
1

Linux Intrusion Detection
with OSSEC & Wazuh

Deploying, Configuring, and Manag-
ing Host-Based Intrusion Detection
Systems

2

Preface

Every Linux server connected to the internet is a target. Whether it hosts a simple

web application or underpins critical enterprise infrastructure, the moment it goes

live, it faces a relentless barrage of automated scans, brute-force attempts, and in-

creasingly sophisticated intrusion campaigns. The question is never if your Linux

systems will be probed—it's whether you'll know when it happens, and whether

you'll be ready to respond.

This book exists to make sure the answer is yes.

Why This Book
Linux Intrusion Detection with OSSEC & Wazuh is a practical, hands-on guide to

deploying, configuring, and managing host-based intrusion detection systems

(HIDS) on Linux. It is written for system administrators, security engineers, and Dev-

Ops professionals who are responsible for protecting Linux environments and who

want to move beyond reactive firefighting toward proactive, intelligence-driven de-

fense.

OSSEC and Wazuh are among the most widely deployed open-source HIDS

platforms in the world, and for good reason. They are powerful, flexible, and pur-

pose-built for the kinds of threats that Linux systems face daily—unauthorized file

modifications, privilege escalation attempts, rootkit installations, log tampering,

and far more. Yet despite their capabilities, many organizations deploy these tools

with default configurations and never unlock their full potential. This book aims to

change that.

3

What You Will Learn
The journey begins with foundational concepts—what intrusion detection is, how

OSSEC and Wazuh are architected, and why host-based detection is an essential

layer in any Linux security strategy. From there, we move into doing: installing OS-

SEC and Wazuh on Linux, configuring agents and log collection, setting up file in-

tegrity monitoring, and tuning rules and alerts to match the realities of your envi-

ronment.

But detection without action is just noise. That's why significant attention is de-

voted to active response—automatically blocking threats at the Linux firewall level

—as well as integration with SIEM platforms, custom rule development, and threat

intelligence feeds. You'll learn not only how to detect suspicious activity on your

Linux hosts but how to build workflows that turn detection into decisive incident re-

sponse.

The later chapters address the challenges that come with maturity and scale:

hardening your IDS infrastructure itself, scaling Wazuh across production Linux en-

vironments, and building repeatable incident response processes. The final chap-

ter offers something more personal—a roadmap for evolving from a Linux system

administrator into a security engineer, with the skills and mindset that transforma-

tion requires.

How This Book Is Structured
Chapters 1 through 4 lay the groundwork with IDS fundamentals and OSSEC es-

sentials. Chapters 5 through 9 dive deep into Wazuh deployment, monitoring, and

active response on Linux. Chapters 10 through 12 expand your detection capabili-

ties through integrations, custom rules, and threat intelligence. Chapters 13

4

through 16 focus on production readiness, security hardening, incident response,

and career growth. The appendices provide quick-reference cheat sheets, rule ex-

amples, checklists, and templates that you'll return to long after your first read.

Each chapter is designed to be actionable. Concepts are illustrated with real

configurations, real rules, and real Linux command-line examples. You can read the

book cover to cover or jump directly to the chapters most relevant to your current

needs.

Acknowledgments
This book would not exist without the extraordinary open-source communities be-

hind OSSEC and Wazuh. Their commitment to building freely available, enterprise-

grade security tools for Linux and beyond has made the world measurably safer. I

am also deeply grateful to the security researchers, Linux administrators, and inci-

dent responders whose published work, blog posts, and conference talks have

shaped my understanding of host-based detection. Finally, my thanks go to every

reader who picks up this book with the intention of making their Linux systems

harder to compromise—you are the front line, and your work matters.

Let's get started.

