
1

Hands-On Azure PowerShell
Lab Workbook

60 Automation Scenarios for Manag-
ing, Automating, and Securing Azure
with PowerShell (Az Module)

2

Preface

Why This Book Exists
The cloud doesn't wait for you to finish reading documentation. It moves fast, it

changes constantly, and it rewards those who can do—not just those who can de-

scribe. That conviction is the beating heart of this book.

Hands-On Azure PowerShell Lab Workbook was born from a simple obser-

vation: too many Azure professionals understand concepts in theory but freeze

when they open a terminal. They can explain what a Network Security Group does

but can't script one from scratch. They know backups matter but have never auto-

mated a recovery vault with code. This book exists to close that gap—permanently—

through 60 structured, hands-on labs that put your fingers on the keyboard and

keep them there.

Who This Book Is For
This workbook is designed for Azure administrators, DevOps engineers, cloud

architects, and IT professionals who want to move beyond portal clicking and

into the world of PowerShell-driven automation using the Az module. Whether

you're preparing for a certification, transitioning into a cloud role, or looking to

sharpen your production scripting skills, the hands-on approach of this book meets

you where you are and pushes you forward.

3

You don't need to be a PowerShell expert to begin. You will be a far more capa-

ble one by the end.

What Makes This Book Different
This is not a reference manual. It is not a theory textbook. It is a hands-on lab

workbook—every chapter is built around practical scenarios you will encounter in

real Azure environments. Each lab presents a clear objective, walks you through

the automation step by step, and challenges you to extend what you've built. The

learning happens in the doing.

The 60 labs span the full spectrum of Azure administration:

-	 Chapters 1–3 establish your hands-on lab environment, introduce gov-

ernance fundamentals like resource groups, tags, and policies, and dive

into identity automation with Azure AD.

-	 Chapters 4–6 tackle core infrastructure—networking, virtual machine

provisioning, and storage automation—through progressively complex

hands-on exercises.

-	 Chapters 7–9 shift focus to operational excellence: security hardening,

observability, and backup automation, all scripted and repeatable.

-	 Chapters 10–12 elevate your craft. You'll learn to write professional-

grade automation scripts, implement scaling operations, and execute

real-world end-to-end projects that mirror production deployments.

-	 Appendices A–E serve as your ongoing toolkit: cheat sheets, naming

standards, script templates, a troubleshooting guide, and a 60-lab

progress tracker so you can measure every hands-on milestone.

4

The Philosophy Behind the Labs
Every lab in this book follows a principle I hold deeply: you learn cloud au-

tomation by automating the cloud. Passive reading builds familiarity; hands-on

practice builds competence. Each scenario is designed to be safe enough to ex-

periment with and realistic enough to matter. You will make mistakes in these labs—

and that is by design. The troubleshooting guide in Appendix D exists because de-

bugging is not a failure; it is the most valuable hands-on learning you'll do.

How to Use This Book
Start with Chapter 1 to configure your lab environment safely. Then work through

the labs sequentially or jump to the chapters most relevant to your immediate

needs. Use the progress tracker in Appendix E to hold yourself accountable. Most

importantly: type every command yourself. Copy-pasting teaches your clip-

board. Typing teaches your brain.

The terminal is open. The labs are waiting.

Let's get hands-on.

Laszlo Bocso (MCT)

5

Table of Contents

Chapter Title Labs Page

1 Lab Environment and Safety Labs 1–3 6

2 Resource Groups, Tags, and Policy Mindset Labs 4–9 14

3 Azure Identity Automation Labs 10–12 22

4 VNets, Subnets, NSGs, and Routing Labs 13–15 31

5 VM Provisioning, Operations, and Automation Labs 16–20 37

6 Storage Accounts, Blobs, Files, and Lifecycle Labs 21–24 46

7 Hardening and Security Automation Labs 25–30 52

8 Observability Automation Labs 31–36 62

9 Backup Automation Labs 37–40 68

10 Writing Professional Azure Automation Scripts Labs 41–45 75

11 Scaling Operations Labs 46–50 87

12 Real-World End-to-End Projects Labs 51–60 94

App A Az Command Cheat Sheet (Admin Edition) — 113

App B Tagging & Naming Standard Templates — 118

App C Script Templates (Baseline RG/VNet/VM) — 121

App D Troubleshooting Guide — 124

App E 60-Lab Progress Tracker (Checklist) — 127

6

Chapter 1: Lab Environment
and Safety

Labs 1–3

Before you begin automating, managing, and securing Azure resources

through PowerShell, you must establish a solid foundation. This chapter walks you

through every step of preparing your environment, understanding the tools at your

disposal, and adopting the safety mindset that separates a competent Azure ad-

ministrator from a reckless one.

