Linux File System & Permis-
sions Deep Dive

Understanding Storage Architecture,
Ownership Models, and Advanced Ac-
cess Control

Preface

Every Linux system, from the smallest embedded device to the most powerful
cloud server, rests on a foundation that many administrators take for granted: the
filesystem. It is the silent architecture beneath every command you type, every ser-
vice you deploy, and every security boundary you enforce. Yet for something so
fundamental to Linux, it is remarkably misunderstood—even by experienced practi-
tioners.

This book exists to change that.

Linux File System & Permissions Deep Dive is a focused, thorough exploration
of how Linux organizes, stores, protects, and controls access to data. Whether you
are a junior system administrator trying to understand why a process can't write to
a directory, or a senior engineer designing secure multi-tenant file structures on

Linux, this book was written with you in mind.

Why This Book?

In my years of working with Linux systems, I've observed a recurring pattern: pro-
fessionals learn just enough about filesystems and permissions to get things run-
ning, then move on. The result is a pervasive surface-level understanding that leads
to misconfigured permissions, security vulnerabilities, and hours of frustrating trou-
bleshooting. The Linux filesystem deserves deeper study—not because it is unnec-
essarily complex, but because mastering it unlocks a level of control and confi-

dence that transforms how you work.

What You'll Find Inside

This book is organized into a deliberate progression that mirrors how Linux itself
layers its storage and security abstractions.

Chapters 1-4 build your foundation in Linux filesystem architecture. You'll ex-
plore the Filesystem Hierarchy Standard, understand how inodes and metadata
work beneath the surface, compare ext4 with modern Linux filesystems like XFS
and Btrfs, and master mounting and persistent configuration through /etc/
fstab.

Chapters 5-8 take you deep into the Linux ownership and permission model.
Far beyond a surface review of rwx, these chapters dissect how users, groups, and
ownership interact, how octal and symbolic modes truly work, and how special per-
mission bits like SUID, SGID, and the sticky bit operate in practice.

Chapters 9-10 address Access Control Lists (ACLs)—a powerful but often mis-
used feature of Linux. You'll learn both their limitations and their legitimate produc-
tion use cases.

Chapters 11-15 pivot to security and resilience. Here we examine secure per-
mission strategies, SELinux's interaction with Linux filesystems, systematic ap-
proaches to diagnosing permission errors, filesystem corruption recovery, and the
principles behind designing secure file structures.

Chapter 16 ties everything together, challenging you to think not just as a
sysadmin who uses Linux filesystems, but as a filesystem architect who designs
them with intention.

Finally, Appendices A-E provide quick-reference materials—cheat sheets, refer-
ence tables, troubleshooting checklists, and a curated Linux security learning path

—so this book remains useful long after your first reading.

How to Use This Book

If you're newer to Linux administration, | recommend reading sequentially. Each
chapter builds on the last. If you're more experienced, feel free to jump directly to
the topics that challenge you most—each chapter is designed to stand on its own
when needed.

Throughout the text, you'll encounter real commands, real scenarios, and real
mistakes. This is not an abstract treatment of theory. It is a practical guide ground-

ed in the realities of managing Linux systems in production.

Acknowledgments

This book would not exist without the extraordinary open-source community that
has built and documented Linux over decades. | am indebted to the kernel devel-
opers, distribution maintainers, and countless contributors who have made Linux
the remarkable platform it is today. | also owe deep gratitude to the technical re-
viewers whose sharp eyes and honest feedback strengthened every chapter, and
to the readers of early drafts whose questions revealed what needed to be ex-
plained more clearly.

The Linux filesystem is not just where your data lives. It is where your security
begins, your architecture takes shape, and your expertise is tested. Let's dive deep.