Bas van den Berg

5

Table of Contents

Chapter Title Page

1 Understanding Intrusion Detection Systems 6

2 OSSEC and Wazuh Architecture 18

3 OSSEC Installation and Initial Setup 34

4 OSSEC Rules and Alerts 49

5 Installing Wazuh Server 65

6 Wazuh Agents and Log Collection 79

7 File Integrity Monitoring (FIM) 98

8 Detecting Suspicious Activity 115

9 Configuring Active Response 132

10 Integrating with Firewalls and SIEM 147

11 Custom Rule Development 164

12 Threat Intelligence Integration 182

13 Scaling Wazuh in Production 201

14 Securing the IDS Infrastructure 217

15 Building an Incident Response Workflow 234

16 From System Administrator to Security Engineer 250

App OSSEC Configuration Cheat Sheet 267

App Wazuh Rule Examples 286

App File Integrity Monitoring Checklist 300

App Incident Response Template 318

App Linux Security Learning Path 330

6

Chapter 1: Understanding In-
trusion Detection Systems

The security of a Linux system is not something that can be achieved through a sin-

gle tool or a one-time configuration. It is an ongoing process, a continuous vigil

that demands awareness, intelligence, and the right set of tools. Among the most

critical components of any serious Linux security infrastructure is the Intrusion De-

tection System, commonly referred to as an IDS. Before we dive into the specifics

of OSSEC and Wazuh in later chapters, it is essential that we build a thorough and

grounded understanding of what intrusion detection systems are, why they matter

in a Linux environment, how they function, and what types exist. This foundational

knowledge will serve as the bedrock upon which every subsequent chapter of this

book is built.

Linux, by its very nature, is the backbone of modern server infrastructure. From

web servers running Apache or Nginx, to database clusters powered by Postgre-

SQL or MariaDB, to containerized microservices orchestrated by Kubernetes, Linux

is everywhere. Its prevalence makes it both a powerful platform and an attractive

target. Attackers know that compromising a single Linux server can yield access to

sensitive data, lateral movement across networks, and persistent footholds in enter-

prise environments. An intrusion detection system is, in many ways, the watchful

eye that never sleeps, monitoring every corner of your Linux infrastructure for signs

of unauthorized access, policy violations, and malicious activity.

7

What Is an Intrusion Detection System
An Intrusion Detection System is a software application or, in some cases, a hard-

ware appliance that monitors a system or network for malicious activities or policy

violations. When suspicious behavior is detected, the IDS generates alerts that are

sent to administrators or collected by a centralized security information and event

management (SIEM) system. The fundamental purpose of an IDS is detection, not

prevention. It observes, analyzes, and reports. Think of it as a sophisticated alarm

system for your Linux infrastructure. It does not lock the doors or block the win-

dows. Instead, it tells you when someone has tried to open them, when a window

has been broken, or when someone is moving through your house who should not

be there.

In a Linux context, an IDS might monitor system log files such as /var/log/

auth.log or /var/log/secure for repeated failed login attempts. It might watch

configuration files like /etc/passwd, /etc/shadow, or /etc/sudoers for unau-

thorized modifications. It might analyze network traffic arriving at a Linux firewall

for patterns that match known attack signatures. The scope of what an IDS can

monitor is broad, and the sophistication of modern IDS tools like OSSEC and

Wazuh makes them indispensable for any Linux administrator who takes security

seriously.

It is important to distinguish between an IDS and an Intrusion Prevention Sys-

tem (IPS). While an IDS passively monitors and alerts, an IPS takes active measures

to block or prevent detected threats. Some tools, including Wazuh, can function in

both capacities, but the conceptual distinction remains important. An IDS tells you

that something bad is happening. An IPS tries to stop it from happening. In prac-

tice, many Linux security architectures employ both, often within the same toolset.

8

Why Linux Systems Need Intrusion De-
tection
There is a persistent and dangerous myth that Linux systems are inherently secure

and do not require the same level of monitoring as other operating systems. While

it is true that Linux benefits from a robust permissions model, a strong community

of security-minded developers, and a transparent open-source codebase, none of

these qualities make a Linux system immune to attack. Misconfigurations, un-

patched vulnerabilities, weak passwords, exposed services, and insider threats are

all realities that affect Linux systems just as they affect any other platform.

Consider the following scenarios that are common in real-world Linux environ-

ments:

A developer accidentally sets the permissions on a sensitive configuration file

to 777, making it world-readable and world-writable. Without an IDS monitoring

file integrity, this misconfiguration could go unnoticed for weeks or months, giving

any user on the system or any attacker who gains even limited access the ability to

read or modify critical settings.

An attacker exploits a known vulnerability in an outdated version of OpenSSH

running on a Linux server. They gain shell access and begin exfiltrating data. With-

out an IDS analyzing authentication logs and detecting anomalous session activity,

the breach might not be discovered until the damage is done.

