Docker for Web Developers

Containerizing, Building, and Deploy-
ing Modern Web Applications

Preface

Every web developer has heard it—or said it—at least once: "But it works on my ma-
chine.” That single phrase has launched a thousand debugging sessions, delayed
countless deployments, and sparked more than a few heated Slack threads. It's a
symptom of a deeper problem: the gap between development environments,
staging servers, and production infrastructure. Docker exists to close that gap, and

this book exists to show you how.

Why This Book?

Docker for Web Developers was written with a specific audience in mind: work-
ing web developers who build, ship, and maintain real-world web applications and
who want to harness the full power of Docker to do it better. Whether you're a
backend developer wrangling PHP and Laravel, a frontend engineer working with
Node.js and React, or a full-stack developer juggling both, Docker has become an
indispensable tool in the modern development workflow. Yet most Docker re-
sources are either too abstract—aimed at DevOps engineers and system adminis-
trators—or too shallow, barely scratching the surface of what containers can do for
your daily work.

This book bridges that divide. It is a practical, hands-on guide to Docker that
meets you where you are as a web developer and takes you where you need to go:
from understanding why containers matter, all the way to deploying, scaling, and

securing Dockerized web applications in production.

What You'll Learn

The journey begins with Docker fundamentals—images, containers, volumes, and
networks—grounded in real web development scenarios rather than abstract theo-
ry. From there, you'll progressively build more complex and realistic environments
using Docker Compose, learning to orchestrate multi-container stacks that pair
web servers with databases, caches, and message queues.

Along the way, you'll dive into topics that matter most to professional web de-

velopers:

- Optimizing Dockerfiles for faster builds and smaller images

- Debugging and logging inside containers without losing your sanity

- Securing development containers against common vulnerabilities

- Building Docker workflows tailored to PHP/Laravel and Node.js/front-
end frameworks

- Preparing for and executing production deployments of Dockerized
applications

- Integrating Docker into CI/CD pipelines for automated testing and de-
livery

- Scaling web applications to meet real-world demand

The book culminates with a forward-looking chapter on the transition from web de-
veloper to cloud-native developer, helping you understand where Docker fits
within the broader ecosystem of Kubernetes, microservices, and modern in-

frastructure.

How This Book Is Structured

Chapters 1 through 3 establish the why and what of Docker, giving you a solid con-
ceptual and practical foundation. Chapters 4 through 8 deepen your Docker skills
with volumes, Compose, multi-service stacks, Dockerfile optimization, and debug-
ging techniques. Chapters 9 and 10 apply everything you've learned to specific
web development stacks. Chapters 11 through 16 shift focus to the professional
concerns of security, production readiness, deployment, CI/CD, and scaling. Final-
ly, the appendices serve as a quick-reference toolkit—-Docker command cheat
sheets, Dockerfile and Compose templates, common error fixes, and a cloud-na-

tive learning roadmap—designed to stay useful long after you've finished reading.

Who This Book Is For

If you write code for the web and you want to containerize, build, and deploy
your applications with confidence using Docker, this book is for you. Prior Docker
experience is helpful but not required; curiosity and a willingness to experiment

are all you need.

Acknowledgments

This book would not exist without the vibrant open-source community that sur-
rounds Docker and the container ecosystem. I'm grateful to the developers, techni-
cal reviewers, and early readers whose feedback sharpened every chapter. Special
thanks to the countless web developers who shared their Docker frustrations and
triumphs online—your real-world experiences shaped the practical focus of this

book.

Let's put an end to "it works on my machine." Let's Dockerize everything.