Understanding the Lab Environment
Architecture

Component Purpose Why It Matters

Azure Subscription Billing and access bound-
ary

Every command targets a
specific subscription. A
dedicated lab subscription
prevents accidental pro-
duction changes.

Resource Groups Logical containers for re-
sources

Labs use dedicated re-
source groups for easy cre-
ate, manage, and tear-
down.

Azure PowerShell Az Mo-
dule

Official module for manag-
ing Azure

Your primary tool through-
out all 60 labs.

7

PowerShell 7.x Cross-platform PowerShell Consistent behavior across
Windows, macOS, and Lin-
ux.

Azure Cloud Shell Browser-based shell Backup environment with
pre-installed tools.

Visual Studio Code Code editor with Power-
Shell extension

IntelliSense, debugging,
integrated terminal.

Cost Management and
Budgets

Spending controls Prevents unexpected
charges during labs.

Tags and Naming Conven-
tions

Metadata and standard-
ized names

Every lab resource is iden-
tifiable and cleanable.

Lab 1: Installing and Configuring the
Az PowerShell Module
Objective: Install PowerShell 7.x and the Az module, configure execution policy,

and verify the complete toolchain.

Check your current PowerShell version:

$PSVersionTable.PSVersion

If the Major version is 5 or lower, install PowerShell 7. On Windows:

winget install --id Microsoft.PowerShell --source winget

On macOS:

brew install powershell/tap/powershell

On Linux (Ubuntu):

sudo apt-get update

sudo apt-get install -y powershell

8

Launch PowerShell 7 and verify:

pwsh

$PSVersionTable.PSVersion

You should see output similar to:

Major Minor Patch PreReleaseLabel BuildLabel

----- ----- ----- --------------- ----------

7 4 6

Set the execution policy if needed:

Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope

CurrentUser

Install the Az module:

Install-Module -Name Az -Repository PSGallery -Force

-AllowClobber -Scope CurrentUser

Parameter Explanation

-Name Az The umbrella module including all Azure sub-mod-
ules

-Repository PSGallery Official public repository

-Force Overwrites existing installation without prompting

-AllowClobber Permits installation even if cmdlet names conflict with
other modules

-Scope CurrentUser Does not require administrator privileges

Verify the installation:

Get-InstalledModule -Name Az

Get-Module -Name Az.* -ListAvailable | Select-Object Name,

Version | Sort-Object Name

9

Set up Visual Studio Code:

code --install-extension ms-vscode.powershell

Create your workspace:

New-Item -Path "$HOME/AzurePowerShellLabs" -ItemType Directory

-Force

New-Item -Path "$HOME/AzurePowerShellLabs/Chapter01" -ItemType

Directory -Force

Lab 2: Authenticating to Azure and
Managing Contexts
Objective: Authenticate to Azure, understand contexts, switch subscriptions, and

explore authentication methods.

Initiate interactive login:

Connect-AzAccount

Confirm your context:

Get-AzContext

List all available subscriptions:

Get-AzSubscription | Format-Table Name, Id, State

Switch to your lab subscription:

Set-AzContext -SubscriptionName "Your-Lab-Subscription-Name"

Or by ID:

10

Set-AzContext -SubscriptionId "xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx"

Authentication Method Use Case Command

Interactive Login Daily lab work Connect-AzAccount

Service Principal Automated scripts and CI/
CD

Connect-AzAccount
-ServicePrincipal
-Credential $cred
-Tenant $tenantId

Managed Identity Scripts inside Azure VMs Connect-AzAccount
-Identity

Device Code Flow No browser available Connect-AzAccount
-UseDeviceAuthentica-
tion

Lab 3: Setting Up the Lab Environment
with Cost Controls and Safety
Objective: Create a dedicated lab resource group, configure budget alerts, imple-

ment safety practices, and build a verification script.