A disgruntled employee with legitimate access to a Linux database server be-

gins copying customer records to an external storage device. Without behavioral

analysis and log monitoring provided by an IDS, this insider threat could go com-

pletely undetected.

These are not hypothetical situations. They happen every day in organizations

of all sizes. An intrusion detection system provides the visibility necessary to detect

9

these events early, enabling administrators to respond quickly and minimize dam-

age.

Types of Intrusion Detection Systems
Intrusion detection systems are broadly categorized into two primary types, each

with its own strengths, limitations, and ideal use cases. Understanding both types is

critical because tools like OSSEC and Wazuh primarily fall into one category while

also incorporating elements of the other.

The following table provides a comprehensive comparison of the two primary

types of intrusion detection systems:

Characteristic Network-Based IDS (NIDS) Host-Based IDS (HIDS)

Monitoring Scope Monitors network traffic
across a segment or entire
network

Monitors activity on a single
host or endpoint

Data Source Network packets, traffic flows,
protocol analysis

System logs, file integrity,
process activity, system calls

Deployment Location Positioned at network choke-
points such as routers, switch-
es, or firewalls

Installed directly on the Linux
host being monitored

Encrypted Traffic Cannot inspect encrypted
traffic without decryption ca-
pabilities

Can monitor activity regard-
less of encryption since it op-
erates at the host level

Examples Snort, Suricata, Zeek (former-
ly Bro)

OSSEC, Wazuh, AIDE, Trip-
wire

Strengths Broad visibility across net-
work, can detect scanning
and network-level attacks

Deep visibility into host activi-
ty, file changes, rootkit detec-
tion

10

Limitations Blind to encrypted traffic,
cannot see host-level activity

Limited to the host where it is
installed, requires agent de-
ployment

Ideal Use Case Monitoring perimeter traffic,
detecting port scans, DDoS
patterns

Monitoring critical Linux
servers, detecting unautho-
rized file changes, log analy-
sis

Resource Impact Requires dedicated hardware
or VM for traffic capture

Uses resources on the moni-
tored host, though typically
minimal

Linux Relevance Often runs on Linux (Snort on
Ubuntu, Suricata on CentOS)

Designed specifically for
host-level Linux monitoring

A Network-Based Intrusion Detection System, or NIDS, monitors traffic flowing

across a network. It captures and analyzes packets in real time, comparing them

against a database of known attack signatures or analyzing them for anomalous

patterns. A NIDS is typically deployed at strategic points in the network, such as be-

hind a firewall or at the boundary between internal network segments. On Linux,

tools like Snort and Suricata are popular NIDS solutions. They can be installed on a

dedicated Linux machine that has its network interface configured in promiscuous

mode, allowing it to capture all traffic on the network segment rather than just traf-

fic destined for its own IP address.

To configure a network interface in promiscuous mode on a Linux system, you

would use the following command:

sudo ip link set eth0 promisc on

You can verify the configuration with:

ip link show eth0

The output should include the word PROMISC in the flags, indicating that the inter-

face is now capturing all network traffic on the segment.

11

A Host-Based Intrusion Detection System, or HIDS, operates at the individual

host level. It is installed directly on the Linux machine it is tasked with protecting,

and it monitors internal activities such as file system changes, log entries, running

processes, user activity, and system call behavior. OSSEC and Wazuh are both host-

based intrusion detection systems, and they are the primary focus of this book. A

HIDS provides a depth of visibility that a NIDS simply cannot achieve. While a NIDS

can tell you that suspicious traffic was directed at a particular server, a HIDS can tell

you exactly what happened on that server as a result, whether files were modified,

whether new user accounts were created, whether privilege escalation occurred,

and much more.

In a well-architected Linux security environment, both NIDS and HIDS are de-

ployed together to provide comprehensive coverage. The NIDS watches the roads

leading to the castle, while the HIDS watches every room inside it.

Core Detection Methods
Regardless of whether an IDS is network-based or host-based, it employs one or

more detection methods to identify malicious activity. The two primary detection

methods are signature-based detection and anomaly-based detection.