Dorian Thorne

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

The Problem with “It Works on My Machine”
Docker Fundamentals for Developers
Containerizing a Simple Web Application
Working with Docker Volumes

Introduction to Docker Compose

Web + Database Stack

Optimizing Dockerfiles

Debugging and Logging

Docker with PHP and Laravel

Docker with Node.js and Frontend Frameworks
Securing Development Containers
Preparing for Production

Deploying Dockerized Web Applications
Docker in CI/CD Pipelines

Scaling Web Applications

From Web Developer to Cloud-Native Developer

Docker Command Cheat Sheet
Dockerfile Templates for Web Apps
docker-compose.yml Templates
Common Docker Errors and Fixes

Cloud-Native Learning Roadmap

Page

16

31

47

61

74

91

105
124
146
166
182
199
219
239
255
271
288
302
317
331

Chapter 1: The Problem with
"It Works on My Machine"

Every web developer has lived through this moment. You spend hours, maybe
days, building a feature. You test it locally. Everything runs perfectly. The API re-
sponds, the database queries return exactly what you expect, the front end renders
beautifully. You commit your code, push it to the repository, and announce with
confidence that the feature is ready. Then, within minutes, a message appears from
a teammate or from the deployment pipeline: "It's broken." You stare at the screen
in disbelief, and the words escape your lips almost involuntarily: "But it works on
my machine."

This phrase has become so deeply embedded in software development cul-
ture that it has its own memes, its own stickers, and its own quiet sense of dread. It
represents more than a simple bug or a misconfiguration. It represents a funda-
mental problem with how software has traditionally been developed, shared, and
deployed. The environment in which code runs matters just as much as the code it-
self, and for most of the history of web development, managing that environment
has been a fragile, manual, and deeply frustrating process.

This chapter is about understanding that problem in its full depth before we in-
troduce the solution. Because Docker is not just a tool you install and run com-
mands with. Docker is an answer to a question that has plagued development
teams for decades. To truly appreciate what Docker offers, and to use it effectively
as a web developer, you first need to understand the pain it was designed to elimi-

nate.

The Reality of Modern Web Develop-
ment Environments

Consider what it takes to run even a moderately complex web application on your
local machine today. A typical project might involve a JavaScript runtime like
Node.js at a specific version, a package manager like npm or Yarn, a front-end
framework such as React or Vue, a back-end framework like Express or Django, a
database such as PostgreSQL or MongoDB, a caching layer like Redis, and possibly
a message queue like RabbitMQ. Each of these components has its own version re-
quirements, its own configuration files, its own system-level dependencies, and its
own quirks depending on the operating system you happen to be using.

Now multiply this by the number of developers on your team. Developer A is
running macOS Ventura with Node.js 18.12 and PostgreSQL 14 installed through
Homebrew. Developer B is on Ubuntu 22.04 with Node.js 20.1 installed through
nvm and PostgreSQL 15 installed from the official APT repository. Developer C is
on Windows 11, using Node.js 18.17 installed from the official Windows installer,
and PostgreSQL 14 running as a Windows service. Each of these setups is subtly
different. The file system behaves differently. Environment variables are handled
differently. Path separators are different. Even the way line endings are stored in
text files differs between operating systems.

The following table illustrates just a few of the common differences that cause

problems across development environments:

Factor macOS Ubuntu Linux Windows

Default shell zsh bash PowerShell or cmd
File path separator Forward slash (/) Forward slash (/) Backslash (\)
Line endings LF LF CRLF

Package manager Homebrew APT or Snap Chocolatey or man-

for system tools ual install
File system case Case-insensitive by Case-sensitive Case-insensitive
sensitivity default

Default Node.js in- Homebrew, nvm, or nvm, APT, or Node- Official installer or

stall method installer Source nvm-windows
PostgreSQL service brew services systemctl Windows Services
management

Environmentvari- export VAR=value export VAR=value $env:VAR="value"
able syntax or set VAR=value

These differences might seem small individually, but they compound. A script that
works perfectly on macOS might fail on Windows because of path handling. A
database connection that works on one developer's machine might fail on another
because of a different default authentication method. A Node.js module that com-
piles native bindings on Linux might require entirely different build tools on Win-
dows.

The result is that developers spend a significant portion of their time not writ-
ing application code, but fighting with their environment. Setting up a new devel-
oper on a project can take an entire day or more, following a long and often out-
dated README file filled with steps like "install this version of Python," "make sure
you have the correct OpenSSL library," and "if you are on Windows, you may need
to do this other thing instead." These setup documents become stale quickly be-

cause nobody remembers to update them when a dependency changes.

