Linux Intrusion Detection
with OSSEC & Wazuh

Deploying, Configuring, and Manag-
ing Host-Based Intrusion Detection
Systems

Preface

Every Linux server connected to the internet is a target. Whether it hosts a simple
web application or underpins critical enterprise infrastructure, the moment it goes
live, it faces a relentless barrage of automated scans, brute-force attempts, and in-
creasingly sophisticated intrusion campaigns. The question is never if your Linux
systems will be probed-it's whether you'll know when it happens, and whether
you'll be ready to respond.

This book exists to make sure the answer is yes.

Why This Book

Linux Intrusion Detection with OSSEC & Wazuh is a practical, hands-on guide to
deploying, configuring, and managing host-based intrusion detection systems
(HIDS) on Linux. It is written for system administrators, security engineers, and Dev-
Ops professionals who are responsible for protecting Linux environments and who
want to move beyond reactive firefighting toward proactive, intelligence-driven de-
fense.

OSSEC and Wazuh are among the most widely deployed open-source HIDS
platforms in the world, and for good reason. They are powerful, flexible, and pur-
pose-built for the kinds of threats that Linux systems face daily—unauthorized file
modifications, privilege escalation attempts, rootkit installations, log tampering,
and far more. Yet despite their capabilities, many organizations deploy these tools
with default configurations and never unlock their full potential. This book aims to

change that.

What You Will Learn

The journey begins with foundational concepts—what intrusion detection is, how
OSSEC and Wazuh are architected, and why host-based detection is an essential
layer in any Linux security strategy. From there, we move into doing: installing OS-
SEC and Wazuh on Linux, configuring agents and log collection, setting up file in-
tegrity monitoring, and tuning rules and alerts to match the realities of your envi-
ronment.

But detection without action is just noise. That's why significant attention is de-
voted to active response—automatically blocking threats at the Linux firewall level
—as well as integration with SIEM platforms, custom rule development, and threat
intelligence feeds. You'll learn not only how to detect suspicious activity on your
Linux hosts but how to build workflows that turn detection into decisive incident re-
sponse.

The later chapters address the challenges that come with maturity and scale:
hardening your IDS infrastructure itself, scaling Wazuh across production Linux en-
vironments, and building repeatable incident response processes. The final chap-
ter offers something more personal—-a roadmap for evolving from a Linux system
administrator into a security engineer, with the skills and mindset that transforma-

tion requires.

How This Book Is Structured

Chapters 1 through 4 lay the groundwork with IDS fundamentals and OSSEC es-
sentials. Chapters 5 through 9 dive deep into Wazuh deployment, monitoring, and
active response on Linux. Chapters 10 through 12 expand your detection capabili-

ties through integrations, custom rules, and threat intelligence. Chapters 13

through 16 focus on production readiness, security hardening, incident response,
and career growth. The appendices provide quick-reference cheat sheets, rule ex-
amples, checklists, and templates that you'll return to long after your first read.
Each chapter is designed to be actionable. Concepts are illustrated with real
configurations, real rules, and real Linux command-line examples. You can read the
book cover to cover or jump directly to the chapters most relevant to your current

needs.

Acknowledgments

This book would not exist without the extraordinary open-source communities be-
hind OSSEC and Wazuh. Their commitment to building freely available, enterprise-
grade security tools for Linux and beyond has made the world measurably safer. |
am also deeply grateful to the security researchers, Linux administrators, and inci-
dent responders whose published work, blog posts, and conference talks have
shaped my understanding of host-based detection. Finally, my thanks go to every
reader who picks up this book with the intention of making their Linux systems
harder to compromise—you are the front line, and your work matters.
Let's get started.

