Hands-On Azure PowerShell
Lab Workbook

60 Automation Scenarios for Manag-
ing, Automating, and Securing Azure
with PowerShell (Az Module)

Preface

Why This Book Exists

The cloud doesn't wait for you to finish reading documentation. It moves fast, it
changes constantly, and it rewards those who can do—not just those who can de-
scribe. That conviction is the beating heart of this book.

Hands-On Azure PowerShell Lab Workbook was born from a simple obser-
vation: too many Azure professionals understand concepts in theory but freeze
when they open a terminal. They can explain what a Network Security Group does
but can't script one from scratch. They know backups matter but have never auto-
mated a recovery vault with code. This book exists to close that gap—permanently—
through 60 structured, hands-on labs that put your fingers on the keyboard and

keep them there.

Who This Book Is For

This workbook is designed for Azure administrators, DevOps engineers, cloud
architects, and IT professionals who want to move beyond portal clicking and
into the world of PowerShell-driven automation using the Az module. Whether
you're preparing for a certification, transitioning into a cloud role, or looking to
sharpen your production scripting skills, the hands-on approach of this book meets

you where you are and pushes you forward.

You don't need to be a PowerShell expert to begin. You will be a far more capa-

ble one by the end.

What Makes This Book Different

This is not a reference manual. It is not a theory textbook. It is a hands-on lab
workbook—every chapter is built around practical scenarios you will encounter in
real Azure environments. Each lab presents a clear objective, walks you through
the automation step by step, and challenges you to extend what you've built. The
learning happens in the doing.

The 60 labs span the full spectrum of Azure administration:

- Chapters 1-3 establish your hands-on lab environment, introduce gov-
ernance fundamentals like resource groups, tags, and policies, and dive
into identity automation with Azure AD.

- Chapters 4-6 tackle core infrastructure—networking, virtual machine
provisioning, and storage automation—through progressively complex
hands-on exercises.

- Chapters 7-9 shift focus to operational excellence: security hardening,
observability, and backup automation, all scripted and repeatable.

- Chapters 10-12 elevate your craft. You'll learn to write professional-
grade automation scripts, implement scaling operations, and execute
real-world end-to-end projects that mirror production deployments.

- Appendices A-E serve as your ongoing toolkit: cheat sheets, naming
standards, script templates, a troubleshooting guide, and a 60-lab

progress tracker so you can measure every hands-on milestone.

The Philosophy Behind the Labs

Every lab in this book follows a principle | hold deeply: you learn cloud au-
tomation by automating the cloud. Passive reading builds familiarity; hands-on
practice builds competence. Each scenario is designed to be safe enough to ex-
periment with and realistic enough to matter. You will make mistakes in these labs—
and that is by design. The troubleshooting guide in Appendix D exists because de-

bugging is not a failure; it is the most valuable hands-on learning you'll do.

How to Use This Book

Start with Chapter 1 to configure your lab environment safely. Then work through
the labs sequentially or jump to the chapters most relevant to your immediate
needs. Use the progress tracker in Appendix E to hold yourself accountable. Most
importantly: type every command yourself. Copy-pasting teaches your clip-
board. Typing teaches your brain.

The terminal is open. The labs are waiting.

Let's get hands-on.

Laszlo Bocso (MCT)

Table of Contents

Chapter Title Labs Page
1 Lab Environment and Safety Labs 1-3 6

2 Resource Groups, Tags, and Policy Mindset ~ Labs4-9 14
3 Azure ldentity Automation Labs 10-12 22
4 VNets, Subnets, NSGs, and Routing Labs 13-15 31
5 VM Provisioning, Operations, and Automation Labs 16-20 37
6 Storage Accounts, Blobs, Files, and Lifecycle Labs 21-24 46
7 Hardening and Security Automation Labs 25-30 52
8 Observability Automation Labs 31-36 62
9 Backup Automation Labs 37-40 68
10 Writing Professional Azure Automation Scripts Labs 41-45 75
11 Scaling Operations Labs 46-50 87
12 Real-World End-to-End Projects Labs 51-60 94
App A Az Command Cheat Sheet (Admin Edition) - 113
App B Tagging & Naming Standard Templates - 118
App C Script Templates (Baseline RG/VNet/VM) - 121
App D Troubleshooting Guide - 124

App E 60-Lab Progress Tracker (Checklist) - 127

Chapter 1: Lab Environment
and Safety

Labs 1-3

Before you begin automating, managing, and securing Azure resources

through PowerShell, you must establish a solid foundation. This chapter walks you

through every step of preparing your environment, understanding the tools at your

disposal, and adopting the safety mindset that separates a competent Azure ad-

ministrator from a reckless one.