The Gap Between Development and
Production

The environment problem does not stop at the boundaries of the development
team. It extends all the way to production. The server where your application actu-
ally runs for real users is yet another environment, and it almost certainly does not
match your laptop.

In a traditional deployment workflow, a developer writes code on their local
machine, pushes it to a version control system, and then some process deploys
that code to a server. That server has its own operating system, its own installed
packages, its own configuration, and its own version of every runtime and library. If
the production server is running Ubuntu 20.04 with Node.js 16 and your local ma-
chine is running macOS with Node.js 20, you are essentially hoping that your code
will behave the same way in both environments. Sometimes it does. Sometimes it
does not.

The problems that arise from this gap are some of the most expensive and
stressful in software development. A bug that only appears in production is far
more difficult to diagnose than one you can reproduce locally. You cannot simply
attach a debugger to a production server the way you can on your laptop. You may
not even have direct access to the server. And when production is down, every
minute costs money and erodes user trust.

Consider a concrete scenario. You are building a web application that process-
es uploaded images. On your macOS development machine, you install the
ImageMagick library through Homebrew, and it works perfectly with your Node.js
image processing module. You deploy to a production server running Amazon Lin-
ux, and suddenly the image processing fails. The version of ImageMagick available
in the Amazon Linux package repository is different. It was compiled with different

options. It supports a different set of image formats. Your code is identical in both

10

environments, but the behavior is different because the underlying system library is
different.

This is the core of the "it works on my machine" problem. The code is not the
only thing that determines how an application behaves. The entire environment
matters: the operating system, the system libraries, the runtime versions, the con-
figuration files, the environment variables, the file system layout, and even the net-

work configuration.

Traditional Attempts to Solve This
Problem

The software industry has tried many approaches to solve environment inconsis-
tency over the years, each with its own trade-offs.

Detailed documentation was the earliest approach. Teams would write exten-
sive setup guides explaining every step required to configure a development envi-
ronment. The problem with documentation is that it is written by humans, read by
humans, and followed by humans. Steps get skipped. Documents become outdat-
ed. Ambiguities lead to different interpretations. Documentation describes an envi-
ronment but does not enforce it.

Configuration management tools like Ansible, Chef, and Puppet emerged to
automate server configuration. These tools allow you to write scripts that install
packages, configure services, and set up environments in a repeatable way. They
improved the situation significantly for production servers, but they were heavy-
weight for local development. Running an Ansible playbook to set up a developer
laptop is possible but cumbersome, and it still does not guarantee that the result-

ing environment is truly identical to production.

11

Virtual machines represented a major step forward. Tools like VirtualBox and
VMware allowed developers to run a complete operating system inside their exist-
ing operating system. Vagrant, created by Mitchell Hashimoto (who would later co-
found HashiCorp), made it practical to define virtual machine configurations in
code and share them across a team. With Vagrant, every developer could run the
same Ubuntu virtual machine with the same packages installed, regardless of
whether their host machine was running macOS, Windows, or Linux.

Virtual machines solved the consistency problem, but they introduced new
problems. Each virtual machine includes a complete operating system, which
means it consumes significant disk space, memory, and CPU resources. Starting a
virtual machine takes time, often a minute or more. Running multiple virtual ma-
chines simultaneously, which is common when working on microservices, can bring
even a powerful laptop to its knees. The development experience inside a virtual
machine often felt sluggish compared to native development, and file sharing be-
tween the host and the virtual machine introduced its own set of performance and
compatibility issues.

