Linux High Availability &
Clustering

Designing, Deploying, and Managing
Fault-Tolerant Linux Infrastructure

Preface

Every minute of downtime costs money, erodes trust, and disrupts the people who
depend on the services we build. In the world of Linux infrastructure, where organi-
zations run everything from web applications to mission-critical databases, the abil-
ity to design systems that survive failure isn't a luxury—it's a fundamental expecta-

tion. This book was written to help you meet that expectation with confidence.

Why This Book Exists

Linux High Availability & Clustering was born from a simple observation: while
there is no shortage of documentation on individual HA tools, there is a real gap
when it comes to understanding how those tools fit together into a coherent, pro-
duction-ready Linux infrastructure. Too many administrators learn clustering
through trial and error—often during an outage, when the stakes are highest. This
book aims to change that by providing a structured, end-to-end guide to design-
ing, deploying, and managing fault-tolerant Linux systems.

Whether you are a Linux system administrator looking to build your first two-
node cluster or an experienced engineer architecting multi-site failover across data

centers, this book is designed to meet you where you are and take you further.

What You Will Learn

The journey begins with the foundational concepts of high availability—what it
means, how it is measured, and why Linux has become the platform of choice for
resilient infrastructure. From there, we dive deep into the core technologies that
power Linux clustering: Corosync for cluster communication, Pacemaker for intel-
ligent resource management, DRBD for real-time data replication, and the critical
mechanisms of fencing and quorum that protect your data when things go wrong.

But understanding individual components is only part of the story. This book
dedicates significant attention to real-world application—building highly available
web services and databases on Linux, implementing load balancing and horizontal
scaling, monitoring cluster health, and automating operations to reduce human er-
ror. The later chapters address multi-site high availability and the architectural
thinking required to design production-ready Linux infrastructure that stands up to

the demands of modern workloads.

How This Book Is Structured

The sixteen chapters are organized in a deliberate progression. Chapters 1-4 es-
tablish the architectural foundation of Linux clustering. Chapters 5-8 focus on stor-
age, replication, and making critical services highly available. Chapters 9-12 tackle
the operational disciplines—fencing, quorum, monitoring, and automation—that
separate a fragile cluster from a robust one. Chapters 13-16 broaden the lens to
multi-site designs, scalability, and the strategic mindset needed to evolve from sys-
tem administrator to infrastructure architect.

The appendices provide practical, ready-to-use resources: a Pacemaker com-

mand cheat sheet, an HA design checklist, fencing configuration and failover

test plan templates, and a guide to building a career in Linux infrastructure. These

are the tools | wish | had when | started this work.

Who This Book Is For

This book is for Linux professionals who refuse to accept "it just went down" as an
answer. If you manage Linux servers and want to ensure they remain available
through hardware failures, network partitions, and software crashes, you will find
actionable knowledge on every page. A working familiarity with Linux system ad-

ministration is assumed; a willingness to think critically about failure is essential.

Acknowledgments

No technical book is written in isolation. | am grateful to the open-source commu-
nities behind Corosync, Pacemaker, DRBD, and the countless Linux projects that
make this work possible. Their dedication to building reliable, freely available soft-
ware is the foundation upon which everything in these pages rests. | also owe a
debt to the system administrators, site reliability engineers, and infrastructure ar-
chitects whose real-world challenges and hard-won lessons shaped the practical
focus of this book.

Downtime is inevitable. Extended downtime is a choice. Let's make sure your
Linux infrastructure is ready for what comes next.

