
1

RHCSA EX200 Bonus Prac-
tice Book

Advanced Lab Tasks, Podman, ACL,
Text Processing & Full Mock Exams

2

Preface

The Red Hat Certified System Administrator (RHCSA) EX200 exam is one of the

most respected and rigorous performance-based certifications in the Linux world.

It doesn't ask you to recall facts from memory or select answers from a list—it de-

mands that you perform. You sit in front of a live system, and you either solve the

problems or you don't. There is no partial credit for theory you understand but can-

not execute.

This book exists because understanding is not enough. You need to be

fast, accurate, and calm under pressure.

Purpose and Scope
The RHCSA EX200 Bonus Practice Book is designed as a focused companion for

candidates who have already studied the core RHCSA curriculum and are ready to

sharpen their skills through intensive, hands-on practice. This is not a textbook that

introduces concepts from scratch. It is a training ground—a collection of targeted

lab exercises, timed drills, troubleshooting scenarios, and full-length mock exams

built to push you beyond your comfort zone and into exam readiness.

Every task in this book is crafted to mirror the pressure, ambiguity, and com-

plexity of the real RHCSA EX200 environment. If you can complete these exercises

confidently, you will walk into the exam with a decisive advantage.

3

What This Book Covers
The sixteen chapters are organized around the RHCSA domains that candidates

most frequently struggle with or underestimate:

-	 Chapters 1–4 focus on essential file operations, text processing, archive

manipulation, advanced permissions, and Access Control Lists (ACLs)—

skills that form the foundation of daily system administration and appear

consistently on the RHCSA exam.

-	 Chapters 5–7 tackle SELinux troubleshooting, disk partitioning, filesys-

tem creation, and LVM configuration through timed drills that build both

competence and speed.

-	 Chapters 8–10 immerse you in systemd emergency recovery, network

reconfiguration, and firewalld management—scenarios where a single

misconfiguration can lock you out of your own system.

-	 Chapters 11–12 provide dedicated coverage of Podman, which has be-

come an increasingly important component of the modern RHCSA

exam. You will practice container management, persistent storage, and

systemd integration, as well as troubleshoot broken container configura-

tions.

-	 Chapters 13–14 drill cron scheduling and Bash mini-automation tasks,

reinforcing the automation skills that the RHCSA exam expects you to

demonstrate.

-	 Chapters 15–16 deliver two complete mock exams—one standard and

one advanced—designed to simulate the full RHCSA experience from

start to finish.

4

How to Use This Book
Work through each chapter at the terminal. Read the scenario, attempt the task be-

fore looking at the solution, and time yourself. Repeat exercises until the com-

mands flow from muscle memory. The advanced mock exam in Chapter 16 is inten-

tionally harder than the real RHCSA exam—if you can pass it, the actual test will feel

manageable.

Who This Book Is For
This book is for RHCSA candidates who want more practice than a single study

guide provides. Whether you are attempting the EX200 for the first time or retak-

ing it after a near miss, these labs will expose your weak points and give you the

repetitions needed to eliminate them.

Acknowledgments
This book would not exist without the vibrant community of Linux professionals

and RHCSA candidates who share their experiences, frustrations, and insights. I am

grateful to the open-source community and to Red Hat for maintaining a certifica-

tion that genuinely measures real-world skill. Special thanks to every reader who

chose to invest their time in deliberate practice—your commitment to excellence is

what makes this work meaningful.

The terminal is waiting. Let's get to work.

