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Preface 

Every minute of downtime costs money, erodes trust, and disrupts the people who 

depend on the services we build. In the world of Linux infrastructure, where organi-

zations run everything from web applications to mission-critical databases, the abil-

ity to design systems that survive failure isn't a luxury—it's a fundamental expecta-

tion. This book was written to help you meet that expectation with confidence. 

Why This Book Exists 
Linux High Availability & Clustering was born from a simple observation: while 

there is no shortage of documentation on individual HA tools, there is a real gap 

when it comes to understanding how those tools fit together into a coherent, pro-

duction-ready Linux infrastructure. Too many administrators learn clustering 

through trial and error—often during an outage, when the stakes are highest. This 

book aims to change that by providing a structured, end-to-end guide to design-

ing, deploying, and managing fault-tolerant Linux systems. 

Whether you are a Linux system administrator looking to build your first two-

node cluster or an experienced engineer architecting multi-site failover across data 

centers, this book is designed to meet you where you are and take you further. 
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What You Will Learn 
The journey begins with the foundational concepts of high availability—what it 

means, how it is measured, and why Linux has become the platform of choice for 

resilient infrastructure. From there, we dive deep into the core technologies that 

power Linux clustering: Corosync for cluster communication, Pacemaker for intel-

ligent resource management, DRBD for real-time data replication, and the critical 

mechanisms of fencing and quorum that protect your data when things go wrong. 

But understanding individual components is only part of the story. This book 

dedicates significant attention to real-world application—building highly available 

web services and databases on Linux, implementing load balancing and horizontal 

scaling, monitoring cluster health, and automating operations to reduce human er-

ror. The later chapters address multi-site high availability and the architectural 

thinking required to design production-ready Linux infrastructure that stands up to 

the demands of modern workloads. 

How This Book Is Structured 
The sixteen chapters are organized in a deliberate progression. Chapters 1–4 es-

tablish the architectural foundation of Linux clustering. Chapters 5–8 focus on stor-

age, replication, and making critical services highly available. Chapters 9–12 tackle 

the operational disciplines—fencing, quorum, monitoring, and automation—that 

separate a fragile cluster from a robust one. Chapters 13–16 broaden the lens to 

multi-site designs, scalability, and the strategic mindset needed to evolve from sys-

tem administrator to infrastructure architect. 

The appendices provide practical, ready-to-use resources: a Pacemaker com-

mand cheat sheet, an HA design checklist, fencing configuration and failover 
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test plan templates, and a guide to building a career in Linux infrastructure. These 

are the tools I wish I had when I started this work. 

Who This Book Is For 
This book is for Linux professionals who refuse to accept "it just went down" as an 

answer. If you manage Linux servers and want to ensure they remain available 

through hardware failures, network partitions, and software crashes, you will find 

actionable knowledge on every page. A working familiarity with Linux system ad-

ministration is assumed; a willingness to think critically about failure is essential. 

Acknowledgments 
No technical book is written in isolation. I am grateful to the open-source commu-

nities behind Corosync, Pacemaker, DRBD, and the countless Linux projects that 

make this work possible. Their dedication to building reliable, freely available soft-

ware is the foundation upon which everything in these pages rests. I also owe a 

debt to the system administrators, site reliability engineers, and infrastructure ar-

chitects whose real-world challenges and hard-won lessons shaped the practical 

focus of this book. 

--- 

Downtime is inevitable. Extended downtime is a choice. Let's make sure your 

Linux infrastructure is ready for what comes next. 

Bas van den Berg 
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Chapter 1: Understanding 
High Availability Concepts 

In the modern world of enterprise computing, downtime is not merely an inconve-

nience. It is a direct threat to revenue, reputation, and operational continuity. Every 

second that a critical system remains unavailable translates into lost transactions, 

frustrated users, and potentially catastrophic consequences for organizations that 

depend on their infrastructure to function around the clock. This reality has driven 

the evolution of a discipline known as High Availability, and Linux stands at the very 

center of this discipline as the dominant operating system powering the majority of 

mission-critical infrastructure worldwide. 