The following table summarizes the strengths and weaknesses of these tradi-

tional approaches:

Approach Consistency Resource Ef- Ease of Use Speed Portability
ficiency

Documenta- Low High (no Low (manual N/A Low

tion overhead) steps)

Configuration Medium High Medium Medium Medium

management

Virtual machi- High Low (full OS Medium Low (slow Medium

nes per VM) startup)

None of these approaches fully solved the problem. What the industry needed was

something that provided the consistency of virtual machines without the resource

12

overhead. Something that could package an application along with its entire envi-
ronment into a single, portable unit that would run identically everywhere. Some-
thing that started in seconds, not minutes. Something that a developer could de-
fine in a simple text file and share through version control.

That something turned out to be containers, and the tool that made containers

accessible to every developer was Docker.

What Docker Changes About This Sto-
ry

Docker approaches the environment problem from a fundamentally different an-
gle. Instead of trying to make every machine look the same through documenta-
tion or automation, Docker packages the application and its environment together
into a single artifact called a container. A container includes everything the applica-
tion needs to run: the code, the runtime, the system libraries, the configuration
files, and the environment variables. When you run a container, it behaves the
same way regardless of where it is running, because it carries its own environment
with it.

This is a profound shift in how we think about software delivery. Before Docker,
we shipped code and hoped the environment would be right. With Docker, we
ship the environment along with the code. The phrase "it works on my machine"
loses its meaning because the container that runs on your machine is the same
container that runs on your colleague's machine, on the continuous integration
server, on the staging environment, and in production.

Docker achieves this through a technology called containerization, which is
built on features of the Linux kernel that have existed for years but were previously

difficult to use directly. Containers are not virtual machines. They do not include a

13

complete operating system. Instead, they share the host operating system's kernel
while maintaining their own isolated file system, process space, and network con-
figuration. This makes them dramatically lighter than virtual machines. A container
can start in less than a second. You can run dozens of containers simultaneously on
a single laptop without significant performance degradation. A container image
that would be gigabytes as a virtual machine might be only tens or hundreds of
megabytes as a Docker image.

For web developers specifically, Docker transforms the daily workflow in sever-
al important ways. Setting up a new project becomes as simple as running a single
command. Onboarding a new team member no longer requires a day of following
setup instructions; instead, they clone the repository and start the containers. Run-
ning a database locally no longer means installing and configuring database soft-
ware on your operating system; instead, you run a database container that is com-
pletely isolated and can be destroyed and recreated in seconds. Testing your ap-
plication against different versions of a dependency becomes trivial because you
can simply change a version number in a configuration file and rebuild the contain-
er.

Perhaps most importantly, Docker gives web developers confidence. Confi-
dence that the application they are building locally will behave the same way in
production. Confidence that when they say "it works," it will work everywhere. Con-
fidence that they can focus on writing code instead of fighting with environment

configuration.

A Preview of What Is Ahead

Throughout this book, we will build on this foundation chapter by chapter. You will

learn how to install Docker and understand its architecture. You will learn how to

14

write Dockerfiles that define your application's environment in a precise, repeat-
able way. You will learn how to use Docker Compose to orchestrate multiple con-
tainers that work together, such as a web server, a database, and a caching layer.
You will learn how to optimize your Docker images for production, how to manage
data persistence with volumes, how to configure networking between containers,
and how to integrate Docker into your continuous integration and deployment
pipelines.

But before any of that, take a moment to appreciate the problem. Think about
the hours you have spent debugging environment issues. Think about the deploy-
ment failures caused by differences between your machine and the server. Think
about the frustration of onboarding onto a new project and spending an entire day
just trying to get the application to start. Docker exists because those experiences
are universal in software development, and they do not have to be.

The next chapter will walk you through installing Docker on your operating sys-
tem and running your first container. By the end of it, you will have experienced
firsthand the simplicity and power that Docker brings to web development. The

days of "it works on my machine" are behind you.

Note: As you progress through this book, every concept, every command,
and every example will be rooted in Docker and its ecosystem. When we
mention other technologies, it will always be in the context of how they re-
late to or are used within Docker. The goal is to give you a deep, practical
understanding of Docker as a web developer, not a surface-level tour of
many tools. By the time you finish, Docker will not just be a tool you know
how to use. It will be a fundamental part of how you think about building

and delivering web applications.

15