Miles Everhart

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Linux Filesystem Hierarchy Explained
Inodes, Blocks, and Metadata

ext4 and Modern Linux Filesystems
Mounting and Persistent Configuration
Users, Groups, and Ownership

Read, Write, Execute in Depth

Octal and Symbolic Modes Mastery

Special Permission Bits

Understanding ACL Limitations and Benefits

ACL in Production

Secure Permission Strategies
SELinux Interaction with Filesystems
Diagnosing Permission Errors
Filesystem Corruption and Recovery
Designing Secure File Structures
From Sysadmin to Filesystem Architect
chmod / chown / ACL Cheat Sheet
Octal Permission Reference Table
Secure Mount Options Guide
Filesystem Troubleshooting Checklist

Linux Security Learning Path

Page

20

35

49

61

72

87

100
114
129
143
157
171
183
196
211
225
241
253
267
282

Chapter 1: Linux Filesystem
Hierarchy Explained

The moment you open a terminal on a Linux system and type 1s /, you are peer-
ing into the very skeleton of the operating system. Unlike other operating systems
that scatter files across lettered drives and loosely defined folders, Linux organizes
every single file, directory, device, and process reference into a single, unified tree
structure. This tree begins at the root, represented by a single forward slash /, and
branches outward in a carefully designed hierarchy that has been refined over
decades of Unix and Linux development. Understanding this hierarchy is not op-
tional knowledge for anyone who aspires to work with Linux professionally. It is
foundational. Every configuration change, every software installation, every trou-
bleshooting session, and every security audit depends on your ability to navigate
and comprehend where files live and why they live there.

This chapter will walk you through the entire Linux Filesystem Hierarchy Stan-
dard, commonly abbreviated as FHS, explaining every major directory, its purpose,
and the kinds of files you will encounter inside it. Along the way, you will run com-
mands, examine real output, and build the kind of intuitive understanding that sep-

arates a casual user from a confident administrator.

The Root of Everything

In Linux, there is no concept of drive letters like C: or D: that you might encounter

in Windows. Instead, every storage device, every partition, every network share,

and every virtual filesystem is mounted somewhere within a single directory tree.
The very top of that tree is called the root directory, and it is written simply as /.
Every path on a Linux system begins here. When you write /home/alex/docu-
ments/report.txt, you are describing a path that starts at the root, enters the
home directory, then the alex directory, then documents, and finally arrives at the
file report.txt.

To see the top-level contents of this tree on your own system, open a terminal

and run:

1ls /

On a typical Linux distribution, you will see output similar to this:

bin dev home 1ib64 mnt proc run srv tmp var

boot etc 1ib media opt root sbin sys usr

Each of these directories serves a specific, well-defined purpose. The Linux com-
munity, through the Filesystem Hierarchy Standard maintained by the Linux Foun-
dation, has established conventions that virtually all major distributions follow. Let

us now examine each of these directories in detail.

A Complete Map of the Filesystem

The following table provides a comprehensive reference for every major directory
found at the root level of a Linux system. Study this table carefully, as it will serve as

your reference throughout the rest of this book.

Directory Full Name or Meaning

/ Root

/bin Essential User Binaries

/boot Boot Loader Files

/dev Device Files

/etc System Configuration

Purpose and Contents

The top-level directory of the entire
filesystem hierarchy. Everything exists
beneath this single point. It is analo-
gous to the trunk of a tree from which
all branches grow.

Contains fundamental command-line
utilities needed for single-user mode
and basic system operation. Com-
mands like 1s, cp, mv, cat, echo, and
bash reside here. On modern systems
using systemd, this is often a symbolic
link to /usr/bin.

Holds everything required to start the
boot process, including the Linux ker-
nel image (typically named vmlinuz),
the initial RAM disk (initrd or
initramfs), and boot loader configu-
ration files for GRUB or other boot
managers.

Contains special files that represent
hardware devices and virtual devices.
Every hard drive, partition, terminal,
USB device, and even random number
generators appear here as files. For ex-
ample, /dev/sda represents the first
SCSI or SATA disk.

Stores system-wide configuration files
in plain text. This is where you find net-
work settings, user account informa-
tion, service configurations, and startup
scripts. Files like /etc/fstab, /etc/
passwd, and /etc/hostname live
here.

/home

/1lib

/1ib64

/media

/mnt

/opt

User Home Directories

Essential Shared Libraries

64-bit Libraries

Removable Media Mount Points

Temporary Mount Points

Optional Software Packages

Each regular user on the system re-
ceives a personal directory under /
home. For a user named alex, their
home directory would be /home/
alex. Personal files, desktop settings,
shell configurations, and documents
are stored here.