Understanding the Lab Environment

Architecture

Component

Azure Subscription

Resource Groups

Azure PowerShell Az Mo-
dule

Purpose

Billing and access bound-
ary

Logical containers for re-
sources

Why It Matters

Every command targets a
specific subscription. A
dedicated lab subscription
prevents accidental pro-
duction changes.

Labs use dedicated re-
source groups for easy cre-
ate, manage, and tear-
down.

Official module for manag- Your primary tool through-

ing Azure

out all 60 labs.

PowerShell 7.x Cross-platform PowerShell Consistent behavior across
Windows, macOS, and Lin-
UX.

Azure Cloud Shell Browser-based shell Backup environment with
pre-installed tools.

Visual Studio Code Code editor with Power- IntelliSense, debugging,
Shell extension integrated terminal.

Cost Management and Spending controls Prevents unexpected

Budgets charges during labs.

Tags and Naming Conven- Metadata and standard- Every lab resource is iden-

tions ized names tifiable and cleanable.

Lab 1: Installing and Configuring the
Az PowerShell Module

Objective: Install PowerShell 7.x and the Az module, configure execution policy,
and verify the complete toolchain.

Check your current PowerShell version:

SPSVersionTable.PSVersion

If the Major version is 5 or lower, install PowerShell 7. On Windows:

winget install --id Microsoft.PowerShell --source winget

On macOS:

brew install powershell/tap/powershell

On Linux (Ubuntu):

sudo apt-get update
sudo apt-get install -y powershell

Launch PowerShell 7 and verify:

pwsh

SPSVersionTable.PSVersion

You should see output similar to:

Major Minor Patch PreReleaselabel BuildLabel

Set the execution policy if needed:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope

CurrentUser

Install the Az module:

Install-Module -Name Az -Repository PSGallery -Force
-AllowClobber -Scope CurrentUser

Parameter Explanation
-Name Az The umbrella module including all Azure sub-mod-
ules

-Repository PSGallery Official public repository
-Force Overwrites existing installation without prompting

-AllowClobber Permits installation even if cmdlet names conflict with
other modules

-Scope CurrentUser Does not require administrator privileges

Verify the installation:

Get-InstalledModule -Name Az
Get-Module -Name Az.* -ListAvailable | Select-Object Name,
Version | Sort-Object Name

Set up Visual Studio Code:

code --install-extension ms-vscode.powershell

Create your workspace:

New-Item -Path "SHOME/AzurePowerShelllLabs" -ItemType Directory
-Force
New-Item -Path "SHOME/AzurePowerShelllLabs/Chapter01" -ItemType

Directory -Force

Lab 2: Authenticating to Azure and
Managing Contexts

Objective: Authenticate to Azure, understand contexts, switch subscriptions, and
explore authentication methods.

Initiate interactive login:

Connect—-AzAccount

Confirm your context:

Get-AzContext

List all available subscriptions:

Get-AzSubscription | Format-Table Name, Id, State

Switch to your lab subscription:

Set-AzContext -SubscriptionName "Your-Lab-Subscription-Name"

Or by ID:

Set-AzContext -Subscriptionld "XXXXXXXX—XXXX-XXXX-XXXX-—

XXXXXXXXXXKXX"
Authentication Method Use Case Command
Interactive Login Daily lab work Connect-AzAccount
Service Principal Automated scripts and Cl/ Connect-AzAccount
CD -ServicePrincipal
-Credential Scred
-Tenant $tenantId
Managed Identity Scripts inside Azure VMs Connect-AzAccount
-Identity
Device Code Flow No browser available Connect-AzAccount

-UseDeviceAuthentica-
tion

Lab 3: Setting Up the Lab Environment
with Cost Controls and Safety

Objective: Create a dedicated lab resource group, configure budget alerts, imple-
ment safety practices, and build a verification script.