This chapter lays the essential groundwork for everything that follows in this 

book. Before you configure a single cluster resource, write a heartbeat configura-

tion file, or deploy a failover mechanism, you must first deeply understand the the-

oretical and practical foundations of High Availability. You must understand what it 

truly means, how it is measured, why it matters, and how the various components 

of a High Availability architecture work together to keep services running even 

when individual parts of the system fail. We will explore these concepts thoroughly, 

always through the lens of Linux, which provides the most robust, flexible, and 

cost-effective platform for building highly available systems. 
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What High Availability Really Means 
High Availability, often abbreviated as HA, refers to the design approach and asso-

ciated practices that ensure a system or service remains operational and accessible 

for a very high percentage of time. It is not about preventing failures entirely, be-

cause hardware will eventually fail, software will encounter bugs, and networks will 

experience disruptions. Instead, High Availability is about designing systems that 

can tolerate these failures gracefully, continuing to provide service to users with 

minimal or no perceivable interruption. 

In the context of Linux, High Availability involves configuring multiple servers, 

often called nodes, to work together as a coordinated unit. When one node experi-

ences a failure, another node detects this failure and assumes responsibility for the 

services that were running on the failed node. This process, known as failover, hap-

pens automatically and ideally completes so quickly that users are unaware any-

thing went wrong. 

It is important to distinguish High Availability from related but distinct con-

cepts. High Availability is not the same as fault tolerance, although the two are of-

ten confused. A truly fault-tolerant system continues operating without any inter-

ruption whatsoever when a component fails, typically through hardware-level re-

dundancy such as duplicate processors and memory modules operating in lock-

step. High Availability, by contrast, acknowledges that a brief interruption may oc-

cur during failover but ensures that this interruption is measured in seconds rather 

than hours or days. 

Similarly, High Availability is not the same as disaster recovery. Disaster recov-

ery focuses on restoring services after a catastrophic event, such as a data center 

fire or a regional power outage, and typically involves restoring from backups or 

activating a geographically distant standby site. High Availability operates at a 
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more immediate level, handling the kinds of failures that occur within a single data 

center or across closely connected sites. 

On Linux systems, the tools and technologies that enable High Availability 

have matured significantly over the past two decades. The Pacemaker cluster re-

source manager, the Corosync cluster communication system, DRBD for replicated 

block storage, and keepalived for virtual IP management are all open-source 

projects that run exclusively or primarily on Linux. These tools give Linux adminis-

trators the ability to build enterprise-grade High Availability solutions without the 

enormous licensing costs associated with proprietary alternatives. 

Measuring Availability: The Language 
of Nines 
To have meaningful conversations about High Availability, you need a precise way 

to measure and express it. The industry standard for measuring availability uses a 

metric expressed as a percentage of uptime over a given period, typically one 

year. This percentage is commonly referred to using the "nines" notation, which de-

scribes how many nines appear in the availability percentage. 

The following table provides a comprehensive overview of the standard avail-

ability levels, their corresponding annual downtime, and the typical use cases and 

infrastructure requirements associated with each level. 
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Availabili-
ty Level

Percent-
age

Annual 
Downtime

Monthly 
Downtime

Weekly 
Downtime

Typical 
Use Case

In-
frastructur
e Require-
ment

One Nine 90.0% 36.53 days 73.05 
hours

16.80 
hours

Develop-
ment and 
testing en-
vironments

Single 
server, no 
redundan-
cy

Two Nines 99.0% 3.65 days 7.31 hours 1.68 hours Internal 
business 
ap-
plications

Basic mon-
itoring, 
manual 
failover

Three 
Nines

99.9% 8.77 hours 43.83 min-
utes

10.08 min-
utes

Standard 
commer-
cial ser-
vices

Redundant 
compo-
nents, au-
tomated 
monitoring

Four Nines 99.99% 52.60 min-
utes

4.38 min-
utes

1.01 min-
utes

E-com-
merce, fi-
nancial 
services

Fully re-
dundant 
HA cluster 
with auto-
matic 
failover

Five Nines 99.999% 5.26 min-
utes

26.30 sec-
onds

6.05 sec-
onds

Telecom-
munica-
tions, 
emer-
gency ser-
vices

Multi-site 
active-ac-
tive clus-
ters, no 
single 
point of 
failure

Six Nines 99.9999% 31.56 sec-
onds

2.63 sec-
onds

0.60 sec-
onds

Critical na-
tional in-
frastructur
e

Extreme 
redundan-
cy at every 
layer, cus-
tom engi-
neering
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Each additional nine represents a tenfold reduction in permissible downtime and a 