Contains shared library files (similar in
concept to DLL files on Windows) re-
quired by the binariesin /bin and /
sbin. Kernel modules are also stored
in a subdirectory here. On modern sys-
tems, this often links to /usr/1lib.

On 64-bit systems, this directory holds
64-bit versions of essential shared li-
braries. It exists separately to support
systems that may need both 32-bit and
64-bit libraries simultaneously.

When you insert a USB flash drive, CD-
ROM, or external hard drive, the sys-
tem typically mounts it automatically
under /media/username/de-

vice label.Thisis the standard loca-
tion for automatically mounted remov-
able media.

Traditionally used by system adminis-
trators for manually and temporarily
mounting filesystems. If you need to
mount a network share or an additional
partition for a quick task, /mnt is the
conventional location.

Designed for third-party software that
does not follow the standard Linux
packaging conventions. Commercial
applications, proprietary tools, and
self-contained software bundles are of-
ten installed here.

/proc

/root

/run

/sbin

/srv

/sys

Process and Kernel Information A virtual filesystem that does not exist

Root User Home Directory

Runtime Variable Data

System Binaries

Service Data

Kernel and Device Information

on disk. It is generated dynamically by
the kernel and provides a window into
running processes, system hardware
information, and kernel parameters.
Each running process has a numbered
directory here.

The home directory for the root (supe-
ruser) account. Unlike regular users
whose homes are under /home, the
root user's home is placed at /root to
ensure it is available even if the /home
partition fails to mount.

A tmpfs filesystem that stores volatile
runtime data since the last boot.
Process IDs, socket files, and lock files
that should not persist across reboots
are placed here. This directory is
cleared and recreated at every boot.

Contains essential system administra-
tion binaries that typically require root
privileges to run. Commands like
fdisk, mkfs, iptables, reboot, and
shutdown are found here. On modern
systems, this often links to /usr/sbin.

Intended to hold data served by the
system. For example, if the machine
runs a web server, website files might
be placed under /srv/www. If it runs
an FTP server, FTP files might go under
/srv/ftp.

Another virtual filesystem, similar to /
proc, but specifically focused on de-
vice and driver information. It provides
a structured view of the kernel's device
model and allows certain kernel para-
meters to be modified at runtime.

10

/tmp Temporary Files A world-writable directory where any
user or application can store temporary
files. Files here are typically deleted on
reboot or after a set period. The sticky
bit is set on this directory to prevent
users from deleting each other's files.

/usr User System Resources A major secondary hierarchy contain-
ing the bulk of user-space programs, li-
braries, documentation, and shared
data. Subdirectories include /usr/
bin, /usr/lib, /usr/share, and /
usr/local. This is often the largest di-
rectory on the system.

/var Variable Data Stores files that are expected to grow
and change in size over time. Log files
(/var/log), mail spools (/var/mail),
print queues (/var/spool), and
cached package data (/var/cache) all
reside here.

Exploring the Hierarchy in Practice

Reading about directories is one thing. Exploring them with your own hands is an-
other. Let us walk through several practical exercises that will deepen your under-
standing.

Examining the boot directory:

The /boot directory is critical because it contains the files your system needs
before the root filesystem is even fully available. Run the following command to

see its contents:

1ls -1h /boot

You will likely see files like these:

11

-rw-r--r-- 1 root root 89M Mar 15 10:22 initramfs-5.15.0-91-
generic.img

-rw-r--r-- 1 root root 256K Mar 15 10:22 config-5.15.0-91-
generic

-rw-r--r-- 1 root root 12M Mar 15 10:22 vmlinuz-5.15.0-91-
generic

-rw-r--r-- 1 root root 5.8M Mar 15 10:22 System.map-5.15.0-91-

generic

The vmlinuz file is the compressed Linux kernel itself. The initramfs (or ini-
trd) file is a temporary root filesystem loaded into memory during boot to help
the kernel find and mount the real root filesystem. The config file records the op-
tions used when the kernel was compiled. The System.map file maps kernel sym-
bol names to memory addresses, which is useful for debugging.