Bas van den Berg

Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Understanding High Availability Concepts
Linux Clustering Architecture
Corosync and Cluster Communication
Pacemaker Resource Management
Shared Storage Concepts

DRBD and Data Replication

Highly Available Web Services

Highly Available Databases
Understanding Fencing

Quorum and Cluster Integrity
Monitoring HA Clusters

Automating Cluster Operations
Multi-Site High Availability

Load Balancing and Scaling

Designing Production-Ready HA Infrastructure

Page

6
20
35
49
63
79
95
114
132
149
163
177
199
214
236

From System Administrator to Infrastructure Architect 258

Pacemaker Command Cheat Sheet
HA Design Checklist

Fencing Configuration Template
Failover Test Plan Template

Linux Infrastructure Career Path

275
295
310
328
344

Chapter 1: Understanding
High Availability Concepts

In the modern world of enterprise computing, downtime is not merely an inconve-
nience. It is a direct threat to revenue, reputation, and operational continuity. Every
second that a critical system remains unavailable translates into lost transactions,
frustrated users, and potentially catastrophic consequences for organizations that
depend on their infrastructure to function around the clock. This reality has driven
the evolution of a discipline known as High Availability, and Linux stands at the very
center of this discipline as the dominant operating system powering the majority of
mission-critical infrastructure worldwide.

This chapter lays the essential groundwork for everything that follows in this
book. Before you configure a single cluster resource, write a heartbeat configura-
tion file, or deploy a failover mechanism, you must first deeply understand the the-
oretical and practical foundations of High Availability. You must understand what it
truly means, how it is measured, why it matters, and how the various components
of a High Availability architecture work together to keep services running even
when individual parts of the system fail. We will explore these concepts thoroughly,
always through the lens of Linux, which provides the most robust, flexible, and

cost-effective platform for building highly available systems.

What High Availability Really Means

High Availability, often abbreviated as HA, refers to the design approach and asso-
ciated practices that ensure a system or service remains operational and accessible
for a very high percentage of time. It is not about preventing failures entirely, be-
cause hardware will eventually fail, software will encounter bugs, and networks will
experience disruptions. Instead, High Availability is about designing systems that
can tolerate these failures gracefully, continuing to provide service to users with
minimal or no perceivable interruption.

In the context of Linux, High Availability involves configuring multiple servers,
often called nodes, to work together as a coordinated unit. When one node experi-
ences a failure, another node detects this failure and assumes responsibility for the
services that were running on the failed node. This process, known as failover, hap-
pens automatically and ideally completes so quickly that users are unaware any-
thing went wrong.

It is important to distinguish High Availability from related but distinct con-
cepts. High Availability is not the same as fault tolerance, although the two are of-
ten confused. A truly fault-tolerant system continues operating without any inter-
ruption whatsoever when a component fails, typically through hardware-level re-
dundancy such as duplicate processors and memory modules operating in lock-
step. High Availability, by contrast, acknowledges that a brief interruption may oc-
cur during failover but ensures that this interruption is measured in seconds rather
than hours or days.

Similarly, High Availability is not the same as disaster recovery. Disaster recov-
ery focuses on restoring services after a catastrophic event, such as a data center
fire or a regional power outage, and typically involves restoring from backups or

activating a geographically distant standby site. High Availability operates at a

more immediate level, handling the kinds of failures that occur within a single data
center or across closely connected sites.

On Linux systems, the tools and technologies that enable High Availability
have matured significantly over the past two decades. The Pacemaker cluster re-
source manager, the Corosync cluster communication system, DRBD for replicated
block storage, and keepalived for virtual IP management are all open-source
projects that run exclusively or primarily on Linux. These tools give Linux adminis-
trators the ability to build enterprise-grade High Availability solutions without the

enormous licensing costs associated with proprietary alternatives.

Measuring Availability: The Language
of Nines

To have meaningful conversations about High Availability, you need a precise way
to measure and express it. The industry standard for measuring availability uses a
metric expressed as a percentage of uptime over a given period, typically one
year. This percentage is commonly referred to using the "nines" notation, which de-
scribes how many nines appear in the availability percentage.

The following table provides a comprehensive overview of the standard avail-
ability levels, their corresponding annual downtime, and the typical use cases and

infrastructure requirements associated with each level.