Create your primary lab resource group:

New-AzResourceGroup -Name "rg-lab-powershell-001" -Location

"eastus" -Tag @{

Environment = "Lab"

Project = "AzurePowerShellWorkbook"
Owner = "YourName"

CreatedBy = "PowerShell"

Verify creation:

10

Get-AzResourceGroup -Name "rg-lab-powershell-001" | Format-List

Check current spending:

Get-AzConsumptionUsageDetail -StartDate (Get-Date) .AddDays (-7)
-EndDate (Get-Date) |
Select-Object InstanceName, ConsumedService, PretaxCost |
Sort-Object PretaxCost -Descending |

Format-Table -AutoSize

Create a budget:

SstartDate = Get-Date -Day 1 -Hour 0 -Minute 0 -Second 0
SendDate = S$startDate.AddYears (1)

New-AzConsumptionBudget -Name "LabBudget"
—-Amount 50
-Category "Cost"
-TimeGrain "Monthly"
-StartDate S$startDate
-EndDate SendDate
-ContactEmail @ ("your-email@example.com")
-NotificationKey "Alertl"
-NotificationEnabled
-NotificationThreshold 50

Threshold Action

50% Review running resources

80% Delete resources from completed labs
100% Stop all lab work, audit every resource

Practice safety commands:

Preview destructive commands with -WhatIf

Remove-AzResourceGroup -Name "rg-lab-powershell-001" -WhatIf

Require confirmation with -Confirm

11

Remove-AzVM -ResourceGroupName "rg-lab-powershell-001" -Name "vm-

test-001" -Confirm

Lock resources against accidental deletion
New-AzResourceLock -LockLevel CanNotDelete
-LockName "ProtectLab"

-ResourceGroupName "rg-lab-powershell-001"

-LockNotes "Prevent accidental deletion during active labs"

Remove lock when ready to clean up

Slock = Get-AzResourcelLock -ResourceGroupName "rg-lab-

powershell-001"

Remove-AzResourcelLock -LockId $lock.LockId -Force

Audit resources and clean up

Get-AzResource —-ResourceGroupName "rg-lab-powershell-001" |

Format-Table Name, ResourceType, Location

Remove-AzResourceGroup —-Name "rg-lab-powershell-001" -Force

-AsJob

Safety Command Purpose When to Use

-WhatIf Simulates without changes Before any destructive opera-
tion

-Confirm Prompts for confirmation When uncertain about target
resources

New-AzResourceLock Prevents deletion On resources that must not be
removed

Get-AzResource Lists all resources Beginning and end of every
lab

-AsJob Runs in background During long operations like
deletion

Build and run the verification script:

Write-Host "=== Lab Environment Verification ==="

-ForegroundColor Cyan

12

Write-Host ""'n[l] PowerShell Version:" -ForegroundColor Yellow
SPSVersionTable.PSVersion | Format-Table

Write-Host "[2] Az Module Version:" -ForegroundColor Yellow
Get-InstalledModule -Name Az | Select-Object Name, Version |
Format-Table

Write-Host "[3] Azure Connection:" -ForegroundColor Yellow
Scontext = Get-AzContext
1f (Scontext) {

Write-Host " Connected to: $($context.Subscription.Name)"

-ForegroundColor Green

Write-Host " Subscription ID: $(Scontext.Subscription.Id)"
-ForegroundColor Green

Write-Host " Tenant ID: $(Scontext.Tenant.Id)"
-ForegroundColor Green
} else {

Write-Host " ©Not connected. Run Connect-AzAccount."

-ForegroundColor Red

}

Write-Host ""'n[4] Lab Resource Group:" -ForegroundColor Yellow
Srg = Get-AzResourceGroup -Name "rg-lab-powershell-001"
-ErrorAction SilentlyContinue
if (Srg) |

Write-Host " Resource Group exists in $(Srg.Location)"
-ForegroundColor Green

Write-Host " Tags: $($rg.Tags | ConvertTo-Json -Compress)"

-ForegroundColor Green

} else {
Write-Host " Resource group not found. Create it before
proceeding." -ForegroundColor Red
}
Write-Host ""'n[5] Execution Policy:" -ForegroundColor Yellow

Get-ExecutionPolicy -List | Format-Table

Write-Host " 'n=== Verification Complete ===" -ForegroundColor

Cyan

Save as Verify-LabEnvironment.psl and run it. Every item should show green.

13

Chapter 2: Resource Groups,
Tags, and Policy Mindset

Labs 4-9
Every well-architected Azure environment begins with a solid organizational
foundation. This chapter takes you deep into the hands-on practice of working with

Resource Groups, Tags, and Azure Policy through PowerShell.