Create your primary lab resource group:

New-AzResourceGroup -Name "rg-lab-powershell-001" -Location

"eastus" -Tag @{

 Environment = "Lab"

 Project = "AzurePowerShellWorkbook"

 Owner = "YourName"

 CreatedBy = "PowerShell"

}

Verify creation:

11

Get-AzResourceGroup -Name "rg-lab-powershell-001" | Format-List

Check current spending:

Get-AzConsumptionUsageDetail -StartDate (Get-Date).AddDays(-7)

-EndDate (Get-Date) |

 Select-Object InstanceName, ConsumedService, PretaxCost |

 Sort-Object PretaxCost -Descending |

 Format-Table -AutoSize

Create a budget:

$startDate = Get-Date -Day 1 -Hour 0 -Minute 0 -Second 0

$endDate = $startDate.AddYears(1)

New-AzConsumptionBudget -Name "LabBudget" `

 -Amount 50 `

 -Category "Cost" `

 -TimeGrain "Monthly" `

 -StartDate $startDate `

 -EndDate $endDate `

 -ContactEmail @("your-email@example.com") `

 -NotificationKey "Alert1" `

 -NotificationEnabled `

 -NotificationThreshold 50

Threshold Action

50% Review running resources

80% Delete resources from completed labs

100% Stop all lab work, audit every resource

Practice safety commands:

Preview destructive commands with -WhatIf

Remove-AzResourceGroup -Name "rg-lab-powershell-001" -WhatIf

Require confirmation with -Confirm

12

Remove-AzVM -ResourceGroupName "rg-lab-powershell-001" -Name "vm-

test-001" -Confirm

Lock resources against accidental deletion

New-AzResourceLock -LockLevel CanNotDelete `

 -LockName "ProtectLab" `

 -ResourceGroupName "rg-lab-powershell-001" `

 -LockNotes "Prevent accidental deletion during active labs"

Remove lock when ready to clean up

$lock = Get-AzResourceLock -ResourceGroupName "rg-lab-

powershell-001"

Remove-AzResourceLock -LockId $lock.LockId -Force

Audit resources and clean up

Get-AzResource -ResourceGroupName "rg-lab-powershell-001" |

Format-Table Name, ResourceType, Location

Remove-AzResourceGroup -Name "rg-lab-powershell-001" -Force

-AsJob

Safety Command Purpose When to Use

-WhatIf Simulates without changes Before any destructive opera-
tion

-Confirm Prompts for confirmation When uncertain about target
resources

New-AzResourceLock Prevents deletion On resources that must not be
removed

Get-AzResource Lists all resources Beginning and end of every
lab

-AsJob Runs in background During long operations like
deletion

Build and run the verification script:

Write-Host "=== Lab Environment Verification ==="

-ForegroundColor Cyan

13

Write-Host "`n[1] PowerShell Version:" -ForegroundColor Yellow
$PSVersionTable.PSVersion | Format-Table

Write-Host "[2] Az Module Version:" -ForegroundColor Yellow

Get-InstalledModule -Name Az | Select-Object Name, Version |

Format-Table

Write-Host "[3] Azure Connection:" -ForegroundColor Yellow

$context = Get-AzContext

if ($context) {

 Write-Host " Connected to: $($context.Subscription.Name)"

-ForegroundColor Green

 Write-Host " Subscription ID: $($context.Subscription.Id)"

-ForegroundColor Green

 Write-Host " Tenant ID: $($context.Tenant.Id)"

-ForegroundColor Green

} else {

 Write-Host " Not connected. Run Connect-AzAccount."

-ForegroundColor Red

}

Write-Host "`n[4] Lab Resource Group:" -ForegroundColor Yellow
$rg = Get-AzResourceGroup -Name "rg-lab-powershell-001"

-ErrorAction SilentlyContinue

if ($rg) {

 Write-Host " Resource Group exists in $($rg.Location)"

-ForegroundColor Green

 Write-Host " Tags: $($rg.Tags | ConvertTo-Json -Compress)"

-ForegroundColor Green

} else {

 Write-Host " Resource group not found. Create it before

proceeding." -ForegroundColor Red

}

Write-Host "`n[5] Execution Policy:" -ForegroundColor Yellow
Get-ExecutionPolicy -List | Format-Table

Write-Host "`n=== Verification Complete ===" -ForegroundColor
Cyan

Save as Verify-LabEnvironment.ps1 and run it. Every item should show green.

14

Chapter 2: Resource Groups,
Tags, and Policy Mindset

Labs 4–9

Every well-architected Azure environment begins with a solid organizational

foundation. This chapter takes you deep into the hands-on practice of working with

Resource Groups, Tags, and Azure Policy through PowerShell.