corresponding increase in the complexity and cost of the infrastructure required to 

achieve it. Moving from three nines to four nines on a Linux platform might involve 

transitioning from a simple active-standby pair of servers to a multi-node cluster 

with redundant networking, shared storage, and comprehensive monitoring. Mov-

ing from four nines to five nines typically requires eliminating every single point of 

failure in the entire stack, from power supplies and network switches to DNS reso-

lution and storage controllers. 

The availability percentage is calculated using the following formula: 

Availability = (Total Time - Downtime) / Total Time * 100 

For example, if a Linux web server cluster experienced a total of 4 hours of down-

time over the course of a year, the availability would be calculated as follows: 

Total minutes in a year = 365.25 * 24 * 60 = 525,960 minutes 

Downtime in minutes = 4 * 60 = 240 minutes 

Availability = (525,960 - 240) / 525,960 * 100 = 99.954% 

This result falls between three nines and four nines, which means the system did 

not meet a four-nines target. Understanding these calculations is essential for set-

ting realistic availability goals and for evaluating whether your Linux HA in-

frastructure is meeting its objectives. 

Note: When calculating availability, it is critical to define clearly what consti-

tutes "downtime." Planned maintenance windows are sometimes excluded from 

availability calculations in Service Level Agreements, but from the user's perspec-

tive, the service is still unavailable during those windows. A truly robust Linux HA 

architecture should allow for rolling upgrades and maintenance without any ser-

vice interruption, making planned downtime a concept that can be largely elimi-

nated. 
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Single Points of Failure: The Enemy of 
Availability 
The single most important concept in High Availability design is the identification 

and elimination of single points of failure, commonly abbreviated as SPOF. A single 

point of failure is any component in your infrastructure whose failure would cause 

the entire service to become unavailable. If your web application runs on a single 

Linux server, that server is a single point of failure. If both of your clustered servers 

connect to the same network switch, that switch is a single point of failure. If your 

database cluster uses a single shared storage array, that storage array is a single 

point of failure. 

Identifying single points of failure requires a systematic, layer-by-layer analysis 

of your entire infrastructure. Consider a typical Linux-based web application stack. 

The following table walks through each layer and identifies common single points 

of failure along with the standard HA mitigation strategy for each. 

Infrastructure 
Layer

Component Potential SPOF Linux HA Mitiga-
tion

Power Power supply unit Single PSU in server Dual PSUs connect-
ed to separate cir-
cuits, UPS systems

Network Network interface Single NIC NIC bonding using 
Linux bonding dri-
ver or NetworkMan-
ager

Network Switch Single uplink switch Redundant switches 
with bonded inter-
faces in 802.3ad 
mode
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Network Internet connection Single ISP link Multiple ISP con-
nections with BGP 
or policy routing

Compute Server hardware Single server Pacemaker/Coro-
sync cluster with 
multiple nodes

Storage Local disk Single disk drive Linux software RAID 
using mdadm, or 
hardware RAID

Storage Storage system Single storage array DRBD replication, 
GlusterFS, or Ceph 
distributed storage

Application Web server process Single instance Multiple instances 
behind HAProxy or 
keepalived with LVS

Application Database Single database 
server

MariaDB Galera 
Cluster, PostgreSQL 
streaming replica-
tion

DNS Name resolution Single DNS server Multiple DNS 
servers, anycast 
DNS, round-robin 
records

The process of eliminating single points of failure is sometimes called "redundancy 

engineering," and it follows a straightforward principle: every critical component 

must have at least one backup that can take over its function when the primary 

fails. On Linux, this principle is implemented at every layer of the stack using a rich 

ecosystem of open-source tools. 