Miles Everhart

5

Table of Contents

Chapter Title Page

1 Advanced Text Processing Tasks 6

2 File and Archive Manipulation Drills 21

3 Advanced Permission Scenarios 34

4 ACL Intensive Lab 50

5 SELinux Debug & Repair 64

6 Partition & Filesystem Timed Drills 76

7 LVM Rapid Configuration Challenges 91

8 systemd Emergency Scenarios 103

9 Network Reconfiguration Under Pressure 117

10 firewalld Advanced Tasks 129

11 Podman Essentials for RHCSA 142

12 Podman Troubleshooting Labs 154

13 Cron & Automation Drills 165

14 Bash Mini-Automation Tasks 182

15 Full Mock Exam #1 199

16 Full Mock Exam #2 (Advanced) 218

6

Chapter 1: Advanced Text
Processing Tasks

Text processing is one of the most critical skills you will need to master for the Red

Hat Certified System Administrator (RHCSA) EX200 exam. While many candidates

focus heavily on storage management, user administration, and service configura-

tion, the ability to efficiently search, filter, extract, transform, and manipulate text

from files and command output is equally important. In a real-world enterprise Lin-

ux environment, system administrators spend a significant portion of their time

reading log files, parsing configuration files, extracting specific data from com-

mand output, and automating repetitive text manipulation tasks. The RHCSA exam

expects you to be proficient with a range of text processing utilities, and this chap-

ter will take you well beyond the basics.

Throughout this chapter, you will work with tools such as grep, sed, awk, cut,

sort, uniq, tr, wc, tee, head, tail, and various combinations of these com-

mands using pipes. Each tool serves a specific purpose, and understanding when

and how to combine them is what separates a competent administrator from a

novice. We will begin with foundational concepts, build up to advanced usage pat-

terns, and conclude with hands-on lab exercises that mirror the complexity and

pressure of the actual RHCSA exam environment.

7

Understanding the Linux Text Process-
ing Philosophy
Before diving into individual commands, it is essential to understand the Unix and

Linux philosophy that underpins text processing. Linux was designed around the

concept of small, specialized tools that do one thing well. These tools communi-

cate with each other through standard input (stdin), standard output (stdout), and

standard error (stderr). The pipe operator (|) allows you to chain these tools to-

gether, creating powerful data processing pipelines from simple building blocks.

For example, consider a scenario where you need to find all users on a system

who use the /bin/bash shell, sort them alphabetically, and count how many there

are. Rather than writing a complex program, you would chain together several sim-

ple commands:

grep '/bin/bash' /etc/passwd | cut -d: -f1 | sort | wc -l

This single pipeline uses four commands, each performing one specific task. The

grep command filters lines containing /bin/bash, the cut command extracts the

username field, the sort command arranges them alphabetically, and the wc -l

command counts the total number of lines. This approach is fundamental to every-

thing you will do in this chapter.

Working with grep for Pattern Search-
ing
The grep command is arguably the most frequently used text processing tool on

any Linux system. Its name stands for "Global Regular Expression Print," and its pri-

8

mary purpose is to search for patterns within files or input streams and display

matching lines.

The basic syntax of grep is straightforward:

grep [options] 'pattern' filename

However, the power of grep lies in its options and its support for regular expres-

sions. The following table provides a comprehensive reference for the most impor-

tant grep options you should know for the RHCSA exam:

Option Description Example

-i Performs a case-insensitive
search

grep -i 'error' /
var/log/messages

-v Inverts the match, showing
lines that do NOT match

grep -v '^#' /etc/
ssh/sshd_config

-r or -R Searches recursively
through directories

grep -r 'PermitRoot'
/etc/ssh/

-l Displays only the names of
files containing matches

grep -rl 'SELINUX' /
etc/

-n Displays line numbers
alongside matching lines

grep -n 'failed' /
var/log/secure

-c Counts the number of
matching lines

grep -c 'root' /etc/
passwd

-w Matches only whole words grep -w 'root' /etc/
passwd

-E Enables extended regular
expressions (equivalent to
egrep)

grep -E 'error|warn-
ing|critical' /var/
log/messages

-o Displays only the matching
portion of the line

grep -o '[0-9]\+\.
[0-9]\+\.[0-9]\+\.
[0-9]\+' /var/log/
secure

9

-A n Shows n lines after each
match

grep -A 3 'error' /
var/log/messages

-B n Shows n lines before each
match

grep -B 2 'error' /
var/log/messages

-C n Shows n lines before and
after each match (context)

grep -C 2 'error' /
var/log/messages

Note: The difference be-
tween basic regular ex-
pressions (used by default
with grep) and extended
regular expressions (used
with grep -E or egrep) is
important. With basic reg-
ular expressions,
metacharacters such as
+, ?, {, }, (,), and | must
be escaped with a back-
slash to be treated as spe-
cial. With extended regular
expressions, these charac-
ters have special meaning
by default.