Availabili-
ty Level

One Nine

Two Nines

Three
Nines

Four Nines

Five Nines

Six Nines

Percent-
age

90.0%

99.0%

99.9%

99.99%

99.999%

99.9999%

Annual

Monthly Weekly
Downtime Downtime Downtime Use Case

36.53 days 73.05

3.65 days

8.77 hours 43.83 min-

52.60 min-

utes

5.26 min-
utes

31.56 sec-
onds

hours

7.31 hours

utes

4.38 min-
utes

26.30 sec-
onds

2.63 sec-
onds

16.80
hours

1.68 hours

10.08 min-
utes

1.01 min-
utes

6.05 sec-
onds

0.60 sec-
onds

Typical

Develop-
ment and
testing en-
vironments

Internal
business
ap-
plications
Standard
commer-
cial ser-
vices

E-com-
merce, fi-
nancial
services

Telecom-
munica-
tions,
emer-
gency ser-
vices

Critical na-
tional in-
frastructur
e

In-
frastructur
e Require-
ment

Single
server, no
redundan-

cy

Basic mon-
itoring,
manual
failover

Redundant
compo-
nents, au-
tomated
monitoring

Fully re-
dundant
HA cluster
with auto-
matic
failover

Multi-site
active-ac-
tive clus-
ters, no
single
point of
failure

Extreme
redundan-
cy at every
layer, cus-
tom engi-
neering

Each additional nine represents a tenfold reduction in permissible downtime and a
corresponding increase in the complexity and cost of the infrastructure required to
achieve it. Moving from three nines to four nines on a Linux platform might involve
transitioning from a simple active-standby pair of servers to a multi-node cluster
with redundant networking, shared storage, and comprehensive monitoring. Mov-
ing from four nines to five nines typically requires eliminating every single point of
failure in the entire stack, from power supplies and network switches to DNS reso-
lution and storage controllers.

The availability percentage is calculated using the following formula:
Availability = (Total Time - Downtime) / Total Time * 100
For example, if a Linux web server cluster experienced a total of 4 hours of down-
time over the course of a year, the availability would be calculated as follows:

Total minutes in a year = 365.25 * 24 * 60 = 525,960 minutes
Downtime in minutes = 4 * 60 = 240 minutes
Availability = (525,960 240) / 525,960 * 100 = 99.954%

This result falls between three nines and four nines, which means the system did
not meet a four-nines target. Understanding these calculations is essential for set-
ting realistic availability goals and for evaluating whether your Linux HA in-
frastructure is meeting its objectives.

Note: When calculating availability, it is critical to define clearly what consti-
tutes "downtime." Planned maintenance windows are sometimes excluded from
availability calculations in Service Level Agreements, but from the user's perspec-
tive, the service is still unavailable during those windows. A truly robust Linux HA
architecture should allow for rolling upgrades and maintenance without any ser-
vice interruption, making planned downtime a concept that can be largely elimi-

nated.

10

Single Points of Failure: The Enemy of
Availability

The single most important concept in High Availability design is the identification
and elimination of single points of failure, commonly abbreviated as SPOF. A single
point of failure is any component in your infrastructure whose failure would cause
the entire service to become unavailable. If your web application runs on a single
Linux server, that server is a single point of failure. If both of your clustered servers
connect to the same network switch, that switch is a single point of failure. If your
database cluster uses a single shared storage array, that storage array is a single
point of failure.

Identifying single points of failure requires a systematic, layer-by-layer analysis
of your entire infrastructure. Consider a typical Linux-based web application stack.
The following table walks through each layer and identifies common single points

of failure along with the standard HA mitigation strategy for each.

Infrastructure Component Potential SPOF Linux HA Mitiga-
Layer tion
Power Power supply unit Single PSU in server Dual PSUs connect-

ed to separate cir-
cuits, UPS systems

Network Network interface Single NIC NIC bonding using
Linux bonding dri-
ver or NetworkMan-
ager

Network Switch Single uplink switch Redundant switches
with bonded inter-
faces in 802.3ad
mode

11

Network Internet connection Single ISP link Multiple ISP con-
nections with BGP
or policy routing

Compute Server hardware Single server Pacemaker/Coro-
sync cluster with
multiple nodes

Storage Local disk Single disk drive Linux software RAID
using mdadm, or
hardware RAID

Storage Storage system Single storage array DRBD replication,
GlusterFS, or Ceph
distributed storage

Application Web server process Single instance Multiple instances
behind HAProxy or
keepalived with LVS

Application Database Single database MariaDB Galera
server Cluster, PostgreSQL
streaming replica-
tion
DNS Name resolution Single DNS server Multiple DNS

servers, anycast
DNS, round-robin
records

The process of eliminating single points of failure is sometimes called "redundancy
engineering," and it follows a straightforward principle: every critical component
must have at least one backup that can take over its function when the primary
fails. On Linux, this principle is implemented at every layer of the stack using a rich
ecosystem of open-source tools.