Cmdlet Purpose Common Parameters

New-AzResourceGroup Creates a new Resource
Group

-Name, -Location, -Tag

Get-AzResourceGroup Retrieves Resource Groups -Name, -Location, -Tag

Set-AzResourceGroup Updates properties -Name, -Tag

Remove-AzResource-
Group

Deletes a Resource Group
and all contents

-Name, -Force, -AsJob

Get-AzResource Lists all resources in a
scope

-ResourceGroupName,
-ResourceType, -Tag

New-AzTag Creates or updates tags -ResourceId, -Tag

Get-AzTag Retrieves tag information -Name, -ResourceId

Remove-AzTag Removes tags -ResourceId, -Tag

15

Lab 4: Creating and Managing Re-
source Groups
Objective: Create multiple resource groups following naming conventions, query

and filter them with PowerShell.

New-AzResourceGroup -Name "rg-dev-project-alpha" -Location

"eastus"

New-AzResourceGroup -Name "rg-staging-project-alpha" -Location

"eastus"

New-AzResourceGroup -Name "rg-prod-project-alpha" -Location

"eastus"

Verify:

Get-AzResourceGroup | Where-Object { $_.ResourceGroupName -like

"*project-alpha*" } |

 Format-Table ResourceGroupName, Location, ProvisioningState

Lab 5: Working with Tags at Scale
Objective: Apply comprehensive tag sets to resource groups and query by tag.

$tags = @{

 "Environment" = "Development"

 "Project" = "Alpha"

 "Owner" = "CloudOps Team"

 "CostCenter" = "CC-4200"

 "CreatedBy" = "PowerShell Automation"

}

Set-AzResourceGroup -Name "rg-dev-project-alpha" -Tag $tags

$stagingTags = @{

 "Environment" = "Staging"

 "Project" = "Alpha"

16

 "Owner" = "CloudOps Team"

 "CostCenter" = "CC-4200"

 "CreatedBy" = "PowerShell Automation"

}

$prodTags = @{

 "Environment" = "Production"

 "Project" = "Alpha"

 "Owner" = "CloudOps Team"

 "CostCenter" = "CC-4200"

 "CreatedBy" = "PowerShell Automation"

}

Set-AzResourceGroup -Name "rg-staging-project-alpha" -Tag

$stagingTags

Set-AzResourceGroup -Name "rg-prod-project-alpha" -Tag $prodTags

Verify and query:

(Get-AzResourceGroup -Name "rg-dev-project-alpha").Tags

Get-AzResourceGroup -Tag @{ "Project" = "Alpha" } |

 Format-Table ResourceGroupName, Location

Note: Tags are not inherited by default. Tagging a Resource Group does not auto-

matically tag its child resources. Use Azure Policy to enforce tag inheritance.

Lab 6: Bulk Tagging with PowerShell
Loops
Objective: Write a script that adds a mandatory tag to every resource group miss-

ing it, while preserving existing tags.

$allResourceGroups = Get-AzResourceGroup

foreach ($rg in $allResourceGroups) {

 $currentTags = $rg.Tags

17

 if ($null -eq $currentTags) {

 $currentTags = @{}

 }

 if (-not $currentTags.ContainsKey("ManagedBy")) {

 $currentTags["ManagedBy"] = "CloudOps"

 Set-AzResourceGroup -Name $rg.ResourceGroupName -Tag

$currentTags

 Write-Output "Added 'ManagedBy' tag to $

($rg.ResourceGroupName)"

 } else {

 Write-Output "'ManagedBy' tag already exists on $

($rg.ResourceGroupName)"

 }

}

Note: Always retrieve existing tags before modifying. Set-AzResourceGroup

-Tag replaces the entire tag collection. Forgetting this is the number one cause of

accidentally deleted tags.

Lab 7: Generating a Tag Compliance
Report
Objective: Build a compliance report that identifies resource groups missing re-

quired tags and export it to CSV.

$requiredTags = @("Environment", "Project", "Owner",

"CostCenter")

$report = @()

$allResourceGroups = Get-AzResourceGroup

foreach ($rg in $allResourceGroups) {

 $missingTags = @()

18

 foreach ($requiredTag in $requiredTags) {

 if ($null -eq $rg.Tags -or -not

$rg.Tags.ContainsKey($requiredTag)) {

 $missingTags += $requiredTag

 }

 }

 $report += [PSCustomObject]@{

 ResourceGroupName = $rg.ResourceGroupName

 Location = $rg.Location

 TotalTags = if ($null -ne $rg.Tags)

{ $rg.Tags.Count } else { 0 }

 MissingTags = if ($missingTags.Count -gt 0)

{ $missingTags -join ", " } else { "None" }

 Compliant = if ($missingTags.Count -eq 0) { "Yes"

} else { "No" }

 }

}

$report | Format-Table -AutoSize

$report | Export-Csv -Path ".\TagComplianceReport.csv"

-NoTypeInformation

Lab 8: Assigning and Managing Azure
Policy
Objective: Explore built-in policy definitions, assign a tag enforcement policy us-

ing splatting, and test enforcement.