Let us look at some practical examples that are directly relevant to RHCSA tasks:

Finding all uncommented, non-empty lines in a configuration file:

grep -v '^#' /etc/ssh/sshd_config | grep -v '^$'

This is an incredibly useful pattern. The first grep -v '^#' removes all comment

lines (lines starting with #), and the second grep -v '^$' removes all empty

lines. What remains are only the active configuration directives.

Searching for failed login attempts in the security log:

grep -i 'failed' /var/log/secure | tail -20

Finding all configuration files under /etc that reference a specific IP address:

10

grep -rl '192.168.1.100' /etc/

The Power of sed for Stream Editing
The sed command, short for "stream editor," is a non-interactive text editor that

processes text line by line. It is one of the most powerful tools available for text

transformation, and the RHCSA exam frequently tests your ability to use it for

search-and-replace operations, line deletion, and text insertion.

The basic syntax of sed is:

sed [options] 'command' filename

The most common sed operation is substitution, which follows this pattern:

sed 's/old_pattern/new_pattern/flags' filename

Here is a comprehensive reference table for sed commands and flags:

Command/Flag Description Example

s/old/new/ Substitutes the first occurrence
of "old" with "new" on each line

sed 's/http/https/' con-
fig.txt

s/old/new/g Substitutes all occurrences of
"old" with "new" on each line
(global)

sed 's/old/new/g'
file.txt

s/old/new/gi Global substitution, case-insen-
sitive

sed 's/error/WARNING/gi'
log.txt

-i Edits the file in place (modifies
the original file)

sed -i 's/old/new/g'
file.txt

-i.bak Edits in place but creates a
backup with the specified exten-
sion

sed -i.bak 's/old/new/g'
file.txt

d Deletes lines matching a pattern sed '/^#/d' config.txt

11

p Prints lines matching a pattern
(usually used with -n)

sed -n '/error/p'
log.txt

-n Suppresses automatic printing
of pattern space

sed -n '5,10p' file.txt

a\text Appends text after a matching
line

sed '/pattern/a\new
line' file.txt

i\text Inserts text before a matching
line

sed '/pattern/i\new
line' file.txt

c\text Replaces an entire matching
line with new text

sed '/old line/c\new
line' file.txt

Note: The -i flag is critically important for the RHCSA exam. Without it, sed only

displays the modified output to the terminal without changing the original file.

When the exam asks you to modify a configuration file, you must use -i to make

the changes permanent.

Practical examples relevant to RHCSA tasks:

Changing the default SSH port in the SSH configuration file:

sed -i 's/^#Port 22/Port 2222/' /etc/ssh/sshd_config

Removing all comment lines and empty lines from a configuration file and saving

the result to a new file:

sed '/^#/d;/^$/d' /etc/ssh/sshd_config > /tmp/sshd_clean.conf

Replacing a hostname throughout a configuration file:

sed -i 's/oldserver\.example\.com/newserver.example.com/g' /etc/

hosts

Note: When your search pattern contains special characters such as dots, forward

slashes, or asterisks, you must escape them with a backslash. Alternatively, you can

use a different delimiter. For example, when working with file paths, using | or # as

the delimiter is often cleaner:

12

sed -i 's|/var/log/old|/var/log/new|g' /etc/rsyslog.conf

Text Extraction with cut, awk, and Re-
lated Tools
While grep finds lines and sed transforms them, cut and awk are primarily used

for extracting specific fields or columns from structured text data.

The cut command is simple and efficient for extracting fields from delimited

text:

cut -d: -f1 /etc/passwd

This command uses the colon (:) as a delimiter (-d:) and extracts the first field (-

f1), which is the username in the /etc/passwd file.