Bas van den Berg

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Understanding Intrusion Detection Systems
OSSEC and Wazuh Architecture
OSSEC Installation and Initial Setup
OSSEC Rules and Alerts

Installing Wazuh Server

Wazuh Agents and Log Collection
File Integrity Monitoring (FIM)
Detecting Suspicious Activity
Configuring Active Response
Integrating with Firewalls and SIEM
Custom Rule Development

Threat Intelligence Integration
Scaling Wazuh in Production
Securing the IDS Infrastructure

Building an Incident Response Workflow

From System Administrator to Security Engineer

OSSEC Configuration Cheat Sheet
Wazuh Rule Examples

File Integrity Monitoring Checklist
Incident Response Template

Linux Security Learning Path

Page

18
34

49

65

79

98

115
132
147
164
182
201
217
234
250
267
286
300
318
330

Chapter 1: Understanding In-
trusion Detection Systems

The security of a Linux system is not something that can be achieved through a sin-
gle tool or a one-time configuration. It is an ongoing process, a continuous vigil
that demands awareness, intelligence, and the right set of tools. Among the most
critical components of any serious Linux security infrastructure is the Intrusion De-
tection System, commonly referred to as an IDS. Before we dive into the specifics
of OSSEC and Wazuh in later chapters, it is essential that we build a thorough and
grounded understanding of what intrusion detection systems are, why they matter
in a Linux environment, how they function, and what types exist. This foundational
knowledge will serve as the bedrock upon which every subsequent chapter of this
book is built.

Linux, by its very nature, is the backbone of modern server infrastructure. From
web servers running Apache or Nginx, to database clusters powered by Postgre-
SQL or MariaDB, to containerized microservices orchestrated by Kubernetes, Linux
is everywhere. Its prevalence makes it both a powerful platform and an attractive
target. Attackers know that compromising a single Linux server can yield access to
sensitive data, lateral movement across networks, and persistent footholds in enter-
prise environments. An intrusion detection system is, in many ways, the watchful
eye that never sleeps, monitoring every corner of your Linux infrastructure for signs

of unauthorized access, policy violations, and malicious activity.

What Is an Intrusion Detection System

An Intrusion Detection System is a software application or, in some cases, a hard-
ware appliance that monitors a system or network for malicious activities or policy
violations. When suspicious behavior is detected, the IDS generates alerts that are
sent to administrators or collected by a centralized security information and event
management (SIEM) system. The fundamental purpose of an IDS is detection, not
prevention. It observes, analyzes, and reports. Think of it as a sophisticated alarm
system for your Linux infrastructure. It does not lock the doors or block the win-
dows. Instead, it tells you when someone has tried to open them, when a window
has been broken, or when someone is moving through your house who should not
be there.

In a Linux context, an IDS might monitor system log files such as /var/log/
auth.logor /var/log/secure for repeated failed login attempts. It might watch
configuration files like /etc/passwd, /etc/shadow, or /etc/sudoers for unau-
thorized modifications. It might analyze network traffic arriving at a Linux firewall
for patterns that match known attack signatures. The scope of what an IDS can
monitor is broad, and the sophistication of modern IDS tools like OSSEC and
Wazuh makes them indispensable for any Linux administrator who takes security
seriously.

It is important to distinguish between an IDS and an Intrusion Prevention Sys-
tem (IPS). While an IDS passively monitors and alerts, an IPS takes active measures
to block or prevent detected threats. Some tools, including Wazuh, can function in
both capacities, but the conceptual distinction remains important. An IDS tells you
that something bad is happening. An IPS tries to stop it from happening. In prac-

tice, many Linux security architectures employ both, often within the same toolset.

Why Linux Systems Need Intrusion De-
tection

There is a persistent and dangerous myth that Linux systems are inherently secure
and do not require the same level of monitoring as other operating systems. While
it is true that Linux benefits from a robust permissions model, a strong community
of security-minded developers, and a transparent open-source codebase, none of
these qualities make a Linux system immune to attack. Misconfigurations, un-
patched vulnerabilities, weak passwords, exposed services, and insider threats are
all realities that affect Linux systems just as they affect any other platform.

Consider the following scenarios that are common in real-world Linux environ-
ments:

A developer accidentally sets the permissions on a sensitive configuration file
to 777, making it world-readable and world-writable. Without an IDS monitoring
file integrity, this misconfiguration could go unnoticed for weeks or months, giving
any user on the system or any attacker who gains even limited access the ability to
read or modify critical settings.

An attacker exploits a known vulnerability in an outdated version of OpenSSH
running on a Linux server. They gain shell access and begin exfiltrating data. With-
out an IDS analyzing authentication logs and detecting anomalous session activity,
the breach might not be discovered until the damage is done.

A disgruntled employee with legitimate access to a Linux database server be-
gins copying customer records to an external storage device. Without behavioral
analysis and log monitoring provided by an IDS, this insider threat could go com-
pletely undetected.

