: Verify the Pods are running on different nodes and note their IP ad-

dresses.

kubectl get pods -o wide

You should see output similar to:

NAME READY STATUS RESTARTS AGE IP NODE
pod-alpha 1/1 Running 0 30s 10.244.0.12

node-1

pod-beta 1/1 Running 0 30s 10.244.1.8

node-2

Step 3: Test Pod-to-Pod communication across nodes.

From pod-alpha, ping pod-beta using its IP address
kubectl exec pod-alpha -- ping -c 3 10.244.1.8

You should see successful ping responses, confirming that cross-node Pod com-
munication works without NAT.

Step 4: Verify that the source IP is preserved (no NAT).

Start a TCP listener on pod-beta
kubectl exec pod-beta -- nc -1 -p 8080 &

Connect from pod-alpha and check the source IP seen by pod-beta
kubectl exec pod-alpha -- sh -c "echo hello | nc 10.244.1.8 8080"

Step 5: Inspect the network configuration inside a Pod.

kubectl exec pod-alpha -- ip addr show

kubectl exec pod-alpha -- ip route show

18

kubectl exec pod-alpha -- cat /etc/resolv.conf

Step 6: Clean up.

kubectl delete -f networking-lab.yaml

This exercise demonstrates the core principles of the Kubernetes networking mod-

el: unique Pod IPs, direct cross-node communication without NAT, and DNS-based

service discovery.

Common Networking Troubleshooting

Approaches

When networking issues arise in a Kubernetes cluster, having a systematic ap-

proach to diagnosis is invaluable. The following table outlines common symptomes,

their likely causes, and the commands you can use to investigate:

Symptom

Pod cannot reach another
Pod on the same node

Pod cannot reach Pods on
other nodes

DNS resolution fails inside
Pods

Service ClusterlP not
reachable

Likely Cause

Investigation Commands

Bridge misconfiguration or ip 1ink show type

CNl issue

Overlay tunnel or routing
issue

CoreDNS not running or
misconfigured

kube-proxy misconfigura-
tion or iptables issues

bridge, brctl show,
check CNI logs

ip route show, check
CNI pod logs, verify node-
to-node connectivity

kubectl get pods -n
kube-system -1 k8s-
app=kube-dns, kubectl
logs on CoreDNS pods

iptables -t nat -L
-n, ipvsadm -Ln (if using
IPVS mode), check kube-
proxy logs

19

Intermittent connectivity ~ MTU mismatch in overlay Check MTU settings on

network Pod interfaces and overlay
tunnels, compare with
node MTU
Pod can reach cluster re- Missing IP masquerade iptables -t nat -L
sources but not external rules or network policy POSTROUTING -n, check
internet blocking egress NetworkPolicy resources

Note: The nicolaka/netshoot container image used in the exercise above is an
excellent troubleshooting tool. It includes utilities like ping, traceroute, dig,
nslookup, curl, tcpdump, iperf, netstat, and many others. Keeping a trou-
bleshooting Pod available in your cluster can save significant time when diagnos-

ing network issues.

Quick troubleshooting Pod
kubectl run netshoot --rm -it --image=nicolaka/netshoot -- /bin/
bash

Summary and Looking Ahead

This chapter has laid the groundwork for understanding Kubernetes networking.
You have learned that the Kubernetes networking model is built on the principle of
a flat network where every Pod gets a unique IP address and can communicate di-
rectly with any other Pod without network address translation. You have seen how
this is implemented at the Pod level through network namespaces and veth pairs,
at the node level through bridges and routing, and across nodes through CNI plu-
gins that provide either overlay networking or direct routing.

You have also explored how DNS and service discovery fit into this model, pro-
viding stable names for ephemeral workloads. And you have gained practical ex-

perience inspecting and verifying the networking model on a live cluster.

20

In the chapters that follow, we will build on this foundation. We will explore Ku-
bernetes Services in detail, examining how ClusterlP, NodePort, and LoadBalancer
services work under the hood. We will dive into Ingress controllers and how exter-
nal traffic enters the cluster. We will examine Network Policies for securing Pod-to-
Pod communication. And ultimately, we will explore service mesh architectures that
add sophisticated traffic management, security, and observability capabilities on
top of this networking foundation.

Every concept in the chapters ahead depends on the networking model de-
scribed here. Take the time to internalize these principles, experiment with the ex-
ercises, and build your intuition for how packets flow through a Kubernetes cluster.
That intuition will serve you well as we tackle increasingly complex networking sce-

narios.