Cmdlet Purpose Common Parameters
New-AzResourceGroup Creates a new Resource -Name, -Location, -Tag
Group

Get-AzResourceGroup Retrieves Resource Groups -Name, ~Location, -Tag

Set-AzResourceGroup Updates properties -Name, -Tag
Remove-AzResource- Deletes a Resource Group -Name, -Force, ~AsJob
Group and all contents
Get-AzResource Lists all resourcesin a -ResourceGroupName,
scope —-ResourceType, -Tag
New-AzTag Creates or updates tags -Resourceld, -Tag
Get-AzTag Retrieves tag information -Name, ~-ResourcelId
Remove-AzTag Removes tags -Resourceld, -Tag

14

Lab 4: Creating and Managing Re-
source Groups

Objective: Create multiple resource groups following naming conventions, query

and filter them with PowerShell.

New-AzResourceGroup -Name "rg-dev-project-alpha" -Location
"eastus"

New-AzResourceGroup -Name "rg-staging-project-alpha" -Location
"eastus"

New-AzResourceGroup -Name "rg-prod-project-alpha" -Location

"eastus"

Verify:

Get-AzResourceGroup | Where-Object { $.ResourceGroupName -like
"*project-alpha*" } |

Format-Table ResourceGroupName, Location, ProvisioningState

Lab 5: Working with Tags at Scale

Objective: Apply comprehensive tag sets to resource groups and query by tag.

Stags = @{
"Environment" = "Development"
"Project" = "Alpha"
"Owner" = "CloudOps Team"
"CostCenter" = "CC-4200"
"CreatedBy" = "PowerShell Automation"

Set-AzResourceGroup -Name "rg-dev-project-alpha" -Tag S$tags

SstagingTags = @{
"Environment" = "Staging"

"Alpha"

"Project"

15

"Owner" = "CloudOps Team"
"CostCenter" = "CC-4200"

"CreatedBy" = "PowerShell Automation"

SprodTags = @{

"Environment" = "Production"

"Project" = "Alpha"

"Owner" = "CloudOps Team"
"CostCenter" = "CC-4200"

"CreatedBy" = "PowerShell Automation"

Set-AzResourceGroup -Name "rg-staging-project-alpha" -Tag
$SstagingTags
Set-AzResourceGroup -Name "rg-prod-project-alpha" -Tag SprodTags

Verify and query:
(Get-AzResourceGroup -Name "rg-dev-project-alpha").Tags

Get-AzResourceGroup -Tag @{ "Project" = "Alpha" } |

Format-Table ResourceGroupName, Location

Note: Tags are not inherited by default. Tagging a Resource Group does not auto-

matically tag its child resources. Use Azure Policy to enforce tag inheritance.

Lab 6: Bulk Tagging with PowerShell
Loops

Objective: Write a script that adds a mandatory tag to every resource group miss-
ing it, while preserving existing tags.

SallResourceGroups = Get-AzResourceGroup

foreach ($rg in SallResourceGroups) {

ScurrentTags = S$Srg.Tags

16

if (Snull -eq S$currentTags) {

ScurrentTags = @{}

if (-not ScurrentTags.ContainsKey ("ManagedBy")) {
ScurrentTags["ManagedBy"] = "CloudOps"
Set-AzResourceGroup -Name S$rg.ResourceGroupName -Tag
ScurrentTags
Write-Output "Added 'ManagedBy' tag to $
(Srg.ResourceGroupName) "
} else {
Write-Output "'ManagedBy' tag already exists on $
(Srg.ResourceGroupName) "

}

Note: Always retrieve existing tags before modifying. Set-AzResourceGroup
-Tag replaces the entire tag collection. Forgetting this is the number one cause of

accidentally deleted tags.

Lab 7: Generating a Tag Compliance
Report

Objective: Build a compliance report that identifies resource groups missing re-

quired tags and export it to CSV.

SrequiredTags = @ ("Environment", "Project", "Owner",
"CostCenter")
Sreport = @)

SallResourceGroups = Get-AzResourceGroup

foreach (Srg in $allResourceGroups) {

SmissingTags = @ ()

17

foreach (SrequiredTag in S$requiredTags) {
if (Snull -eq $rg.Tags -or -not
Srg.Tags.ContainsKey (SrequiredTag)) {

SmissingTags += SrequiredTag

Sreport += [PSCustomObject]@{

ResourceGroupName = S$rg.ResourceGroupName
Location = Srg.Location
TotalTags = if ($null -ne Srg.Tags)

(@)

{ Srg.Tags.Count } else { }

MissingTags = if ($missingTags.Count -gt 0)
{ SmissingTags -join ", " } else { "None" }
Compliant = if ($missingTags.Count -eq 0) { "Yeg"
} else { "No" }
}
}
Sreport | Format-Table -AutoSize

Sreport | Export-Csv -Path ".\TagComplianceReport.csv"

-NoTypeInformation

Lab 8: Assigning and Managing Azure
Policy

Objective: Explore built-in policy definitions, assign a tag enforcement policy us-
ing splatting, and test enforcement.