For example, Linux NIC bonding allows you to combine multiple physical net-
work interfaces into a single logical interface that continues to function even if one
of the physical interfaces fails. You can configure this directly through the Linux ker-

nel's bonding module. A basic bonding configuration might look like this:

12

Load the bonding kernel module
modprobe bonding

Verify the module is loaded
lsmod | grep bonding

Create a bond interface configuration

cat > /etc/sysconfig/network-scripts/ifcfg-bond0 << EOF
DEVICE=bond0

TYPE=Bond

BONDING MASTER=yes

IPADDR=192.168.1.100

NETMASK=255.255.255.0

GATEWAY=192.168.1.1

ONBOOT=yes

BOOTPROTO=none

BONDING OPTS="mode=active-backup miimon=100 primary=ethO"
EOF

In this configuration, the mode=active-backup parameter tells the bonding dri-
ver to use one interface as the primary and automatically switch to the backup in-
terface if the primary fails. The miimon=100 parameter sets the link monitoring in-
terval to 100 milliseconds, ensuring that a failed link is detected within a fraction of
a second.

Note: The bonding modes available in the Linux kernel include balance-rr
(mode 0), active-backup (mode 1), balance-xor (mode 2), broadcast (mode 3),
802.3ad (mode 4), balance-tlb (mode 5), and balance-alb (mode 6). For High Avail-
ability purposes, active-backup and 802.3ad are the most commonly used modes.
The 802.3ad mode requires switch support for Link Aggregation Control Protocol

(LACP) but provides both redundancy and increased throughput.

13

The Anatomy of a Linux HA Cluster

A Linux High Availability cluster is composed of several key components that work
together to detect failures and respond to them automatically. Understanding
these components and their roles is essential before you begin building your own
clusters.

The first component is the cluster communication layer. This is the foundation
upon which everything else is built. The cluster communication layer is responsible
for allowing the nodes in the cluster to communicate with each other, to determine
which nodes are currently alive and healthy, and to agree on the current state of
the cluster. In modern Linux HA clusters, this role is filled by Corosync, which uses a
protocol called Totem to maintain a reliable, ordered communication ring among
all cluster nodes. Corosync sends heartbeat messages between nodes at regular
intervals, and if a node fails to respond within a configured timeout, it is declared
dead by the remaining nodes.

The second component is the cluster resource manager. This is the brain of
the cluster, responsible for deciding which resources should run on which nodes
and for orchestrating failover when a node fails. In the Linux ecosystem, Pacemaker
is the dominant cluster resource manager. Pacemaker maintains a model of the
cluster's desired state, which includes definitions of all the resources (such as IP ad-
dresses, filesystems, and application services), the constraints that govern where
and how those resources should run, and the rules that determine what should
happen when failures occur. When Pacemaker detects that the actual state of the
cluster differs from the desired state, it takes corrective action automatically.

The third component is the resource agents. These are scripts or programs
that Pacemaker uses to manage individual resources. A resource agent knows how
to start, stop, and monitor a specific type of resource. For example, there is a re-

source agent for managing an Apache web server, another for managing a virtual

14

IP address, another for managing a filesystem mount, and so on. Linux provides
hundreds of resource agents through the resource-agents package, covering
everything from simple services to complex database systems. Resource agents
follow the Open Cluster Framework (OCF) specification, which defines a standard
interface that Pacemaker uses to interact with them.