21

Chapter 2: Container Net-
work Interfaces (CNI)

Every Kubernetes cluster, no matter how small or large, depends on a functioning
network to connect its Pods, Services, and external clients. At the heart of this net-
working layer lies a specification that many administrators interact with daily yet
rarely examine in depth: the Container Network Interface, or CNI. This chapter
takes you on a thorough journey through the CNI specification, its architecture, the
way Kubernetes leverages it, and the practical considerations you must weigh
when choosing and configuring a CNI plugin for production workloads. By the end
of this chapter, you will not only understand how CNI works under the hood but
also possess the hands-on knowledge to install, configure, troubleshoot, and com-

pare the most widely adopted CNI plugins in the Kubernetes ecosystem.

The Origin and Purpose of CNI

Before Kubernetes existed in its current form, container runtimes such as Docker
handled networking internally. Each runtime implemented its own networking
model, which created fragmentation. If you moved from one orchestrator to anoth-
er, or even from one container runtime to another, your networking configuration
and assumptions would break. The Cloud Native Computing Foundation recog-
nized this problem early and supported the development of a standard interface
that any container runtime or orchestrator could use to configure network connec-

tivity for containers.

22

The Container Network Interface specification emerged as that standard. CNI
defines a simple contract between the container runtime and a network plugin.
The runtime calls the plugin when a container is created or destroyed, and the
plugin is responsible for attaching or detaching the container to or from the net-
work. This separation of concerns is powerful: Kubernetes does not need to know
the details of how IP addresses are assigned, how routes are configured, or how
overlay networks are constructed. It simply calls the CNI plugin and trusts it to do
the right thing.

The CNI specification itself is deliberately minimal. It defines a set of opera-
tions, a configuration format, and a set of expected behaviors. This minimalism is
intentional because it allows plugin authors tremendous flexibility in how they im-
plement networking. Whether a plugin uses VXLAN tunnels, BGP peering, eBPF
programs, or simple Linux bridges, it can conform to the CNI specification as long

as it fulfills the basic contract.

Understanding the CNI Specification

The CNI specification revolves around a few core concepts that every Kubernetes
administrator should internalize. At its most fundamental level, CNl is a set of Go li-
braries and a specification for how executables (plugins) are invoked by a contain-
er runtime.

When the kubelet on a Kubernetes node needs to set up networking for a new
Pod, it does not do so directly. Instead, it delegates this task to the container run-
time (such as containerd or CRI-O), which in turn invokes the configured CNI plug-
in. The plugin receives information about the container through environment vari-
ables and a JSON configuration passed via standard input.

The specification defines the following primary operations:

23

Operation Description

ADD

DEL

CHECK

VERSION

When It Is Called

Attaches a container to a network, When a new Pod sandbox is creat-
assigns an IP address, and sets up ed on the node

necessary routes and interfaces

Removes a container from a net-

When a Pod sandbox is being de-

work, releases the IP address, and stroyed on the node

cleans up interfaces and routes

Verifies that the container network- Periodically or on demand to vali-
ing is still correctly configured and date network health

functional

Reports the CNI specification ver-
sions that the plugin supports

During initialization to ensure com-
patibility

The ADD operation is the most critical. When called, the plugin must create a virtu-

al ethernet (veth) pair, place one end inside the container network namespace, as-

sign an IP address from the configured range, set up default routes inside the con-

tainer, and optionally configure the host side of the connection. The plugin then re-

turns a JSON result to the runtime that includes the assigned IP address, the gate-

way, and any DNS configuration.

The configuration file for a CNI plugin is typically stored in /etc/cni/net.d/

on each node. The kubelet reads the configuration files from this directory and

uses them to determine which plugin to invoke. A simple configuration file might

look like this:

{
"cniVersion": "1.0.0",
"name": "my-cluster-network",
"type": "bridge",
"bridge": "cniO",

"isGateway": true,

"ipMasqg": true,

"ipam" : {
"type": "host-local",
"subnet": "10.244.1.0/24",

24

"routes": [
{ "dst": "0.0.0.0/0"™ }

In this configuration, the type field tells the runtime which plugin binary to exe-
cute. The binary must be located in the CNI binary directory, which is typically /
opt/cni/bin/.The ipam block specifies how IP address management is handled.
In this case, the host-1ocal IPAM plugin manages a local subnet and assigns ad-
dresses from it.

Note: The CNI plugin binaries are standalone executables. They are not long-
running daemons. Each time a Pod is created or destroyed, the binary is invoked,
performs its work, and exits. Some CNI solutions do run additional daemons for co-
ordination and route distribution, but the CNI plugin itself is always an executable

that follows the invoke-and-exit pattern.

How Kubernetes Invokes CNI Plugins

Understanding the exact sequence of events when a Pod is scheduled to a node
helps demystify the networking layer. Let us walk through the process step by step.

First, the Kubernetes scheduler assigns a Pod to a specific node. The kubelet
on that node receives the Pod specification and begins the process of creating the
Pod sandbox. The sandbox is a pause container that holds the network namespace
for all containers in the Pod.

Second, the kubelet instructs the container runtime (for example, containerd)
to create the sandbox. The runtime creates a new network namespace for the

sandbox.

25