Explore built-in tag policies:

Get-AzPolicyDefinition -BuiltIn |
Where-Object { $.Properties.DisplayName -like "*tag*" } |
Select-Object —-Property

@{N='DisplayName';E={$S .Properties.DisplayName}},

@{N='Description';E={$.Properties.Description}} |

18

Format-Table -Wrap

Assign a policy requiring the CostCenter tag:
SpolicyDefinition = Get-AzPolicyDefinition -BuiltIn |

Where-Object { $.Properties.DisplayName -eq "Require a tag

on resource groups" }

Ssubscription = Get-AzSubscription | Select-Object -First 1

SassignmentParams = (@{
Name = "require-costcenter-tag-rg"
DisplayName = "Require CostCenter tag on Resource
Groups"
Description = "This policy requires all Resource

Al

Groups to have a CostCenter tag.
PolicyDefinition = SpolicyDefinition
Scope = "/subscriptions/$ (Ssubscription.Id)"
PolicyParameterObject = @{

tagName = "CostCenter"

New-AzPolicyAssignment (@assignmentParams

Check compliance:

Get-AzPolicyState -SubscriptionId S$subscription.Id |
Where-Object { $.ComplianceState -eqg "NonCompliant" } |
Select-Object Resourceld, PolicyAssignmentName,

ComplianceState |
Format-Table -AutoSize

19

Lab 9: Creating Custom Policy Defini-

tions and Cleanup

Objective: Create a custom audit policy, assign it, then clean up all resources and

policy assignments.

Create the custom policy:

SpolicyRule = @'
{

"ifT: |
"allof": [
{
"field": "type",
"equals": "Microsoft.Resources/subscriptions/
resourceGroups"
by
{
"field": "tags['Owner']",
"exists": "false"
}
]
br
"then": {
"effect": "audit"
}
}
'@
ScustomPolicyParams = (@/{
Name = "audit-missing-owner-tag"
DisplayName = "Audit Resource Groups missing Owner tag"
Description = "This policy audits any Resource Group that

does not have an Owner tag."
SpolicyRule
"All "

Policy
Mode

New-AzPolicyDefinition (@customPolicyParams

20

ScustomPolicy = Get-AzPolicyDefinition -Name "audit-missing-

owner-tag"

New-AzPolicyAssignment -Name "audit-owner-tag-assignment"
-DisplayName "Audit missing Owner tag on Resource Groups"
-PolicyDefinition S$ScustomPolicy

-Scope "/subscriptions/$ ($Ssubscription.Id)"

Cleanup:

SgroupsToDelete = @ ("rg-dev-project-alpha", "rg-staging-project-
alpha", "rg-prod-project-alpha™)

foreach (SgroupName in $groupsToDelete) {
Remove-AzResourceGroup -Name S$groupName -Force -AsJob

Write-Output "Deletion initiated for S$SgroupName"
Get-Job | Format-Table Name, State, HasMoreData
Remove-AzPolicyAssignment -Name "require-costcenter-tag-rg"

Remove-AzPolicyAssignment —-Name "audit-owner-tag-assignment”

Remove-AzPolicyDefinition -Name "audit-missing-owner-tag" -Force

Concept Key Takeaway

Resource Groups Every resource must belong to exactly one. Logical contain-
ers for lifecycle management.

Naming Conventions Use prefixes like rg- and include environment and project

identifiers.

Tags Not inherited by child resources. Always retrieve before
modifying.

Azure Policy Enables mandatory enforcement. Effects: Deny, Audit, Modi-
fy.

Splatting Use hashtables with @ prefix for clean parameter passing.

Background Jobs Use -AsJob for long-running operations.

21

Chapter 3: Azure Identity Au-
tomation

Labs 10-12
Identity management is the cornerstone of every secure cloud environment.
This chapter covers bulk user provisioning, RBAC role assignments, and service

principal management.