Exploring the virtual proc filesystem:

The /proc directory is fascinating because none of its files exist on any physi-
cal disk. The kernel generates them on the fly. To see information about your CPU,

run:

cat /proc/cpuinfo

To see how long the system has been running:

cat /proc/uptime

To see current memory usage in a human-readable format:

cat /proc/meminfo

Every running process on your system has a directory inside /proc named after its
process ID. For example, if a process has PID 1 (which is always the init system, typi-

cally systemd on modern distributions), you can examine it:

ls /proc/1

12

You will see files like cmdline, status, environ, £d, and many others, each re-
vealing different aspects of that process.

Investigating the etc directory:

The /etc directory is where system administrators spend a great deal of their

time. Let us look at a few important files:

cat /etc/hostname

This displays the system's hostname. Now examine the filesystem table:

cat /etc/fstab

This file tells the system which filesystems to mount at boot, where to mount them,
and with what options. A typical entry looks like this:

UUID=alb2c3d4-e5f6-7890-abcd-ef1234567890 / extd defaults O
1

This line instructs the system to mount the partition identified by the given UUID at
the root / mountpoint, using the ext4 filesystem type, with default mount options.

To see a list of all user accounts on the system:

cat /etc/passwd

Each line represents one user account, with fields separated by colons. The format

is:

username:password placeholder:UID:GID:comment:home directory:shel
1

For example:

alex:x:1000:1000:Alex Johnson:/home/alex:/bin/bash

This tells us that the user alex has user ID 1000, group ID 1000, a home directory

at /home/alex, and uses the Bash shell.

13

Understanding the var directory:
The /var directory is where your system stores data that changes frequently.
The most commonly accessed subdirectory is /var/log, which contains system

and application log files:

1ls /var/log

You will see files like syslog, auth.log, kern.log, dpkg. log, and directories for

specific services. To view the most recent system log entries:

sudo tail -20 /var/log/syslog

On systems using systemd's journal, you can also use:

journalctl -n 20

Note: The /var/log directory is one of the first places to look when troubleshoot-
ing any issue on a Linux system. Disk space problems are also frequently caused by

log files growing unchecked in this directory.

The Relationship Between /usr and the
Root Directories

One aspect of the Linux filesystem that often confuses newcomers is the apparent
duplication between directories at the root level and their counterparts inside /
usr. You will notice that both /bin and /usr/bin exist, both /1ib and /usr/1lib
exist, and both /sbin and /usr/sbin exist.

Historically, this separation existed for a practical reason. In the early days of
Unix, disk space was extremely limited. The root filesystem was kept on a small, fast
disk containing only the bare essentials needed to boot and perform emergency

maintenance. Everything else, including the bulk of user programs and libraries,

14

was placed on a separate, larger disk mounted at /usr. If the /usr partition failed
to mount, the system could still boot into a minimal state using only the binaries
in /bin and /sbin.

On modern Linux distributions, this separation is largely unnecessary because
disk space is abundant and the boot process is more sophisticated. As a result,
many distributions have adopted a "merged /usr" layout where /bin is simply a
symbolic link to /usr/bin, /sbin links to /usr/sbin, and /1ib links to /usr/

1ib. You can verify this on your system:

ls -la /bin

If you see output like this, your system uses the merged layout:

lrwxrwxrwx 1 root root 7 Mar 10 08:00 /bin -> usr/bin

The /usr directory itself contains several important subdirectories:

Subdirectory Purpose

/usr/bin The primary location for user command binaries
/usr/sbin System administration binaries not needed for boot
/usr/lib Libraries for programs in /usr/bin and /usr/sbin

/usr/local Atertiary hierarchy for locally compiled software, keeping it sepa-
rate from distribution-managed packages

/usr/share Architecture-independent shared data such as documentation,
icons, fonts, and man pages

/usr/include Header files for C and C++ programming, used when compiling
software from source

/usr/src Source code, including kernel source if installed

The /usr/local directory deserves special attention. When you compile software
from source code and install it with make install, the files typically end up in /

usr/local/bin, /usr/local/lib, and /usr/local/share. This convention

15

keeps manually installed software cleanly separated from software managed by

your distribution's package manager, preventing conflicts during system updates.