For example, Linux NIC bonding allows you to combine multiple physical net-

work interfaces into a single logical interface that continues to function even if one 

of the physical interfaces fails. You can configure this directly through the Linux ker-

nel's bonding module. A basic bonding configuration might look like this: 
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# Load the bonding kernel module 

modprobe bonding 

 

# Verify the module is loaded 

lsmod | grep bonding 

 

# Create a bond interface configuration 

cat > /etc/sysconfig/network-scripts/ifcfg-bond0 << EOF 

DEVICE=bond0 

TYPE=Bond 

BONDING_MASTER=yes 

IPADDR=192.168.1.100 

NETMASK=255.255.255.0 

GATEWAY=192.168.1.1 

ONBOOT=yes 

BOOTPROTO=none 

BONDING_OPTS="mode=active-backup miimon=100 primary=eth0" 

EOF 

In this configuration, the mode=active-backup parameter tells the bonding dri-

ver to use one interface as the primary and automatically switch to the backup in-

terface if the primary fails. The miimon=100 parameter sets the link monitoring in-

terval to 100 milliseconds, ensuring that a failed link is detected within a fraction of 

a second. 

Note: The bonding modes available in the Linux kernel include balance-rr 

(mode 0), active-backup (mode 1), balance-xor (mode 2), broadcast (mode 3), 

802.3ad (mode 4), balance-tlb (mode 5), and balance-alb (mode 6). For High Avail-

ability purposes, active-backup and 802.3ad are the most commonly used modes. 

The 802.3ad mode requires switch support for Link Aggregation Control Protocol 

(LACP) but provides both redundancy and increased throughput. 
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The Anatomy of a Linux HA Cluster 
A Linux High Availability cluster is composed of several key components that work 

together to detect failures and respond to them automatically. Understanding 

these components and their roles is essential before you begin building your own 

clusters. 

The first component is the cluster communication layer. This is the foundation 

upon which everything else is built. The cluster communication layer is responsible 

for allowing the nodes in the cluster to communicate with each other, to determine 

which nodes are currently alive and healthy, and to agree on the current state of 

the cluster. In modern Linux HA clusters, this role is filled by Corosync, which uses a 

protocol called Totem to maintain a reliable, ordered communication ring among 

all cluster nodes. Corosync sends heartbeat messages between nodes at regular 

intervals, and if a node fails to respond within a configured timeout, it is declared 

dead by the remaining nodes. 

The second component is the cluster resource manager. This is the brain of 

the cluster, responsible for deciding which resources should run on which nodes 

and for orchestrating failover when a node fails. In the Linux ecosystem, Pacemaker 

is the dominant cluster resource manager. Pacemaker maintains a model of the 

cluster's desired state, which includes definitions of all the resources (such as IP ad-

dresses, filesystems, and application services), the constraints that govern where 

and how those resources should run, and the rules that determine what should 

happen when failures occur. When Pacemaker detects that the actual state of the 

cluster differs from the desired state, it takes corrective action automatically. 

The third component is the resource agents. These are scripts or programs 

that Pacemaker uses to manage individual resources. A resource agent knows how 

to start, stop, and monitor a specific type of resource. For example, there is a re-

source agent for managing an Apache web server, another for managing a virtual 
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IP address, another for managing a filesystem mount, and so on. Linux provides 

hundreds of resource agents through the resource-agents package, covering 

everything from simple services to complex database systems. Resource agents 

follow the Open Cluster Framework (OCF) specification, which defines a standard 

interface that Pacemaker uses to interact with them. 

The fourth component is the fencing mechanism, also known as STONITH, 

which stands for "Shoot The Other Node In The Head." Fencing is perhaps the 

most misunderstood component of a Linux HA cluster, but it is absolutely critical. 

When a node becomes unresponsive, the remaining nodes cannot be certain 

whether the unresponsive node has truly crashed or whether it is simply experienc-

ing a temporary communication problem. If the remaining nodes start the failed 

node's resources without being certain that the failed node has stopped them, 

both nodes might try to run the same resources simultaneously. For a database, 

this could result in catastrophic data corruption. Fencing solves this problem by 

forcibly shutting down or isolating the unresponsive node before its resources are 

started elsewhere. On Linux, fencing is typically implemented through IPMI com-

mands that power off the failed node, through management interfaces on virtual 

machines, or through network-based power switches. 