The fourth component is the fencing mechanism, also known as STONITH,
which stands for "Shoot The Other Node In The Head." Fencing is perhaps the
most misunderstood component of a Linux HA cluster, but it is absolutely critical.
When a node becomes unresponsive, the remaining nodes cannot be certain
whether the unresponsive node has truly crashed or whether it is simply experienc-
ing a temporary communication problem. If the remaining nodes start the failed
node's resources without being certain that the failed node has stopped them,
both nodes might try to run the same resources simultaneously. For a database,
this could result in catastrophic data corruption. Fencing solves this problem by
forcibly shutting down or isolating the unresponsive node before its resources are
started elsewhere. On Linux, fencing is typically implemented through IPMI com-
mands that power off the failed node, through management interfaces on virtual
machines, or through network-based power switches.

The following table summarizes these core components:

Component Purpose Linux Implementa- Role in Failover
tion
Cluster Communi- Node discovery, Corosync Detects node fail-
cation heartbeat, member- ures through
ship missed heartbeats
Cluster Resource Resource place- Pacemaker Decides where to
Manager ment, failover deci- move resources af-
sions ter failure

15

Resource Agents Start, stop, and OCEF scripts, sys- Executes the actual
monitor individual temd agents, LSB start and stop oper-

resources scripts ations
Fencing / STONITH Ensure failed nodes fence_ipmilan, Powers off failed
are truly offline fence_virsh, node before re-
fence_aws source recovery
Quorum Prevent split-brain Votequorum (part Determines which
scenarios of Corosync) partition can contin-

ue operating

The fifth component listed in this table, quorum, deserves special attention. In a
cluster with multiple nodes, it is possible for a network failure to divide the cluster
into two or more groups of nodes that can communicate within their group but not
with other groups. This situation is called a "split brain," and it is extremely danger-
ous because each group might believe that the other group has failed and attempt
to take over its resources. Quorum is the mechanism that prevents this. A group of
nodes has quorum if it contains more than half of the total number of nodes in the
cluster. Only the group that has quorum is allowed to continue operating and man-
aging resources. The other group, lacking quorum, must stop all resources and

wait for communication to be restored.

Practical Exercise: Evaluating Your Cur-
rent Infrastructure

To solidify your understanding of the concepts covered in this chapter, perform the
following exercise on a Linux system that you manage or have access to.
First, identify all the services running on the system that would be affected by a

server failure:

List all active services

16

systemctl list-units --type=service --state=running

Identify listening network services

ss -tlnp

Check for mounted network filesystems

mount | grep -E 'nfs|cifs|gluster'

Review the system's network configuration for redundancy
ip link show
cat /proc/net/bonding/bond0 2>/dev/null || echo "No bonding

configured"

Second, document the current availability characteristics of the system:

Check system uptime

uptime

Review recent reboot history
last reboot | head -20

Check for any disk redundancy

cat /proc/mdstat 2>/dev/null || echo "No software RAID
configured"

1sblk -f

Examine power supply status if available through IPMI

ipmitool sdr type "Power Supply" 2>/dev/null || echo "IPMI not

available"

Third, create a simple availability report by examining the system logs for any re-

cent service interruptions:

Search for recent service failures in the journal
journalctl --since "30 days ago" --priority=err --no-pager |
-50

Check for any OOM (Out of Memory) kills
journalctl --since "30 days ago" | grep -i "out of memory" |
-1

17

Review kernel messages for hardware errors

dmesg | grep —-iE "error|faill|fault" | tail -20

After running these commands, create a document that lists every single point of
failure you can identify in the system. For each SPOF, note what Linux HA technolo-
gy could be used to mitigate it. This exercise will give you a concrete starting point
for the cluster implementations we will build in subsequent chapters.

Note: The commands above use standard Linux utilities that are available on
virtually all distributions. The systemctl command is specific to systems using
systemd as their init system, which includes all major modern Linux distributions
such as Red Hat Enterprise Linux, CentOS, Ubuntu, Debian, SUSE Linux Enterprise,
and Fedora. If you are working with an older system that uses SysVinit, replace

systemctl list-units with service --status-all.