These are not hypothetical situations. They happen every day in organizations

of all sizes. An intrusion detection system provides the visibility necessary to detect

these events early, enabling administrators to respond quickly and minimize dam-

age.

Types of Intrusion Detection Systems

Intrusion detection systems are broadly categorized into two primary types, each

with its own strengths, limitations, and ideal use cases. Understanding both types is

critical because tools like OSSEC and Wazuh primarily fall into one category while

also incorporating elements of the other.

The following table provides a comprehensive comparison of the two primary

types of intrusion detection systems:

Characteristic Network-Based IDS (NIDS)

Monitoring Scope ~ Monitors network traffic
across a segment or entire
network

Data Source Network packets, traffic flows,

protocol analysis

Deployment Location Positioned at network choke-

points such as routers, switch-

es, or firewalls

Encrypted Traffic Cannot inspect encrypted
traffic without decryption ca-
pabilities

Examples Snort, Suricata, Zeek (former-
ly Bro)

Strengths Broad visibility across net-

work, can detect scanning
and network-level attacks

Host-Based IDS (HIDS)

Monitors activity on a single
host or endpoint

System logs, file integrity,
process activity, system calls

Installed directly on the Linux
host being monitored

Can monitor activity regard-
less of encryption since it op-
erates at the host level

OSSEC, Wazuh, AIDE, Trip-
wire

Deep visibility into host activi-
ty, file changes, rootkit detec-
tion

Limitations Blind to encrypted traffic, Limited to the host where it is
cannot see host-level activity installed, requires agent de-

ployment
ldeal Use Case Monitoring perimeter traffic, Monitoring critical Linux
detecting port scans, DDoS servers, detecting unautho-
patterns rized file changes, log analy-
sis
Resource Impact Requires dedicated hardware Uses resources on the moni-
or VM for traffic capture tored host, though typically
minimal
Linux Relevance Often runs on Linux (Snort on Designed specifically for

Ubuntu, Suricata on CentOS) host-level Linux monitoring

A Network-Based Intrusion Detection System, or NIDS, monitors traffic flowing
across a network. It captures and analyzes packets in real time, comparing them
against a database of known attack signatures or analyzing them for anomalous
patterns. A NIDS is typically deployed at strategic points in the network, such as be-
hind a firewall or at the boundary between internal network segments. On Linux,
tools like Snort and Suricata are popular NIDS solutions. They can be installed on a
dedicated Linux machine that has its network interface configured in promiscuous
mode, allowing it to capture all traffic on the network segment rather than just traf-
fic destined for its own IP address.

To configure a network interface in promiscuous mode on a Linux system, you

would use the following command:

sudo ip link set ethO promisc on

You can verify the configuration with:

ip link show ethO

The output should include the word PROMISC in the flags, indicating that the inter-

face is now capturing all network traffic on the segment.

10

A Host-Based Intrusion Detection System, or HIDS, operates at the individual
host level. It is installed directly on the Linux machine it is tasked with protecting,
and it monitors internal activities such as file system changes, log entries, running
processes, user activity, and system call behavior. OSSEC and Wazuh are both host-
based intrusion detection systems, and they are the primary focus of this book. A
HIDS provides a depth of visibility that a NIDS simply cannot achieve. While a NIDS
can tell you that suspicious traffic was directed at a particular server, a HIDS can tell
you exactly what happened on that server as a result, whether files were modified,
whether new user accounts were created, whether privilege escalation occurred,
and much more.

In a well-architected Linux security environment, both NIDS and HIDS are de-
ployed together to provide comprehensive coverage. The NIDS watches the roads

leading to the castle, while the HIDS watches every room inside it.

Core Detection Methods

Regardless of whether an IDS is network-based or host-based, it employs one or
more detection methods to identify malicious activity. The two primary detection
methods are signature-based detection and anomaly-based detection.
Signature-Based Detection works by comparing observed activity against a
database of known attack patterns, called signatures or rules. Each signature de-
scribes a specific attack or malicious behavior. When the IDS observes activity that
matches a signature, it generates an alert. This method is highly effective at detect-
ing known threats and produces relatively few false positives when the signature
database is well maintained. However, it is completely blind to novel attacks that
do not match any existing signature. On a Linux system running OSSEC, signatures

are defined as rules in XML format and are stored in the rules directory, typically lo-

11

cated at /var/ossec/rules/. A simple OSSEC rule that detects multiple failed

SSH login attempts might look like this:

<rule id="5720" level="10" frequency="6" timeframe="120">
<if matched sid>5716</if matched sid>
<description>Multiple SSH authentication failures.</

description>
<group>authentication failures,</group>

</rule>

This rule triggers when rule 5716 (which detects a single SSH authentication fail-
ure) is matched six times within a 120-second window. The alert level is set to 10,
indicating a high-severity event.