Option Description Example

-d Specifies the field delimiter cut -d: -f1 /etc/passwd

-f Specifies which fields to extract cut -d: -f1,3 /etc/pass-
wd

-c Extracts specific character posi-
tions

cut -c1-8 /etc/passwd

-f1-3 Extracts a range of fields cut -d: -f1-3 /etc/pass-
wd

--complement Extracts everything except the
specified fields

cut -d: -f2 --complement
/etc/passwd

The awk command is far more powerful than cut and is essentially a complete pro-

gramming language for text processing. For the RHCSA exam, you need to under-

stand its basic usage for field extraction and conditional processing.

The basic awk syntax is:

13

awk 'pattern { action }' filename

By default, awk uses whitespace (spaces and tabs) as the field delimiter, which

makes it ideal for processing command output:

df -h | awk '{print $1, $5}'

This command runs df -h to show disk usage and then uses awk to print only the

first field (filesystem name) and the fifth field (usage percentage).

Here are more practical awk examples for RHCSA preparation:

Extracting usernames and their shells from /etc/passwd:

awk -F: '{print $1, $7}' /etc/passwd

The -F: option tells awk to use the colon as the field separator, just like cut -d:.

Finding users with UID greater than or equal to 1000 (regular users):

awk -F: '$3 >= 1000 {print $1, $3}' /etc/passwd

This demonstrates awk's ability to perform conditional processing, something that

cut cannot do.

Displaying processes consuming more than 1% CPU:

ps aux | awk '$3 > 1.0 {print $1, $2, $3, $11}'

Sorting, Counting, and Deduplication
The sort, uniq, and wc commands are essential companions to the tools dis-

cussed above. They are frequently used at the end of a pipeline to organize and

summarize results.

14

Command Description Example

sort Sorts lines alphabetically by
default

sort /etc/passwd

sort -n Sorts numerically du -sh /var/log/* \|
sort -n

sort -r Sorts in reverse order sort -r /etc/passwd

sort -t: -k3 -n Sorts by the third field using
colon as delimiter, numerically

sort -t: -k3 -n /etc/
passwd

sort -u Sorts and removes duplicate
lines

sort -u names.txt

uniq Removes adjacent duplicate
lines (input must be sorted)

sort access.log \| uniq

uniq -c Counts occurrences of each
unique line

sort access.log \| uniq
-c

uniq -d Shows only duplicate lines sort file.txt \| uniq
-d

wc -l Counts lines wc -l /etc/passwd

wc -w Counts words wc -w document.txt

wc -c Counts bytes wc -c file.txt

A practical example combining several of these tools to find the top 10 IP address-

es in an Apache access log:

awk '{print $1}' /var/log/httpd/access_log | sort | uniq -c |

sort -rn | head -10

This pipeline extracts the first field (IP address) from each log line, sorts them so

identical IPs are adjacent, counts occurrences of each unique IP, sorts the counts in

reverse numerical order, and displays the top 10.

15

Character Translation and Transforma-
tion with tr
The tr command translates or deletes characters. Unlike most other text process-

ing commands, tr does not accept a filename as an argument. It only reads from

standard input, so you must use it with pipes or input redirection.

echo "Hello World" | tr 'a-z' 'A-Z'

This converts all lowercase letters to uppercase. Common tr operations include:

Operation Description Example

tr 'a-z' 'A-Z' Converts lowercase to upper-
case

echo "hello" \| tr 'a-
z' 'A-Z'

tr 'A-Z' 'a-z' Converts uppercase to lower-
case

echo "HELLO" \| tr 'A-
Z' 'a-z'

tr -d 'character' Deletes all occurrences of a
character

echo "a1b2c3" \| tr -d
'0-9'

tr -s ' ' Squeezes repeated charac-
ters into a single occurrence

echo "hello world"
\| tr -s ' '

tr ':' '\t' Replaces colons with tabs cat /etc/passwd \| tr
':' '\t'

Using tee for Dual Output
The tee command reads from standard input and writes to both standard output

and one or more files simultaneously. This is useful when you want to save the out-

put of a command while also viewing it on the screen or passing it to another com-

mand:

16

grep 'error' /var/log/messages | tee /tmp/errors.txt | wc -l

This command finds all error lines in the messages log, saves them to /tmp/er-

rors.txt, and also counts them. The -a option appends to the file instead of

overwriting it:

grep 'warning' /var/log/messages | tee -a /tmp/errors.txt

Advanced Lab Exercises
The following exercises are designed to simulate the type of text processing tasks

you might encounter on the RHCSA EX200 exam. Work through each one carefully,

and try to complete them without referring back to the explanations above.