Moving Forward

The concepts presented in this chapter form the intellectual foundation for every-
thing else in this book. High Availability is not simply a collection of tools and con-
figurations. It is a design philosophy that requires you to think systematically about
failure, to anticipate what can go wrong, and to build systems that respond to fail-
ure automatically and gracefully. Linux provides an extraordinarily powerful plat-
form for implementing this philosophy, with a mature ecosystem of clustering tools
that rival and often surpass their proprietary counterparts in both capability and
flexibility.

As you move into the next chapter, you will begin translating these concepts
into concrete implementations. You will install and configure Corosync and Pace-
maker on real Linux systems, create your first cluster, and experience firsthand the

process of automated failover. The theoretical understanding you have gained

18

here will make those practical exercises far more meaningful, because you will un-
derstand not just what the tools are doing, but why they are doing it and how each
piece fits into the larger picture of a robust, fault-tolerant Linux infrastructure.
Remember that achieving High Availability is an iterative process. You do not
need to eliminate every single point of failure on day one. Start by identifying the
most critical services and the most likely failure scenarios, address those first, and
then progressively improve your infrastructure over time. Each step you take to-
ward eliminating single points of failure brings you closer to the level of availability

your organization requires, and Linux gives you every tool you need to get there.

19

Chapter 2: Linux Clustering
Architecture

Understanding the architecture behind Linux clustering is not merely an academic
exercise. It is the foundation upon which every reliable, fault-tolerant production
system is built. When a critical database server fails at two in the morning and your
cluster seamlessly redirects traffic to a standby node without a single user noticing,
that is the architecture doing its job. When that same failure causes a cascading
outage that takes down your entire e-commerce platform, that is the architecture
failing. The difference between these two outcomes lies entirely in how well you
understand, design, and implement your clustering architecture on Linux.

This chapter takes you deep into the structural components, communication
models, resource management strategies, and decision-making algorithms that
form the backbone of every Linux cluster. We will examine each layer of the archi-
tecture, from the physical network interconnects to the abstract resource agents
that manage your services, and we will do so with the practical depth that real-

world deployments demand.

The Fundamental Layers of a Linux
Cluster

A Linux cluster is not a single piece of software. It is a carefully orchestrated stack of
components, each responsible for a distinct function, and each depending on the

others to maintain the illusion of a single, always-available system. Think of it as a

20

layered cake where removing any single layer causes the entire structure to col-
lapse.

At the lowest level, you have the infrastructure layer, which consists of the
physical or virtual machines running Linux, the network interfaces connecting
them, and the shared or replicated storage they access. Above that sits the mes-
saging and membership layer, responsible for allowing nodes to communicate
with each other and agree on which nodes are currently alive and participating in
the cluster. The next layer up is the resource management layer, which decides
where services should run and what to do when something goes wrong. Finally, at
the top, you have the resource agent layer, which contains the scripts and pro-
grams that actually start, stop, and monitor individual services like databases, web
servers, and file systems.

The following table provides a comprehensive overview of these layers and

their responsibilities.

Layer Primary Responsi- Key Linux Compo- Failure Impact
bility nents

Infrastructure Physical connectivi- Linux kernel, NIC Total cluster failure
ty, compute, stor- drivers, multipath, if not redundant
age LVM

Messaging and Node communica- Corosync, Kronos- Split-brain, data

Membership tion, quorum deter- net, UDP/UDPU corruption
mination transports

Resource Manage- Service placement, Pacemaker (CRM), Services not restart-

ment failover decisions policy engine ed or misplaced
Resource Agents Service control OCEF scripts, sys- Individual service
(start, stop, monitor) temd agents, LSB failure
scripts

Each of these layers deserves careful attention, and we will explore them all in the

sections that follow.

21

The Infrastructure Layer: Building the
Physical Foundation

Every Linux cluster begins with its infrastructure. The nodes themselves are typical-
ly servers running a mainstream Linux distribution such as Red Hat Enterprise Lin-
ux, SUSE Linux Enterprise Server, Debian, or Ubuntu Server. The choice of distribu-
tion matters because each provides different levels of integration with clustering
software, different kernel versions, and different support lifecycles.