Anomaly-Based Detection takes a different approach. Instead of looking for
known patterns, it establishes a baseline of normal behavior and then flags devia-
tions from that baseline as potentially suspicious. For example, if a Linux web
server typically handles 500 requests per minute and suddenly begins receiving
50,000 requests per minute, an anomaly-based system would flag this as abnor-
mal. Similarly, if a user account that normally logs in during business hours from a
specific IP range suddenly logs in at 3:00 AM from a foreign IP address, this devia-
tion from the established baseline would trigger an alert. Anomaly-based detec-
tion can identify novel attacks that have never been seen before, but it is also
prone to higher rates of false positives, especially during the initial learning period
when the baseline is being established.

The following table summarizes the key differences between these detection

methods:

Aspect Signature-Based Detection Anomaly-Based Detection

How It Works Compares activity against known Compares activity against a
attack patterns learned baseline of normal be-
havior

12

Strengths Accurate for known threats, low Can detect unknown and zero-
false positive rate day attacks

Weaknesses Cannot detect unknown attacks, Higher false positive rate, re-
requires regular updates quires training period

Maintenance Signature database must be reg- Baseline must be periodically re-

ularly updated calibrated
Linux Example OSSEC rule matching failed SSH Wazuh detecting unusual
attempts in /var/log/secure process execution patterns
Best For Environments with well-defined Environments concerned about
threat profiles advanced persistent threats

Modern IDS solutions like Wazuh combine both methods, using signature-based
rules for known threats while also incorporating anomaly detection capabilities for
identifying unusual system behavior that might indicate a previously unknown at-

tack.

Key Components of a Linux IDS Archi-
tecture

A complete IDS deployment on Linux involves several interconnected components
that work together to provide comprehensive monitoring and alerting. Under-
standing these components is essential for planning and implementing an effec-
tive intrusion detection strategy.

The Agent is the software component installed on each Linux host that needs
to be monitored. In the context of OSSEC and Wazuh, the agent collects data from
the host, including log files, file integrity information, running processes, and open
ports. It then forwards this data to a central server for analysis. Installing a Wazuh
agent on a Linux system involves adding the Wazuh repository and installing the

agent package:

13

curl -s https://packages.wazuh.com/key/GPG-KEY-WAZUH | gpg —--no-
default-keyring --keyring gnupg-ring:/usr/share/keyrings/
wazuh.gpg --import && chmod 644 /usr/share/keyrings/wazuh.gpg
echo "deb [signed-by=/usr/share/keyrings/wazuh.gpg] https://
packages.wazuh.com/4.x/apt/ stable main" | tee /etc/apt/
sources.list.d/wazuh.list

apt-get update

apt-get install wazuh-agent

The Manager or Server is the central component that receives data from all
agents, processes it against the rule set, correlates events across multiple hosts,
and generates alerts. In a typical Linux deployment, the Wazuh manager runs on a
dedicated Linux server, often Ubuntu Server or CentOS/Rocky Linux, and is config-
ured to listen for agent connections on port 1514.

The Rule Engine is the brain of the IDS. It contains the logic that determines
what constitutes suspicious or malicious activity. Rules are typically defined in XML
files and can be customized to match the specific needs of your environment. Both
OSSEC and Wazuh ship with extensive default rule sets that cover common Linux
security events, including SSH brute force attempts, file integrity violations, rootkit
detection, and privilege escalation.

The Decoder is responsible for parsing raw log data into structured fields that
the rule engine can evaluate. When a log entry arrives from a Linux system, the de-
coder extracts relevant information such as the source IP address, the username,
the action performed, and the result. Without proper decoders, the rule engine
would be unable to interpret the raw log data.