Exercise 1: Extracting System Information

Create a script or a single command pipeline that extracts all usernames from /

etc/passwd that have a home directory under /home/, sorts them alphabetically,

and saves the output to /tmp/home_users.txt.

grep '/home/' /etc/passwd | cut -d: -f1 | sort > /tmp/

home_users.txt

Exercise 2: Configuration File Cleanup

Using sed, create a clean version of /etc/ssh/sshd_config that contains no

comment lines (lines starting with #) and no empty lines. Save the output to /tmp/

sshd_active.conf.

sed '/^#/d;/^$/d;/^[[:space:]]*$/d' /etc/ssh/sshd_config > /tmp/

sshd_active.conf

17

Note: The pattern /^[[:space:]]*$/d also removes lines that contain only

whitespace characters, which is a common edge case that the simpler /^$/d

would miss.

Exercise 3: Log Analysis

Write a command that finds all unique dates on which "Failed password" at-

tempts appear in /var/log/secure, counts how many attempts occurred on

each date, and displays the results sorted by count in descending order.

grep 'Failed password' /var/log/secure | awk '{print $1, $2}' |

sort | uniq -c | sort -rn

Exercise 4: In-Place File Modification

The file /etc/issue displays a message before the login prompt. Using sed,

replace the current contents with "Authorized access only." Make sure the change

persists.

echo "Authorized access only." | sudo tee /etc/issue

Alternatively, using sed to replace all content:

sudo sed -i 'c\Authorized access only.' /etc/issue

Exercise 5: Complex Pipeline

Find all installed packages on the system whose names start with "python", ex-

tract only the package names (without version numbers), sort them, remove dupli-

cates, count the total, and display both the list and the count.

rpm -qa | grep '^python' | sed 's/-[0-9].*//' | sort -u | tee /

tmp/python_packages.txt | wc -l

cat /tmp/python_packages.txt

Exercise 6: Field Extraction and Conditional Processing

18

Using awk, display all users from /etc/passwd whose UID is between 1000

and 5000 (inclusive), showing only the username, UID, and default shell, separated

by tabs.

awk -F: '$3 >= 1000 && $3 <= 5000 {print $1"\t"$3"\t"$7}' /etc/

passwd

Exercise 7: Search and Replace with Special Characters

A configuration file at /tmp/app.conf contains the line basedir=/opt/old/

application. Using sed, change this to basedir=/opt/new/application in

place.

First, create the test file:

echo "basedir=/opt/old/application" > /tmp/app.conf

Then perform the replacement using an alternate delimiter:

sed -i 's|basedir=/opt/old/application|basedir=/opt/new/

application|' /tmp/app.conf

Exercise 8: Combining Multiple Tools

Create a report that shows the top 5 largest directories under /var, displaying

only the size and directory name, sorted from largest to smallest.

du -sh /var/*/ 2>/dev/null | sort -rh | head -5

Note: The 2>/dev/null redirects standard error to discard any permission de-

nied messages, which is a common practice in RHCSA exam scenarios.

Exercise 9: Working with Regular Expressions

Find all lines in /etc/passwd where the username contains exactly four char-

acters.

grep -E '^[^:]{4}:' /etc/passwd

19

This uses an extended regular expression that matches exactly four non-colon

characters at the beginning of the line, followed by a colon (the field delimiter).