Signature-Based Detection works by comparing observed activity against a

database of known attack patterns, called signatures or rules. Each signature de-

scribes a specific attack or malicious behavior. When the IDS observes activity that

matches a signature, it generates an alert. This method is highly effective at detect-

ing known threats and produces relatively few false positives when the signature

database is well maintained. However, it is completely blind to novel attacks that

do not match any existing signature. On a Linux system running OSSEC, signatures

are defined as rules in XML format and are stored in the rules directory, typically lo-

12

cated at /var/ossec/rules/. A simple OSSEC rule that detects multiple failed

SSH login attempts might look like this:

<rule id="5720" level="10" frequency="6" timeframe="120">

 <if_matched_sid>5716</if_matched_sid>

 <description>Multiple SSH authentication failures.</

description>

 <group>authentication_failures,</group>

</rule>

This rule triggers when rule 5716 (which detects a single SSH authentication fail-

ure) is matched six times within a 120-second window. The alert level is set to 10,

indicating a high-severity event.

Anomaly-Based Detection takes a different approach. Instead of looking for

known patterns, it establishes a baseline of normal behavior and then flags devia-

tions from that baseline as potentially suspicious. For example, if a Linux web

server typically handles 500 requests per minute and suddenly begins receiving

50,000 requests per minute, an anomaly-based system would flag this as abnor-

mal. Similarly, if a user account that normally logs in during business hours from a

specific IP range suddenly logs in at 3:00 AM from a foreign IP address, this devia-

tion from the established baseline would trigger an alert. Anomaly-based detec-

tion can identify novel attacks that have never been seen before, but it is also

prone to higher rates of false positives, especially during the initial learning period

when the baseline is being established.

The following table summarizes the key differences between these detection

methods:

Aspect Signature-Based Detection Anomaly-Based Detection

How It Works Compares activity against known
attack patterns

Compares activity against a
learned baseline of normal be-
havior

13

Strengths Accurate for known threats, low
false positive rate

Can detect unknown and zero-
day attacks

Weaknesses Cannot detect unknown attacks,
requires regular updates

Higher false positive rate, re-
quires training period

Maintenance Signature database must be reg-
ularly updated

Baseline must be periodically re-
calibrated

Linux Example OSSEC rule matching failed SSH
attempts in /var/log/secure

Wazuh detecting unusual
process execution patterns

Best For Environments with well-defined
threat profiles

Environments concerned about
advanced persistent threats

Modern IDS solutions like Wazuh combine both methods, using signature-based

rules for known threats while also incorporating anomaly detection capabilities for

identifying unusual system behavior that might indicate a previously unknown at-

tack.

Key Components of a Linux IDS Archi-
tecture
A complete IDS deployment on Linux involves several interconnected components

that work together to provide comprehensive monitoring and alerting. Under-

standing these components is essential for planning and implementing an effec-

tive intrusion detection strategy.

The Agent is the software component installed on each Linux host that needs

to be monitored. In the context of OSSEC and Wazuh, the agent collects data from

the host, including log files, file integrity information, running processes, and open

ports. It then forwards this data to a central server for analysis. Installing a Wazuh

agent on a Linux system involves adding the Wazuh repository and installing the

agent package:

14

curl -s https://packages.wazuh.com/key/GPG-KEY-WAZUH | gpg --no-

default-keyring --keyring gnupg-ring:/usr/share/keyrings/

wazuh.gpg --import && chmod 644 /usr/share/keyrings/wazuh.gpg

echo "deb [signed-by=/usr/share/keyrings/wazuh.gpg] https://

packages.wazuh.com/4.x/apt/ stable main" | tee /etc/apt/

sources.list.d/wazuh.list

apt-get update

apt-get install wazuh-agent

The Manager or Server is the central component that receives data from all

agents, processes it against the rule set, correlates events across multiple hosts,

and generates alerts. In a typical Linux deployment, the Wazuh manager runs on a

dedicated Linux server, often Ubuntu Server or CentOS/Rocky Linux, and is config-

ured to listen for agent connections on port 1514.

The Rule Engine is the brain of the IDS. It contains the logic that determines

what constitutes suspicious or malicious activity. Rules are typically defined in XML

files and can be customized to match the specific needs of your environment. Both

OSSEC and Wazuh ship with extensive default rule sets that cover common Linux

security events, including SSH brute force attempts, file integrity violations, rootkit

detection, and privilege escalation.

The Decoder is responsible for parsing raw log data into structured fields that

the rule engine can evaluate. When a log entry arrives from a Linux system, the de-

coder extracts relevant information such as the source IP address, the username,

the action performed, and the result. Without proper decoders, the rule engine

would be unable to interpret the raw log data.