Lab 10: Bulk Creating Azure AD Users
with PowerShell

Objective: Create a bulk user provisioning script that reads from a CSV and cre-
ates Azure AD users programmatically.

Install and connect to Microsoft Graph:

Install-Module -Name Microsoft.Graph -Scope CurrentUser -Force
Connect-MgGraph -Scopes "User.ReadWrite.All",
"Directory.ReadWrite.Al1l"

Create NewUsers.csv:

DisplayName,UserPrincipalName,MailNickname, Department, JobTitle, Us
ageLocation

Sarah

Mitchell, sarah.mitchell@yourdomain.onmicrosoft.com, sarah.mitchell
,Engineering, Software Engineer,US

James

Rodriguez, james.rodriguez@yourdomain.onmicrosoft.com, james.rodrig

uez,Marketing,Marketing Analyst,US

22

Priya
Sharma,priya.sharma@yourdomain.onmicrosoft.com,priya.sharma,Finan
ce,Financial Analyst,US

David
Chen,david.chen@yourdomain.onmicrosoft.com,david.chen,Engineering
, DevOps Engineer, US

Emma

Thompson, emma.thompson@yourdomain.onmicrosoft.com, emma.thompson, H

uman Resources,HR Specialist,US

Field Description Required
DisplayName Full name in directory Yes
UserPrincipalName Sign-in name in email format Yes
MailNickname Mail alias Yes
Department Organizational department No

JobTitle Professional title No
Usagelocation Two-letter ISO country code Yes for licensing

Bulk provisioning script:

ScsvPath = ".\NewUsers.csv"

Susers = Import-Csv -Path S$csvPath

SpasswordProfile = @{

Password = "TempP@sswOrd2024!"
ForceChangePasswordNextSignIn = S$true

}

SsuccessCount = 0

SfailCount = 0
Sresults = @ ()

foreach (Suser in Susers) {
try {
SnewUser = New-MgUser -DisplayName Suser.DisplayName
-UserPrincipalName S$Suser.UserPrincipalName

-MailNickname Suser.MailNickname

23

-Department S$Suser.Department
-JobTitle Suser.JobTitle
-UsagelLocation Suser.Usagelocation
-PasswordProfile SpasswordProfile

-AccountEnabled: Strue

Write-Host "Successfully created user: $

(Suser.DisplayName)" -ForegroundColor Green

SsuccessCount++

Sresults += [PSCustomObject]@({

UserPrincipalName Suser.UserPrincipalName

DisplayName = Suser.DisplayName

Status = "Created"

ObjectId = SnewUser.Id

Timestamp = Get-Date -Format "yyyy-MM-dd

HH:mm:ss"
}
}
catch {
Write-Host "Failed to create user: $(Suser.DisplayName) -
$($.Exception.Message)" -ForegroundColor Red
SfailCount++

Sresults += [PSCustomObject]@{

HH:mm:ss"

}

Write-Host
Write-Host
Write-Host
Green

Write-Host

UserPrincipalName = Suser.UserPrincipalName
DisplayName = Suser.DisplayName

Status = "Failed"

ObjectId = "N/A"

Timestamp = Get-Date -Format "yyyy-MM-dd
""nProvisioning Summary:" -ForegroundColor Cyan

"Total Users Processed: $(Susers.Count)"

"Successfully Created: S$successCount" -ForegroundColor

"Failed: S$failCount" -ForegroundColor Red

24

Sresults | Export-Csv -Path ".\UserCreationReport.csv"

-NoTypeInformation

Cleanup:

Susers = Import-Csv -Path ".\NewUsers.csv"
foreach (Suser in Susers) {
Remove-MgUser -UserId Suser.UserPrincipalName -Confirm:S$false

Write-Host "Removed user: $(Suser.DisplayName)"

Lab 11: Assigning Azure RBAC Roles
Programmatically

Objective: Assign granular RBAC permissions across different scopes, audit exist-

ing assignments, and generate a report.

Concept Description Cmdlet

Security Principal |dentity requesting access Get-AzADUser, Get-AzADGroup
Role Definition Collection of permissions Get-AzRoleDefinition

Scope Boundary for access String path format

Explore built-in roles:

Get-AzRoleDefinition | Where-Object { $.IsCustom -eq S$false } |
Select-Object Name, Description |
Sort-Object Name |
Format-Table -AutoSize -Wrap

Get-AzRoleDefinition -Name "Contributor" | Format-List Name,

Description, Actions, NotActions

25