Exercise 10: Multi-step Text Transformation

Extract the list of all groups from /etc/group, remove any system groups

(GID less than 1000), display only the group name and GID separated by a tab, and

save the result to /tmp/user_groups.txt.

awk -F: '$3 >= 1000 {print $1"\t"$3}' /etc/group | sort -t$'\t'
-k2 -n > /tmp/user_groups.txt

Summary of Key Points for the RHCSA
Exam
When preparing for the RHCSA EX200 exam, remember these critical text process-

ing principles. First, always verify your commands before using the -i flag with

sed. Run the command without -i first to see what changes would be made, and

only add -i when you are confident the output is correct. Second, understand that

uniq requires sorted input to function correctly. If you use uniq without first sort-

ing the data, it will only remove adjacent duplicates, potentially missing duplicates

that are separated by other lines. Third, practice building pipelines incrementally.

Start with the first command, verify its output, then add the next command in the

pipeline, and continue until you have the complete solution. Fourth, remember that

awk is your most versatile tool for field extraction with conditions, while cut is

faster and simpler for straightforward field extraction from delimited files. Fifth, al-

ways consider edge cases such as lines with only whitespace, mixed case text, and

special characters in file paths when constructing your patterns.

20

Mastering these text processing tools will not only help you pass the RHCSA

exam but will also make you a significantly more effective Linux system administra-

tor in your daily work. The ability to quickly extract, transform, and analyze text data

is a skill that you will use every single day in a production Linux environment.

21

Chapter 2: File and Archive
Manipulation Drills

Working with files and archives is one of the most fundamental and frequently test-

ed skill areas on the RHCSA EX200 exam. Every system administrator, regardless of

experience level, spends a significant portion of their daily work creating, copying,

moving, compressing, and extracting files and directories. The RHCSA exam ex-

pects you to perform these tasks quickly, accurately, and without hesitation. This

chapter is designed to take you beyond the basics and into the kind of practical,

hands-on drills that will build the muscle memory you need to succeed on exam

day and in real-world production environments.

Throughout this chapter, you will work through progressively challenging exer-

cises that cover file manipulation commands, hard and soft links, archive creation

and extraction with tar, file compression using multiple utilities, and the critical

skill of finding files based on various criteria. Each section includes detailed expla-

nations, professional examples, and notes that clarify the nuances that often trip up

exam candidates.

Before diving into the exercises, let us establish a solid understanding of the

core commands and concepts you will be working with throughout this chapter.

Understanding the Linux File System and Basic File Operations

In Red Hat Enterprise Linux, everything is treated as a file. Regular files, directo-

ries, device nodes, sockets, and pipes are all represented within the file system hi-

erarchy. The RHCSA exam tests your ability to navigate this hierarchy and manipu-

late its contents efficiently using command-line tools.

22

The following table provides a comprehensive reference of the primary file ma-

nipulation commands you must master for the exam.

Command Purpose Common Options Example

cp Copy files and directo-
ries

-r (recursive), -p (pre-
serve attributes), -a
(archive mode), -v
(verbose)

cp -a /source /
destination

mv Move or rename files
and directories

-f (force), -i (interac-
tive), -v (verbose)

mv oldname.txt
newname.txt

rm Remove files and di-
rectories

-r (recursive), -f
(force), -i (interactive)

rm -rf /tmp/test-
dir

mkdir Create directories -p (create parent di-
rectories), -m (set per-
missions)

mkdir -p /data/
projects/2024

touch Create empty files or
update timestamps

-t (set specific time-
stamp), -a (access
time only)

touch newfile.txt

ln Create links -s (symbolic link), no
option creates hard
link

ln -s /etc/
hosts /tmp/host-
s_link

find Search for files based
on criteria

-name, -type, -size,
-user, -perm, -exec

find / -name
"*.conf" -type f

tar Archive files -c (create), -x (ex-
tract), -t (list), -z
(gzip), -j (bzip2), -J
(xz), -f (file)

tar czf archive.-
tar.gz /data

gzip Compress files using
gzip algorithm

-d (decompress), -k
(keep original), -v (ver-
bose)