Explore built-in tag policies:

Get-AzPolicyDefinition -BuiltIn |

 Where-Object { $_.Properties.DisplayName -like "*tag*" } |

 Select-Object -Property

@{N='DisplayName';E={$_.Properties.DisplayName}},

@{N='Description';E={$_.Properties.Description}} |

19

 Format-Table -Wrap

Assign a policy requiring the CostCenter tag:

$policyDefinition = Get-AzPolicyDefinition -BuiltIn |

 Where-Object { $_.Properties.DisplayName -eq "Require a tag

on resource groups" }

$subscription = Get-AzSubscription | Select-Object -First 1

$assignmentParams = @{

 Name = "require-costcenter-tag-rg"

 DisplayName = "Require CostCenter tag on Resource

Groups"

 Description = "This policy requires all Resource

Groups to have a CostCenter tag."

 PolicyDefinition = $policyDefinition

 Scope = "/subscriptions/$($subscription.Id)"

 PolicyParameterObject = @{

 tagName = "CostCenter"

 }

}

New-AzPolicyAssignment @assignmentParams

Check compliance:

Get-AzPolicyState -SubscriptionId $subscription.Id |

 Where-Object { $_.ComplianceState -eq "NonCompliant" } |

 Select-Object ResourceId, PolicyAssignmentName,

ComplianceState |

 Format-Table -AutoSize

20

Lab 9: Creating Custom Policy Defini-
tions and Cleanup
Objective: Create a custom audit policy, assign it, then clean up all resources and

policy assignments.

Create the custom policy:

$policyRule = @'

{

 "if": {

 "allOf": [

 {

 "field": "type",

 "equals": "Microsoft.Resources/subscriptions/

resourceGroups"

 },

 {

 "field": "tags['Owner']",

 "exists": "false"

 }

]

 },

 "then": {

 "effect": "audit"

 }

}

'@

$customPolicyParams = @{

 Name = "audit-missing-owner-tag"

 DisplayName = "Audit Resource Groups missing Owner tag"

 Description = "This policy audits any Resource Group that

does not have an Owner tag."

 Policy = $policyRule

 Mode = "All"

}

New-AzPolicyDefinition @customPolicyParams

21

$customPolicy = Get-AzPolicyDefinition -Name "audit-missing-

owner-tag"

New-AzPolicyAssignment -Name "audit-owner-tag-assignment" `

 -DisplayName "Audit missing Owner tag on Resource Groups" `

 -PolicyDefinition $customPolicy `

 -Scope "/subscriptions/$($subscription.Id)"

Cleanup:

$groupsToDelete = @("rg-dev-project-alpha", "rg-staging-project-

alpha", "rg-prod-project-alpha")

foreach ($groupName in $groupsToDelete) {

 Remove-AzResourceGroup -Name $groupName -Force -AsJob

 Write-Output "Deletion initiated for $groupName"

}

Get-Job | Format-Table Name, State, HasMoreData

Remove-AzPolicyAssignment -Name "require-costcenter-tag-rg"

Remove-AzPolicyAssignment -Name "audit-owner-tag-assignment"

Remove-AzPolicyDefinition -Name "audit-missing-owner-tag" -Force

Concept Key Takeaway

Resource Groups Every resource must belong to exactly one. Logical contain-
ers for lifecycle management.

Naming Conventions Use prefixes like rg- and include environment and project
identifiers.

Tags Not inherited by child resources. Always retrieve before
modifying.

Azure Policy Enables mandatory enforcement. Effects: Deny, Audit, Modi-
fy.

Splatting Use hashtables with @ prefix for clean parameter passing.

Background Jobs Use -AsJob for long-running operations.

22

Chapter 3: Azure Identity Au-
tomation

Labs 10–12

Identity management is the cornerstone of every secure cloud environment.

This chapter covers bulk user provisioning, RBAC role assignments, and service

principal management.