The Alert and Reporting System is the output mechanism that communicates

detected threats to administrators. Alerts can be delivered via email, written to log

files, sent to a SIEM system, or displayed in a web-based dashboard. Wazuh inte-

grates with the Elastic Stack (now OpenSearch) to provide a rich, visual dashboard

for exploring and analyzing security events across your entire Linux infrastructure.

15

Practical Exercise: Examining Linux
Logs for Security Events
Before we begin working with OSSEC and Wazuh in the coming chapters, it is valu-

able to understand the raw data that these tools analyze. The following exercise

walks you through examining key Linux log files for common security events.

First, examine the authentication log on a Debian or Ubuntu system:

sudo tail -50 /var/log/auth.log

On Red Hat, CentOS, Rocky Linux, or Fedora systems, the equivalent file is:

sudo tail -50 /var/log/secure

Look for entries that contain phrases like "Failed password," "Invalid user," or "ses-

sion opened." These entries represent the raw data that an IDS like OSSEC or

Wazuh would analyze.

Next, check for recent sudo activity:

sudo grep "sudo" /var/log/auth.log | tail -20

This command filters the authentication log for entries related to sudo usage,

which is a critical area for monitoring privilege escalation.

To examine system messages for potential issues:

sudo tail -100 /var/log/syslog

Or on Red Hat-based systems:

sudo journalctl -n 100 --no-pager

Finally, check the current state of critical system files that an IDS would monitor for

integrity:

16

ls -la /etc/passwd /etc/shadow /etc/sudoers /etc/ssh/sshd_config

Note the permissions, ownership, and modification times of these files. A host-

based IDS continuously monitors these attributes and alerts you when any of them

change unexpectedly.

Note: The exercises in this chapter are designed to build

familiarity with the types

of data that OSSEC and Wazuh analyze. In subsequent chapters, you

will learn how

to automate this monitoring and configure intelligent alerting

based on the events

found in these log files. Keep a record of the output from these

exercises, as it

will serve as a useful reference when we begin configuring IDS

rules.

Preparing for OSSEC and Wazuh
With this foundational understanding of intrusion detection systems firmly estab-

lished, you are now prepared to move into the practical world of OSSEC and

Wazuh. In the chapters that follow, we will install, configure, and tune these power-

ful host-based intrusion detection systems on Linux platforms. We will write custom

rules, configure file integrity monitoring, detect rootkits, integrate with centralized

logging and dashboarding solutions, and build a comprehensive security monitor-

ing infrastructure that can scale from a single Linux server to an enterprise fleet of

thousands of machines.

The key takeaway from this chapter is that intrusion detection is not optional

for any Linux system that handles sensitive data, serves production traffic, or oper-

ates within a regulated environment. The question is not whether your Linux sys-

tems will be targeted, but when, and whether you will have the visibility to detect

17

and respond to that targeting when it occurs. OSSEC and Wazuh provide that visi-

bility, and this book will teach you how to deploy and master them.

18

Chapter 2: OSSEC and
Wazuh Architecture

Understanding the internal architecture of intrusion detection systems is not mere-

ly an academic exercise. It is the foundation upon which every configuration deci-

sion, every deployment strategy, and every troubleshooting session rests. When

you manage Linux servers in production environments, the difference between a

well-understood security tool and a black box can mean the difference between

catching an intrusion in real time and discovering a breach weeks after it has oc-

curred. This chapter takes you deep into the architectural bones of both OSSEC

and Wazuh, explaining how each component functions, how data flows through

the system, and how these tools have been purpose-built to protect Linux in-

frastructure at scale.

The Foundation: Understanding Host-
Based Intrusion Detection on Linux
Before dissecting the specific architectures of OSSEC and Wazuh, it is essential to

understand what a host-based intrusion detection system (HIDS) actually does on a

Linux machine. Unlike network-based intrusion detection systems that monitor traf-

fic flowing across network segments, a HIDS operates directly on the host itself. It

reads log files generated by the Linux kernel, system services, and applications. It

monitors the integrity of critical files stored on Linux filesystems. It watches for

19

changes in system configuration, examines running processes, and detects rootkits

that attempt to hide their presence within the operating system.