The Alert and Reporting System is the output mechanism that communicates
detected threats to administrators. Alerts can be delivered via email, written to log
files, sent to a SIEM system, or displayed in a web-based dashboard. Wazuh inte-
grates with the Elastic Stack (now OpenSearch) to provide a rich, visual dashboard

for exploring and analyzing security events across your entire Linux infrastructure.

14

Practical Exercise: Examining Linux
Logs for Security Events

Before we begin working with OSSEC and Wazuh in the coming chapters, it is valu-
able to understand the raw data that these tools analyze. The following exercise
walks you through examining key Linux log files for common security events.

First, examine the authentication log on a Debian or Ubuntu system:

sudo tail -50 /var/log/auth.log

On Red Hat, CentOS, Rocky Linux, or Fedora systems, the equivalent file is:

sudo tail -50 /var/log/secure

Look for entries that contain phrases like "Failed password," "Invalid user," or "ses-
sion opened." These entries represent the raw data that an IDS like OSSEC or
Wazuh would analyze.

Next, check for recent sudo activity:

sudo grep "sudo" /var/log/auth.log | tail -20

This command filters the authentication log for entries related to sudo usage,
which is a critical area for monitoring privilege escalation.

To examine system messages for potential issues:

sudo tail -100 /var/log/syslog

Or on Red Hat-based systems:

sudo journalctl -n 100 --no-pager

Finally, check the current state of critical system files that an IDS would monitor for

integrity:

15

1s -la /etc/passwd /etc/shadow /etc/sudoers /etc/ssh/sshd config

Note the permissions, ownership, and modification times of these files. A host-
based IDS continuously monitors these attributes and alerts you when any of them

change unexpectedly.

Note: The exercises in this chapter are designed to build
familiarity with the types

of data that OSSEC and Wazuh analyze. In subsequent chapters, you
will learn how

to automate this monitoring and configure intelligent alerting
based on the events

found in these log files. Keep a record of the output from these
exercises, as it

will serve as a useful reference when we begin configuring IDS

rules.

Preparing for OSSEC and Wazuh

With this foundational understanding of intrusion detection systems firmly estab-
lished, you are now prepared to move into the practical world of OSSEC and
Wazuh. In the chapters that follow, we will install, configure, and tune these power-
ful host-based intrusion detection systems on Linux platforms. We will write custom
rules, configure file integrity monitoring, detect rootkits, integrate with centralized
logging and dashboarding solutions, and build a comprehensive security monitor-
ing infrastructure that can scale from a single Linux server to an enterprise fleet of
thousands of machines.

The key takeaway from this chapter is that intrusion detection is not optional
for any Linux system that handles sensitive data, serves production traffic, or oper-
ates within a regulated environment. The question is not whether your Linux sys-

tems will be targeted, but when, and whether you will have the visibility to detect

16

and respond to that targeting when it occurs. OSSEC and Wazuh provide that visi-

bility, and this book will teach you how to deploy and master them.

17

Chapter 2: OSSEC and
Wazuh Architecture

Understanding the internal architecture of intrusion detection systems is not mere-
ly an academic exercise. It is the foundation upon which every configuration deci-
sion, every deployment strategy, and every troubleshooting session rests. When
you manage Linux servers in production environments, the difference between a
well-understood security tool and a black box can mean the difference between
catching an intrusion in real time and discovering a breach weeks after it has oc-
curred. This chapter takes you deep into the architectural bones of both OSSEC
and Wazuh, explaining how each component functions, how data flows through
the system, and how these tools have been purpose-built to protect Linux in-

frastructure at scale.

The Foundation: Understanding Host-
Based Intrusion Detection on Linux

Before dissecting the specific architectures of OSSEC and Wazuh, it is essential to
understand what a host-based intrusion detection system (HIDS) actually does on a
Linux machine. Unlike network-based intrusion detection systems that monitor traf-
fic flowing across network segments, a HIDS operates directly on the host itself. It
reads log files generated by the Linux kernel, system services, and applications. It

monitors the integrity of critical files stored on Linux filesystems. It watches for

18

changes in system configuration, examines running processes, and detects rootkits
that attempt to hide their presence within the operating system.

On a Linux system, this means the HIDS interacts intimately with components
such as /var/log/syslog, /var/log/auth.log, /etc/passwd, /etc/shadow,
the /proc filesystem, and many other system resources. The architecture of the
HIDS determines how efficiently and reliably it can monitor these resources without
degrading system performance or missing critical events.