Network connectivity between cluster nodes is arguably the most critical in-
frastructure decision you will make. Cluster nodes must communicate constantly,
exchanging heartbeat messages, synchronizing state, and coordinating resource
management. If this communication is interrupted, the cluster cannot distinguish
between a failed node and a network partition, leading to the dreaded split-brain
scenario where both nodes believe they are the sole survivor and attempt to run
the same services simultaneously.

For this reason, production Linux clusters should always use redundant net-
work paths for cluster communication. This is typically achieved through network
bonding at the Linux kernel level, combined with physically separate network
switches.

To configure a bonded interface for cluster communication on a Linux system,

you would create a configuration similar to the following using NetworkManager:

nmcli connection add type bond con-name cluster-bond ifname bond0
\

bond.options "mode=active-backup,miimon=100,primary=ethl"
nmcli connection add type ethernet con-name bond-slave-1 ifname
ethl \

master bond0

nmcli connection add type ethernet con-name bond-slave-2 ifname
eth2 \

22

master bondO

nmcli connection modify cluster-bond ipv4.addresses 10.10.10.1/24
\

ipv4.method manual

nmcli connection up cluster-bond

The mode=active-backup option ensures that one interface is always active
while the other stands ready to take over immediately if the primary fails. The mi-
imon=100 parameter tells the kernel to check the link status of each interface
every 100 milliseconds, providing rapid detection of network cable failures or
switch portissues.

Note: The cluster communication network should be a dedicated, isolated net-
work that carries no application traffic. Mixing cluster heartbeat traffic with applica-
tion data introduces the risk that a burst of application traffic could delay heartbeat
messages, causing the cluster to falsely declare a node dead.

Storage architecture in a Linux cluster falls into two broad categories: shared
storage and replicated storage. Shared storage means that multiple nodes can ac-
cess the same physical or logical storage device, typically through a Storage Area
Network using Fibre Channel or iSCSI. Replicated storage means that each node
has its own local storage, and data is synchronized between nodes in real time us-
ing software such as DRBD (Distributed Replicated Block Device).

The following table compares these two approaches:

Characteristic Shared Storage (SAN/iSCSI) Replicated Storage (DRBD)

Cost Higher (requires SAN in- Lower (uses local disks)
frastructure)

Performance Generally higher throughput Write performance reduced

by replication

Complexity Requires SAN administration Requires DRBD configuration
expertise and tuning

23

Data copies Single copy on shared device Two or more copies across
nodes

Network dependency Separate storage network re- Replication uses cluster net-

quired work
Scalability Scales well with SAN expan- Limited to DRBD node count
sion

Fencing integration ~ SCSI reservations available ~ Requires separate fencing
mechanism

The Messaging and Membership Lay-
er: Corosync in Depth

Corosync is the heartbeat of nearly every modern Linux cluster. It implements the
Totem Single-Ring Ordering and Membership protocol, which provides reliable,
ordered message delivery to all nodes in the cluster. When Pacemaker needs to
tell all nodes about a configuration change or a resource state transition, it sends
that message through Corosync, which guarantees that every node receives the
message in the same order.

The Corosync configuration file lives at /etc/corosync/corosync.conf
and defines the fundamental behavior of the cluster communication layer. Here is a

production-quality configuration for a two-node cluster:

totem {
version: 2
cluster name: production-cluster

transport: knet

crypto cipher: aes256
crypto hash: sha256

interface {

24

linknumber: O

knet transport: udp

interface {
linknumber: 1

knet transport: udp

nodelist {
node {
ring0 addr: 10.10.10.1
ringl addr: 10.10.20.1
name: nodel
nodeid: 1

node {
ring0 addr: 10.10.10.2
ringl addr: 10.10.20.2
name: node?2
nodeid: 2

quorum {
provider: corosync votequorum

two node: 1

logging {
to logfile: yes
logfile: /var/log/cluster/corosync.log
to syslog: yes

timestamp: on

Let us examine the critical elements of this configuration. The transport: knet

directive tells Corosync to use the Kronosnet transport layer, which is the modern

25