The following table summarizes these core components: 

Component Purpose Linux Implementa-
tion

Role in Failover

Cluster Communi-
cation

Node discovery, 
heartbeat, member-
ship

Corosync Detects node fail-
ures through 
missed heartbeats

Cluster Resource 
Manager

Resource place-
ment, failover deci-
sions

Pacemaker Decides where to 
move resources af-
ter failure
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Resource Agents Start, stop, and 
monitor individual 
resources

OCF scripts, sys-
temd agents, LSB 
scripts

Executes the actual 
start and stop oper-
ations

Fencing / STONITH Ensure failed nodes 
are truly offline

fence_ipmilan, 
fence_virsh, 
fence_aws

Powers off failed 
node before re-
source recovery

Quorum Prevent split-brain 
scenarios

Votequorum (part 
of Corosync)

Determines which 
partition can contin-
ue operating

The fifth component listed in this table, quorum, deserves special attention. In a 

cluster with multiple nodes, it is possible for a network failure to divide the cluster 

into two or more groups of nodes that can communicate within their group but not 

with other groups. This situation is called a "split brain," and it is extremely danger-

ous because each group might believe that the other group has failed and attempt 

to take over its resources. Quorum is the mechanism that prevents this. A group of 

nodes has quorum if it contains more than half of the total number of nodes in the 

cluster. Only the group that has quorum is allowed to continue operating and man-

aging resources. The other group, lacking quorum, must stop all resources and 

wait for communication to be restored. 

Practical Exercise: Evaluating Your Cur-
rent Infrastructure 
To solidify your understanding of the concepts covered in this chapter, perform the 

following exercise on a Linux system that you manage or have access to. 

First, identify all the services running on the system that would be affected by a 

server failure: 

# List all active services 
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systemctl list-units --type=service --state=running 

 

# Identify listening network services 

ss -tlnp 

 

# Check for mounted network filesystems 

mount | grep -E 'nfs|cifs|gluster' 

 

# Review the system's network configuration for redundancy 

ip link show 

cat /proc/net/bonding/bond0 2>/dev/null || echo "No bonding 

configured" 

Second, document the current availability characteristics of the system: 

# Check system uptime 

uptime 

 

# Review recent reboot history 

last reboot | head -20 

 

# Check for any disk redundancy 

cat /proc/mdstat 2>/dev/null || echo "No software RAID 

configured" 

lsblk -f 

 

# Examine power supply status if available through IPMI 

ipmitool sdr type "Power Supply" 2>/dev/null || echo "IPMI not 

available" 

Third, create a simple availability report by examining the system logs for any re-

cent service interruptions: 

# Search for recent service failures in the journal 

journalctl --since "30 days ago" --priority=err --no-pager | head 

-50 

 

# Check for any OOM (Out of Memory) kills 

journalctl --since "30 days ago" | grep -i "out of memory" | wc 

-l 
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# Review kernel messages for hardware errors 

dmesg | grep -iE "error|fail|fault" | tail -20 

After running these commands, create a document that lists every single point of 

failure you can identify in the system. For each SPOF, note what Linux HA technolo-

gy could be used to mitigate it. This exercise will give you a concrete starting point 

for the cluster implementations we will build in subsequent chapters. 

Note: The commands above use standard Linux utilities that are available on 

virtually all distributions. The systemctl command is specific to systems using 

systemd as their init system, which includes all major modern Linux distributions 

such as Red Hat Enterprise Linux, CentOS, Ubuntu, Debian, SUSE Linux Enterprise, 

and Fedora. If you are working with an older system that uses SysVinit, replace 

systemctl list-units with service --status-all. 

Moving Forward 
The concepts presented in this chapter form the intellectual foundation for every-

thing else in this book. High Availability is not simply a collection of tools and con-

figurations. It is a design philosophy that requires you to think systematically about 

failure, to anticipate what can go wrong, and to build systems that respond to fail-

ure automatically and gracefully. Linux provides an extraordinarily powerful plat-

form for implementing this philosophy, with a mature ecosystem of clustering tools 

that rival and often surpass their proprietary counterparts in both capability and 

flexibility. 