Virtual Filesystems and Why They Mat-
ter

Two directories in the hierarchy stand out because they do not contain traditional
files stored on disk. The /proc and /sys directories are virtual filesystems, some-
times called pseudo-filesystems, that serve as interfaces to the kernel.

The /proc filesystem, mounted as type proc, has been part of Unix-like sys-
tems for decades. It exposes process information and kernel state as a collection of
readable (and sometimes writable) files. System monitoring tools like top, htop,
ps, and free all read their data from /proc. When you run free -h to check
memory usage, the command is actually parsing /proc/meminfo behind the
scenes.

The /sys filesystem, mounted as type sysfs, is newer and provides a more
structured view of the kernel's device model. It organizes information about de-
vices, drivers, buses, and kernel subsystems into a clean directory hierarchy. Sys-
tem administrators and scripts can read from and write to files in /sys to query
hardware information or change kernel behavior at runtime. For example, to check
the brightness level of a laptop screen or to enable or disable a network interface,
you might interact with files in /sys.

You can verify these virtual filesystems are mounted by running:

mount | grep -E "proc|sysfs"

You will see entries confirming that proc is mounted on /proc and sysfs is

mounted on /sys.

16

Important note: Because /proc and /sys are virtual, they consume no actual
disk space. Running du on them will show zero or minimal sizes, and the "files"

within them are generated on demand by the kernel each time they are read.

Practical Exercises

Exercise 1: Map the Filesystem
Run the following command to display the top two levels of the entire filesys-

tem tree:

tree -L 2 /

If the tree command is not installed, install it first:

sudo apt install tree # Debian/Ubuntu
sudo dnf install tree # Fedora/RHEL
sudo pacman -S tree # Arch Linux

Study the output and identify each top-level directory from the table presented
earlier in this chapter. Note which directories contain the most subdirectories.
Exercise 2: Identify Symbolic Links

Run this command to check whether your system uses a merged /usr layout:
file /bin /sbin /1lib
If these are symbolic links, the output will indicate the target. Record your findings
and explain what this means for where binaries are actually stored on your system.

Exercise 3: Explore a Running Process

Find the PID of your current shell session:

echo $%

Then explore the corresponding directory in /proc:

17

ls /proc/$s/
cat /proc/$$/cmdline
cat /proc/$$/status

Examine the status file and identify the process name, state, parent PID, and
memory usage.

Exercise 4: Analyze Disk Usage by Directory

Run the following command to see how much disk space each top-level direc-

tory consumes:

sudo du -sh /* 2>/dev/null | sort -rh | head -20

This command calculates the size of each directory under /, sorts the results from
largest to smallest, and displays the top 20. Note which directories consume the
most space and consider why. The 2>/dev/null portion suppresses error mes-
sages from virtual filesystems that cannot be measured.

Exercise 5: Read the Filesystem Table

Open the filesystem table and study each entry:
cat /etc/fstab
For each line that is not a comment, identify the device or UUID, the mount point,

the filesystem type, and the mount options. Then compare this with the currently

mounted filesystems:

df -hT

The df command shows disk usage along with filesystem types, letting you verify

that the entries in /etc/fstab match what is actually mounted.

18

Bringing It All Together

The Linux filesystem hierarchy is not a random collection of folders. It is a carefully
designed architecture where every directory has a defined role, and every file has a
logical home. The /bin and /sbin directories hold essential commands. The /
etc directory holds configuration. The /home directory holds user data. The /var
directory holds data that changes over time. The /proc and /sys directories pro-
vide windows into the kernel. The /tmp directory provides scratch space. The /usr
directory holds the bulk of installed software.

When you understand this hierarchy, you stop guessing where files might be
and start knowing where they must be. When a service fails, you know to check its
configuration in /etc and its logs in /var/log. When you need to find a binary,
you know to look in /usr/bin or /usr/sbin. When you need to understand what
hardware the kernel sees, you know to explore /sys and /proc.

This knowledge forms the foundation upon which everything else in this book
is built. In the chapters that follow, we will explore how Linux controls who can ac-
cess these files and directories through its ownership and permission models. But

first, you must know where the files are. Now you do.

19