Both OSSEC and Wazuh follow a manager-agent architecture model, though
they can also operate in standalone or agentless modes. The manager acts as the
central brain, collecting data from agents deployed on individual Linux hosts, ana-
lyzing that data against rulesets, correlating events across multiple systems, and

triggering alerts or active responses when threats are detected.

OSSEC Architecture in Detail

OSSEC was designed with modularity in mind. Each major function of the intrusion
detection system is handled by a separate daemon or process, and these process-
es communicate with each other through internal Unix sockets and message
queues on the Linux system. This modular design means that if one component en-

counters a problem, it does not necessarily bring down the entire system.

The Core Daemons and Their Roles

The OSSEC architecture comprises several key daemons, each responsible for a
specific aspect of the intrusion detection pipeline. The following table provides a

comprehensive overview of each daemon and its function within the system.

19

Daemon

Manager Daemon

Analysis Daemon

Remote Daemon

Syscheck Daemon

Log Collector

Agent Daemon

Process Name

ossec-maild

ossec-analysisd

ossec-remoted

ossec-syscheckd

ossec-logcollector

ossec-agentd

Function

Handles email alert
notifications and de-
livers formatted alert
messages to config-
ured recipients

The central analysis
engine that decodes,
matches rules, and
correlates events
from all sources

Listens for incoming
connections from
agents, receives en-
crypted event data,
and passes it to the
analysis engine

Location

Manager only

Manager only

Manager only

Performs file integrity Manager and Agent

monitoring by scan-
ning configured di-
rectories and com-
paring file check-
sums against stored
baselines

Reads local log files
and command out-
puts, then forwards
them to the analysis
engine or to the
manager

Manager and Agent

Runs on monitored Agent only

hosts, collects local
data, and transmits it
securely to the man-
ager

20

Execution Daemon ossec-execd Executes active re- Manager and Agent
sponse commands
when triggered by
the analysis engine,
such as blocking an
IP address with ipta-
bles

Monitor Daemon ossec-monitord Monitors the overall Manager only
health of the OSSEC
processes and com-
presses old log files

Database Daemon ossec-dbd Writes alert data to a Manager only (op-
database backend tional)
such as MySQL or
PostgreSQL for long-
term storage and

querying

Data Flow Within OSSEC

Understanding how data moves through the OSSEC system is critical for both con-
figuration and troubleshooting. The data flow begins at the point of collection and
ends with an alert, a log entry, or an active response action.

On a monitored Linux agent, the ossec-logcollector daemon continuously
reads from configured log files. For example, it might be configured to monitor /
var/log/auth.log for authentication events, /var/log/apache2/ac-
cess. log for web server activity, and /var/log/syslog for general system mes-
sages. The log collector reads new entries as they are written to these files, using
inode tracking to handle log rotation gracefully.

Simultaneously, the ossec-syscheckd daemon performs periodic scans of
configured directories. On a typical Linux server, this might include /etc, /usr/

bin, /usr/sbin, and /boot. During each scan, syscheck calculates cryptographic

21

hashes (MD5, SHA1, or SHA256) of each file and compares them against previous-
ly stored values. Any changes in file size, permissions, ownership, or content are
flagged as events.

Both the log collector and syscheck send their collected data to the ossec-
agentd daemon, which encrypts the data using a pre-shared key and transmits it
over UDP port 1514 to the OSSEC manager. This encryption is critical because the
event data may contain sensitive information about the Linux host, including user-
names, IP addresses, and system configurations.

On the manager side, ossec-remoted receives the encrypted data, decrypts
it, and places it into an internal message queue. The ossec-analysisd daemon
then picks up each event from the queue and processes it through a multi-stage
pipeline.

The analysis pipeline works as follows. First, the event is passed through a pre-
decoding phase where common fields such as timestamp, hostname, and program
name are extracted. Then the event enters the decoding phase, where OSSEC
matches the log format against its library of decoders. These decoders use regular
expressions to extract specific fields from the log entry. For example, a decoder for
SSH logs might extract the source IP address, the username, and whether the au-
thentication attempt succeeded or failed.