As you move into the next chapter, you will begin translating these concepts 

into concrete implementations. You will install and configure Corosync and Pace-

maker on real Linux systems, create your first cluster, and experience firsthand the 

process of automated failover. The theoretical understanding you have gained 
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here will make those practical exercises far more meaningful, because you will un-

derstand not just what the tools are doing, but why they are doing it and how each 

piece fits into the larger picture of a robust, fault-tolerant Linux infrastructure. 

Remember that achieving High Availability is an iterative process. You do not 

need to eliminate every single point of failure on day one. Start by identifying the 

most critical services and the most likely failure scenarios, address those first, and 

then progressively improve your infrastructure over time. Each step you take to-

ward eliminating single points of failure brings you closer to the level of availability 

your organization requires, and Linux gives you every tool you need to get there. 
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Chapter 2: Linux Clustering 
Architecture 

Understanding the architecture behind Linux clustering is not merely an academic 

exercise. It is the foundation upon which every reliable, fault-tolerant production 

system is built. When a critical database server fails at two in the morning and your 

cluster seamlessly redirects traffic to a standby node without a single user noticing, 

that is the architecture doing its job. When that same failure causes a cascading 

outage that takes down your entire e-commerce platform, that is the architecture 

failing. The difference between these two outcomes lies entirely in how well you 

understand, design, and implement your clustering architecture on Linux. 

This chapter takes you deep into the structural components, communication 

models, resource management strategies, and decision-making algorithms that 

form the backbone of every Linux cluster. We will examine each layer of the archi-

tecture, from the physical network interconnects to the abstract resource agents 

that manage your services, and we will do so with the practical depth that real-

world deployments demand. 

The Fundamental Layers of a Linux 
Cluster 
A Linux cluster is not a single piece of software. It is a carefully orchestrated stack of 

components, each responsible for a distinct function, and each depending on the 

others to maintain the illusion of a single, always-available system. Think of it as a 
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layered cake where removing any single layer causes the entire structure to col-

lapse. 

At the lowest level, you have the infrastructure layer, which consists of the 

physical or virtual machines running Linux, the network interfaces connecting 

them, and the shared or replicated storage they access. Above that sits the mes-

saging and membership layer, responsible for allowing nodes to communicate 

with each other and agree on which nodes are currently alive and participating in 

the cluster. The next layer up is the resource management layer, which decides 

where services should run and what to do when something goes wrong. Finally, at 

the top, you have the resource agent layer, which contains the scripts and pro-

grams that actually start, stop, and monitor individual services like databases, web 

servers, and file systems. 

The following table provides a comprehensive overview of these layers and 

their responsibilities. 

Layer Primary Responsi-
bility

Key Linux Compo-
nents

Failure Impact

Infrastructure Physical connectivi-
ty, compute, stor-
age

Linux kernel, NIC 
drivers, multipath, 
LVM

Total cluster failure 
if not redundant

Messaging and 
Membership

Node communica-
tion, quorum deter-
mination

Corosync, Kronos-
net, UDP/UDPU 
transports

Split-brain, data 
corruption

Resource Manage-
ment

Service placement, 
failover decisions

Pacemaker (CRM), 
policy engine

Services not restart-
ed or misplaced

Resource Agents Service control 
(start, stop, monitor)

OCF scripts, sys-
temd agents, LSB 
scripts

Individual service 
failure

Each of these layers deserves careful attention, and we will explore them all in the 

sections that follow. 
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The Infrastructure Layer: Building the 
Physical Foundation 
Every Linux cluster begins with its infrastructure. The nodes themselves are typical-

ly servers running a mainstream Linux distribution such as Red Hat Enterprise Lin-

ux, SUSE Linux Enterprise Server, Debian, or Ubuntu Server. The choice of distribu-

tion matters because each provides different levels of integration with clustering 

software, different kernel versions, and different support lifecycles. 

Network connectivity between cluster nodes is arguably the most critical in-

frastructure decision you will make. Cluster nodes must communicate constantly, 

exchanging heartbeat messages, synchronizing state, and coordinating resource 

management. If this communication is interrupted, the cluster cannot distinguish 

between a failed node and a network partition, leading to the dreaded split-brain 

scenario where both nodes believe they are the sole survivor and attempt to run 

the same services simultaneously. 