gzip largefile.-
log

bzip2 Compress files using
bzip2 algorithm

-d (decompress), -k
(keep original), -v (ver-
bose)

bzip2 largefile.-
log

23

xz Compress files using
xz algorithm

-d (decompress), -k
(keep original), -v (ver-
bose)

xz largefile.log

stat Display detailed file in-
formation

No commonly needed
options for RHCSA

stat /etc/passwd

file Determine file type No commonly needed
options for RHCSA

file /bin/bash

Note: The -a option with cp is equivalent to -dR --preserve=all and is the

most reliable way to copy directories while preserving all attributes including own-

ership, permissions, timestamps, and symbolic links. This is extremely important

when performing backup operations or migrating data between systems, and it is a

detail the RHCSA exam may test you on indirectly.

Working with Hard Links and Symbolic Links

Links are a concept that many RHCSA candidates find confusing at first, but

they are straightforward once you understand the underlying mechanics. In the

Linux file system, every file has an inode, which is a data structure that stores meta-

data about the file such as permissions, ownership, timestamps, and pointers to

the actual data blocks on disk. The filename you see in a directory listing is simply a

pointer to an inode.

A hard link is an additional directory entry that points to the same inode as the

original file. Because both the original filename and the hard link point to the same

inode, they are essentially indistinguishable from each other. Deleting one does

not affect the other. The data is only removed from disk when the last hard link to

an inode is deleted. Hard links cannot span file systems and cannot be created for

directories.

A symbolic link, also called a soft link, is a special file that contains the path to

another file or directory. It is similar to a shortcut in other operating systems. If the

24

target file is deleted, the symbolic link becomes a dangling link that points to noth-

ing. Symbolic links can span file systems and can point to directories.

The following table summarizes the differences between hard links and sym-

bolic links.

Characteristic Hard Link Symbolic Link

Inode Same inode as target Different inode from target

Cross file system Not allowed Allowed

Link to directories Not allowed for regular
users

Allowed

Effect of deleting target Link still works, data pre-
served

Link becomes broken (dan-
gling)

Command to create ln target linkname ln -s target linkname

Identified by ls -l Same as regular file, link
count increases

Shows l file type and arrow
to target

Let us now work through a series of practical exercises that will build your profi-

ciency with these concepts.

Exercise 1: Building a Directory Structure and Populating It with Files

This exercise simulates a common RHCSA task where you must create a specif-

ic directory structure and populate it with files that have particular characteristics.

Begin by creating a working environment for this chapter's exercises.

mkdir -p /lab/chapter2/{projects,archives,backups,logs}

The -p option is essential here because it creates all parent directories in the path

if they do not already exist. Without -p, the command would fail if /lab did not al-

ready exist.

Now create a set of files with specific content inside the projects directory.

25

for i in $(seq 1 10); do echo "This is project file number $i

with sample data for testing purposes" > /lab/chapter2/projects/

project_$i.txt; done

Create some additional files of varying sizes to use in later exercises involving the

find command and compression.

dd if=/dev/urandom of=/lab/chapter2/projects/largefile.bin bs=1M

count=50

dd if=/dev/urandom of=/lab/chapter2/projects/mediumfile.bin bs=1K

count=500

dd if=/dev/urandom of=/lab/chapter2/logs/syslog_sample.log bs=1K

count=200

The dd command is used here to create files of specific sizes. The if parameter

specifies the input file (in this case /dev/urandom for random data), of specifies

the output file, bs sets the block size, and count determines how many blocks to

write. Understanding dd is valuable for the RHCSA exam as it appears in various

contexts including disk operations and file creation.

Verify the structure you have created.

ls -lR /lab/chapter2/

Note: The -R option with ls performs a recursive listing, showing all files and sub-

directories within the specified path. This is a quick way to verify that a directory

structure matches your expectations.

Exercise 2: Practicing with Hard Links and Symbolic Links

Create a hard link to one of the project files.

ln /lab/chapter2/projects/project_1.txt /lab/chapter2/projects/

project_1_hardlink.txt

Now verify that both files share the same inode number.