After decoding, the extracted fields are matched against the ruleset. OSSEC
rules are organized in a hierarchical structure with levels ranging from 0 (ignored)
to 16 (most severe). Rules can be simple pattern matches or complex composite
rules that require multiple conditions to be met within a specified time window.
This is where event correlation happens. For example, a single failed SSH login
might generate a level 5 alert, but ten failed SSH logins from the same IP address
within two minutes might trigger a level 10 alert indicating a brute force attack.

If a rule match results in an alert at or above the configured threshold, the alert

is written to /var/ossec/logs/alerts/alerts.log and optionally sent via

22

email through ossec-maild, written to a database through ossec-dbd, or used
to trigger an active response through ossec-execd.

The active response system deserves special attention because it transforms
OSSEC from a passive detection tool into an active defense mechanism. When os-
sec-execd receives an active response command, it executes a predefined script
on the Linux system. Common active response actions include adding firewall rules
using iptables or nftables to block an attacking IP address, disabling a user
account by modifying /etc/shadow, or running a custom script that performs any

action the administrator has defined.

Example of how OSSEC active response blocks an IP using
iptables

This is executed automatically by ossec-execd when triggered
iptables -I INPUT -s 192.168.1.100 -j DROP

The block is typically temporary, with a timeout configured in
ossec.conf

After the timeout, the reverse command is executed

iptables -D INPUT -s 192.168.1.100 -j DROP

OSSEC Directory Structure on Linux

The installation directory of OSSEC on a Linux system follows a well-organized

structure that reflects its modular architecture.

Directory Path Contents Purpose

/var/ossec/bin Executable binaries Contains all OSSEC daemon bina-
ries and management utilities

/var/ossec/etc Configuration files Houses ossec.conf, the main con-
figuration file, and shared agent
configuration

23

/var/ossec/rules Rule files Contains XML rule definitions used
by the analysis engine

/var/ossec/decoders Decoder files Stores decoder definitions that
parse log formats

/var/ossec/logs Log files and alerts Stores OSSEC's own logs, alert
files, and archived events

/var/ossec/queue Internal queues Used for inter-process communi-
cation between OSSEC daemons

/var/ossec/stats Statistical data Contains hourly and weekly event
statistics
/var/ossec/tmp Temporary files Used during operations such as

agent key exchange

/var/ossec/agentless Agentless scripts Scripts for monitoring systems
where agents cannot be installed

/var/ossec/active-response Response scripts Contains scripts executed during
active response actions

Wazuh Architecture: The Evolution

Wazuh began as a fork of OSSEC and has since evolved into a comprehensive se-
curity platform that retains the core HIDS functionality while adding significant new
capabilities. Understanding the Wazuh architecture requires recognizing both what

it inherited from OSSEC and what it has fundamentally changed or added.

Wazuh Component Overview

Wazuh's architecture is divided into three primary components that work together

to form a complete security monitoring solution. These components are the Wazuh

24

agent, the Wazuh manager (also called the Wazuh server), and the Wazuh indexer
along with the Wazuh dashboard.

The Wazuh agent runs on each monitored Linux host and performs the same
fundamental collection tasks as the OSSEC agent, but with significant enhance-
ments. The agent collects log data, performs file integrity monitoring, detects
rootkits, monitors system inventory, assesses security configuration compliance,
and scans for known vulnerabilities. Each of these functions is handled by a dedi-

cated module within the agent.

Wazuh Agent Module Function Linux-Specific Details
Log Data Collection Reads and forwards log ~ Supports both traditional
files and journal entries syslog files and systemd
journal via journalctl inte-
gration

File Integrity Monitoring ~ Monitors files and directo- Uses Linux inotify subsys-

(FIM) ries for changes in real tem for real-time monitor-
time or on schedule ing of filesystem events

Rootcheck Scans for rootkits and sys- Checks against known Lin-
tem anomalies ux rootkit signatures, ex-

amines /dev, hidden pro-
cesses, and kernel mod-

ules
Syscollector Gathers system inventory Collects installed pack-
information ages (dpkg, rpm), running

processes, network inter-
faces, ports, and hardware
information

SCA (Security Configura- Evaluates system configu- Supports CIS benchmarks

tion Assessment) ration against security for various Linux distribu-
benchmarks tions including Ubuntu,
CentOS, Red Hat, and De-
bian

25