Lab 10: Bulk Creating Azure AD Users
with PowerShell
Objective: Create a bulk user provisioning script that reads from a CSV and cre-

ates Azure AD users programmatically.

Install and connect to Microsoft Graph:

Install-Module -Name Microsoft.Graph -Scope CurrentUser -Force

Connect-MgGraph -Scopes "User.ReadWrite.All",

"Directory.ReadWrite.All"

Create NewUsers.csv:

DisplayName,UserPrincipalName,MailNickname,Department,JobTitle,Us

ageLocation

Sarah

Mitchell,sarah.mitchell@yourdomain.onmicrosoft.com,sarah.mitchell

,Engineering,Software Engineer,US

James

Rodriguez,james.rodriguez@yourdomain.onmicrosoft.com,james.rodrig

uez,Marketing,Marketing Analyst,US

23

Priya

Sharma,priya.sharma@yourdomain.onmicrosoft.com,priya.sharma,Finan

ce,Financial Analyst,US

David

Chen,david.chen@yourdomain.onmicrosoft.com,david.chen,Engineering

,DevOps Engineer,US

Emma

Thompson,emma.thompson@yourdomain.onmicrosoft.com,emma.thompson,H

uman Resources,HR Specialist,US

Field Description Required

DisplayName Full name in directory Yes

UserPrincipalName Sign-in name in email format Yes

MailNickname Mail alias Yes

Department Organizational department No

JobTitle Professional title No

UsageLocation Two-letter ISO country code Yes for licensing

Bulk provisioning script:

$csvPath = ".\NewUsers.csv"

$users = Import-Csv -Path $csvPath

$passwordProfile = @{

 Password = "TempP@ssw0rd2024!"

 ForceChangePasswordNextSignIn = $true

}

$successCount = 0

$failCount = 0

$results = @()

foreach ($user in $users) {

 try {

 $newUser = New-MgUser -DisplayName $user.DisplayName `

 -UserPrincipalName $user.UserPrincipalName `

 -MailNickname $user.MailNickname `

24

 -Department $user.Department `

 -JobTitle $user.JobTitle `

 -UsageLocation $user.UsageLocation `

 -PasswordProfile $passwordProfile `

 -AccountEnabled:$true

 Write-Host "Successfully created user: $

($user.DisplayName)" -ForegroundColor Green

 $successCount++

 $results += [PSCustomObject]@{

 UserPrincipalName = $user.UserPrincipalName

 DisplayName = $user.DisplayName

 Status = "Created"

 ObjectId = $newUser.Id

 Timestamp = Get-Date -Format "yyyy-MM-dd

HH:mm:ss"

 }

 }

 catch {

 Write-Host "Failed to create user: $($user.DisplayName) -

$($_.Exception.Message)" -ForegroundColor Red

 $failCount++

 $results += [PSCustomObject]@{

 UserPrincipalName = $user.UserPrincipalName

 DisplayName = $user.DisplayName

 Status = "Failed"

 ObjectId = "N/A"

 Timestamp = Get-Date -Format "yyyy-MM-dd

HH:mm:ss"

 }

 }

}

Write-Host "`nProvisioning Summary:" -ForegroundColor Cyan
Write-Host "Total Users Processed: $($users.Count)"

Write-Host "Successfully Created: $successCount" -ForegroundColor

Green

Write-Host "Failed: $failCount" -ForegroundColor Red

25

$results | Export-Csv -Path ".\UserCreationReport.csv"

-NoTypeInformation

Cleanup:

$users = Import-Csv -Path ".\NewUsers.csv"

foreach ($user in $users) {

 Remove-MgUser -UserId $user.UserPrincipalName -Confirm:$false

 Write-Host "Removed user: $($user.DisplayName)"

}

Lab 11: Assigning Azure RBAC Roles
Programmatically
Objective: Assign granular RBAC permissions across different scopes, audit exist-

ing assignments, and generate a report.

Concept Description Cmdlet

Security Principal Identity requesting access Get-AzADUser, Get-AzADGroup

Role Definition Collection of permissions Get-AzRoleDefinition

Scope Boundary for access String path format

Explore built-in roles:

Get-AzRoleDefinition | Where-Object { $_.IsCustom -eq $false } |

 Select-Object Name, Description |

 Sort-Object Name |

 Format-Table -AutoSize -Wrap

Get-AzRoleDefinition -Name "Contributor" | Format-List Name,

Description, Actions, NotActions