On a Linux system, this means the HIDS interacts intimately with components

such as /var/log/syslog, /var/log/auth.log, /etc/passwd, /etc/shadow,

the /proc filesystem, and many other system resources. The architecture of the

HIDS determines how efficiently and reliably it can monitor these resources without

degrading system performance or missing critical events.

Both OSSEC and Wazuh follow a manager-agent architecture model, though

they can also operate in standalone or agentless modes. The manager acts as the

central brain, collecting data from agents deployed on individual Linux hosts, ana-

lyzing that data against rulesets, correlating events across multiple systems, and

triggering alerts or active responses when threats are detected.

OSSEC Architecture in Detail
OSSEC was designed with modularity in mind. Each major function of the intrusion

detection system is handled by a separate daemon or process, and these process-

es communicate with each other through internal Unix sockets and message

queues on the Linux system. This modular design means that if one component en-

counters a problem, it does not necessarily bring down the entire system.

The Core Daemons and Their Roles

The OSSEC architecture comprises several key daemons, each responsible for a

specific aspect of the intrusion detection pipeline. The following table provides a

comprehensive overview of each daemon and its function within the system.

20

Daemon Process Name Function Location

Manager Daemon ossec-maild Handles email alert
notifications and de-
livers formatted alert
messages to config-
ured recipients

Manager only

Analysis Daemon ossec-analysisd The central analysis
engine that decodes,
matches rules, and
correlates events
from all sources

Manager only

Remote Daemon ossec-remoted Listens for incoming
connections from
agents, receives en-
crypted event data,
and passes it to the
analysis engine

Manager only

Syscheck Daemon ossec-syscheckd Performs file integrity
monitoring by scan-
ning configured di-
rectories and com-
paring file check-
sums against stored
baselines

Manager and Agent

Log Collector ossec-logcollector Reads local log files
and command out-
puts, then forwards
them to the analysis
engine or to the
manager

Manager and Agent

Agent Daemon ossec-agentd Runs on monitored
hosts, collects local
data, and transmits it
securely to the man-
ager

Agent only

21

Execution Daemon ossec-execd Executes active re-
sponse commands
when triggered by
the analysis engine,
such as blocking an
IP address with ipta-
bles

Manager and Agent

Monitor Daemon ossec-monitord Monitors the overall
health of the OSSEC
processes and com-
presses old log files

Manager only

Database Daemon ossec-dbd Writes alert data to a
database backend
such as MySQL or
PostgreSQL for long-
term storage and
querying

Manager only (op-
tional)

Data Flow Within OSSEC

Understanding how data moves through the OSSEC system is critical for both con-

figuration and troubleshooting. The data flow begins at the point of collection and

ends with an alert, a log entry, or an active response action.

On a monitored Linux agent, the ossec-logcollector daemon continuously

reads from configured log files. For example, it might be configured to monitor /

var/log/auth.log for authentication events, /var/log/apache2/ac-

cess.log for web server activity, and /var/log/syslog for general system mes-

sages. The log collector reads new entries as they are written to these files, using

inode tracking to handle log rotation gracefully.

Simultaneously, the ossec-syscheckd daemon performs periodic scans of

configured directories. On a typical Linux server, this might include /etc, /usr/

bin, /usr/sbin, and /boot. During each scan, syscheck calculates cryptographic

22

hashes (MD5, SHA1, or SHA256) of each file and compares them against previous-

ly stored values. Any changes in file size, permissions, ownership, or content are

flagged as events.

Both the log collector and syscheck send their collected data to the ossec-

agentd daemon, which encrypts the data using a pre-shared key and transmits it

over UDP port 1514 to the OSSEC manager. This encryption is critical because the

event data may contain sensitive information about the Linux host, including user-

names, IP addresses, and system configurations.

On the manager side, ossec-remoted receives the encrypted data, decrypts

it, and places it into an internal message queue. The ossec-analysisd daemon

then picks up each event from the queue and processes it through a multi-stage

pipeline.

The analysis pipeline works as follows. First, the event is passed through a pre-

decoding phase where common fields such as timestamp, hostname, and program

name are extracted. Then the event enters the decoding phase, where OSSEC

matches the log format against its library of decoders. These decoders use regular

expressions to extract specific fields from the log entry. For example, a decoder for

SSH logs might extract the source IP address, the username, and whether the au-

thentication attempt succeeded or failed.