For this reason, production Linux clusters should always use redundant net-

work paths for cluster communication. This is typically achieved through network 

bonding at the Linux kernel level, combined with physically separate network 

switches. 

To configure a bonded interface for cluster communication on a Linux system, 

you would create a configuration similar to the following using NetworkManager: 

nmcli connection add type bond con-name cluster-bond ifname bond0 

\ 

    bond.options "mode=active-backup,miimon=100,primary=eth1" 

 

nmcli connection add type ethernet con-name bond-slave-1 ifname 

eth1 \ 

    master bond0 

 

nmcli connection add type ethernet con-name bond-slave-2 ifname 

eth2 \ 
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    master bond0 

 

nmcli connection modify cluster-bond ipv4.addresses 10.10.10.1/24 

\ 

    ipv4.method manual 

 

nmcli connection up cluster-bond 

The mode=active-backup option ensures that one interface is always active 

while the other stands ready to take over immediately if the primary fails. The mi-

imon=100 parameter tells the kernel to check the link status of each interface 

every 100 milliseconds, providing rapid detection of network cable failures or 

switch port issues. 

Note: The cluster communication network should be a dedicated, isolated net-

work that carries no application traffic. Mixing cluster heartbeat traffic with applica-

tion data introduces the risk that a burst of application traffic could delay heartbeat 

messages, causing the cluster to falsely declare a node dead. 

Storage architecture in a Linux cluster falls into two broad categories: shared 

storage and replicated storage. Shared storage means that multiple nodes can ac-

cess the same physical or logical storage device, typically through a Storage Area 

Network using Fibre Channel or iSCSI. Replicated storage means that each node 

has its own local storage, and data is synchronized between nodes in real time us-

ing software such as DRBD (Distributed Replicated Block Device). 

The following table compares these two approaches: 

Characteristic Shared Storage (SAN/iSCSI) Replicated Storage (DRBD)

Cost Higher (requires SAN in-
frastructure)

Lower (uses local disks)

Performance Generally higher throughput Write performance reduced 
by replication

Complexity Requires SAN administration 
expertise

Requires DRBD configuration 
and tuning
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Data copies Single copy on shared device Two or more copies across 
nodes

Network dependency Separate storage network re-
quired

Replication uses cluster net-
work

Scalability Scales well with SAN expan-
sion

Limited to DRBD node count

Fencing integration SCSI reservations available Requires separate fencing 
mechanism

The Messaging and Membership Lay-
er: Corosync in Depth 
Corosync is the heartbeat of nearly every modern Linux cluster. It implements the 

Totem Single-Ring Ordering and Membership protocol, which provides reliable, 

ordered message delivery to all nodes in the cluster. When Pacemaker needs to 

tell all nodes about a configuration change or a resource state transition, it sends 

that message through Corosync, which guarantees that every node receives the 

message in the same order. 

The Corosync configuration file lives at /etc/corosync/corosync.conf 

and defines the fundamental behavior of the cluster communication layer. Here is a 

production-quality configuration for a two-node cluster: 

totem { 

    version: 2 

    cluster_name: production-cluster 

    transport: knet 

 

    crypto_cipher: aes256 

    crypto_hash: sha256 

 

    interface { 
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        linknumber: 0 

        knet_transport: udp 

    } 

 

    interface { 

        linknumber: 1 

        knet_transport: udp 

    } 

} 

 

nodelist { 

    node { 

        ring0_addr: 10.10.10.1 

        ring1_addr: 10.10.20.1 

        name: node1 

        nodeid: 1 

    } 

 

    node { 

        ring0_addr: 10.10.10.2 

        ring1_addr: 10.10.20.2 

        name: node2 

        nodeid: 2 

    } 

} 

 

quorum { 

    provider: corosync_votequorum 

    two_node: 1 

} 

 

logging { 

    to_logfile: yes 

    logfile: /var/log/cluster/corosync.log 

    to_syslog: yes 

    timestamp: on 

} 

Let us examine the critical elements of this configuration. The transport: knet 

directive tells Corosync to use the Kronosnet transport layer, which is the modern 