After decoding, the extracted fields are matched against the ruleset. OSSEC

rules are organized in a hierarchical structure with levels ranging from 0 (ignored)

to 16 (most severe). Rules can be simple pattern matches or complex composite

rules that require multiple conditions to be met within a specified time window.

This is where event correlation happens. For example, a single failed SSH login

might generate a level 5 alert, but ten failed SSH logins from the same IP address

within two minutes might trigger a level 10 alert indicating a brute force attack.

If a rule match results in an alert at or above the configured threshold, the alert

is written to /var/ossec/logs/alerts/alerts.log and optionally sent via

23

email through ossec-maild, written to a database through ossec-dbd, or used

to trigger an active response through ossec-execd.

The active response system deserves special attention because it transforms

OSSEC from a passive detection tool into an active defense mechanism. When os-

sec-execd receives an active response command, it executes a predefined script

on the Linux system. Common active response actions include adding firewall rules

using iptables or nftables to block an attacking IP address, disabling a user

account by modifying /etc/shadow, or running a custom script that performs any

action the administrator has defined.

Example of how OSSEC active response blocks an IP using

iptables

This is executed automatically by ossec-execd when triggered

iptables -I INPUT -s 192.168.1.100 -j DROP

The block is typically temporary, with a timeout configured in

ossec.conf

After the timeout, the reverse command is executed

iptables -D INPUT -s 192.168.1.100 -j DROP

OSSEC Directory Structure on Linux

The installation directory of OSSEC on a Linux system follows a well-organized

structure that reflects its modular architecture.

Directory Path Contents Purpose

/var/ossec/bin Executable binaries Contains all OSSEC daemon bina-
ries and management utilities

/var/ossec/etc Configuration files Houses ossec.conf, the main con-
figuration file, and shared agent
configuration

24

/var/ossec/rules Rule files Contains XML rule definitions used
by the analysis engine

/var/ossec/decoders Decoder files Stores decoder definitions that
parse log formats

/var/ossec/logs Log files and alerts Stores OSSEC's own logs, alert
files, and archived events

/var/ossec/queue Internal queues Used for inter-process communi-
cation between OSSEC daemons

/var/ossec/stats Statistical data Contains hourly and weekly event
statistics

/var/ossec/tmp Temporary files Used during operations such as
agent key exchange

/var/ossec/agentless Agentless scripts Scripts for monitoring systems
where agents cannot be installed

/var/ossec/active-response Response scripts Contains scripts executed during
active response actions

Wazuh Architecture: The Evolution
Wazuh began as a fork of OSSEC and has since evolved into a comprehensive se-

curity platform that retains the core HIDS functionality while adding significant new

capabilities. Understanding the Wazuh architecture requires recognizing both what

it inherited from OSSEC and what it has fundamentally changed or added.

Wazuh Component Overview

Wazuh's architecture is divided into three primary components that work together

to form a complete security monitoring solution. These components are the Wazuh

25

agent, the Wazuh manager (also called the Wazuh server), and the Wazuh indexer

along with the Wazuh dashboard.

The Wazuh agent runs on each monitored Linux host and performs the same

fundamental collection tasks as the OSSEC agent, but with significant enhance-

ments. The agent collects log data, performs file integrity monitoring, detects

rootkits, monitors system inventory, assesses security configuration compliance,

and scans for known vulnerabilities. Each of these functions is handled by a dedi-

cated module within the agent.

Wazuh Agent Module Function Linux-Specific Details

Log Data Collection Reads and forwards log
files and journal entries

Supports both traditional
syslog files and systemd
journal via journalctl inte-
gration

File Integrity Monitoring
(FIM)

Monitors files and directo-
ries for changes in real
time or on schedule

Uses Linux inotify subsys-
tem for real-time monitor-
ing of filesystem events

Rootcheck Scans for rootkits and sys-
tem anomalies

Checks against known Lin-
ux rootkit signatures, ex-
amines /dev, hidden pro-
cesses, and kernel mod-
ules

Syscollector Gathers system inventory
information

Collects installed pack-
ages (dpkg, rpm), running
processes, network inter-
faces, ports, and hardware
information

SCA (Security Configura-
tion Assessment)

Evaluates system configu-
ration against security
benchmarks

Supports CIS benchmarks
for various Linux distribu-
tions including Ubuntu,
CentOS, Red Hat, and De-
bian

