
1

NFS & iSCSI: Linux Network
Storage

Designing, Deploying, and Securing
Network-Based Storage Infrastructure
on Linux

2

Preface

When I first began working with iSCSI in production Linux environments, I was

struck by how few resources existed that treated it with the depth and seriousness

it deserved. iSCSI—Internet Small Computer Systems Interface—has quietly become

one of the most powerful and cost-effective storage technologies available to Lin-

ux administrators, yet it often lives in the shadow of more glamorous solutions. This

book was written to change that.

Why This Book Exists
iSCSI enables block-level storage access over standard TCP/IP networks, eliminat-

ing the need for expensive Fibre Channel infrastructure while delivering the perfor-

mance and flexibility that modern data centers demand. Whether you're building a

virtualization cluster, architecting shared storage for a database tier, or simply look-

ing to consolidate storage across your Linux environment, iSCSI is likely at the cen-

ter of your solution—or it should be.

NFS & iSCSI: Linux Network Storage was conceived as a comprehensive, practi-

cal guide to designing, deploying, and securing network-based storage in-

frastructure on Linux, with iSCSI as its central focus. While NFS is covered thor-

oughly as an essential companion technology for file-level access, the heart of this

book beats around iSCSI: understanding its architecture, mastering its configura-

tion, hardening its security, and troubleshooting its failures in real-world environ-

ments.

3

What You Will Learn
This book is structured to take you on a deliberate journey. We begin with founda-

tional concepts—understanding network storage models and how iSCSI fits within

the broader landscape of block and file storage protocols. From there, we move

into hands-on territory: configuring iSCSI targets and initiators, connecting clients

to shared block storage, and integrating iSCSI volumes with LVM for flexible vol-

ume management.

Security receives dedicated attention because iSCSI, by its nature, transmits

storage traffic over networks that may be shared with other services. Chapters on

securing iSCSI storage cover CHAP authentication, network segmentation, IPsec,

and the critical design decisions that separate a lab experiment from a production-

ready deployment.

The book also addresses the environments where iSCSI truly shines: virtual-

ized infrastructures. Whether you're using KVM, Proxmox, or other hypervisors,

you'll learn how iSCSI serves as the backbone for shared storage in clustered and

high-availability configurations.

How This Book Is Organized
The sixteen chapters and five appendices are arranged in a logical progression:

-	 Chapters 1–2 establish the conceptual foundation for network storage,

with emphasis on where iSCSI fits in.

-	 Chapters 3–6 cover NFS server and client configuration, security, and

performance tuning.

-	 Chapters 7–10 form the core of the book, delivering deep, hands-on

coverage of iSCSI targets, initiators, connectivity, and security.

4

-	 Chapters 11–12 explore integration topics—LVM and virtualization—

where iSCSI's block-level capabilities are most impactful.

-	 Chapters 13–14 provide systematic troubleshooting methodologies for

both NFS and iSCSI.

-	 Chapters 15–16 elevate your perspective from tactical configuration to

strategic design and career growth.

-	 Appendices A–E offer quick-reference materials, including an iSCSI

command reference, security checklists, troubleshooting flowcharts,

and a guide to building a career in Linux storage engineering.

Who This Book Is For
If you are a Linux system administrator, DevOps engineer, or infrastructure architect

who needs to implement reliable, secure, network-attached storage—and particu-

larly if iSCSI is part of your current or future architecture—this book was written for

you. No prior storage specialization is required, only a working familiarity with Lin-

ux administration.

Acknowledgments
This book would not exist without the open-source communities that have built

and maintained the Linux iSCSI target frameworks, open-iscsi, LVM, and the

countless tools that make Linux the premier platform for network storage. I am also

deeply grateful to the system administrators and storage engineers whose real-

world questions, war stories, and hard-won lessons shaped every chapter.

5

Storage is infrastructure. Infrastructure is trust. Let's build something worth trust-

ing.

Bas van den Berg

6

Table of Contents

Chapter Title Page

1 Understanding Network Storage Models 7

2 NFS and iSCSI Overview 21

3 Installing and Configuring an NFS Server 35

4 NFS Client Configuration 49

5 Securing NFS Deployments 47

6 Performance Tuning for NFS 77

7 Understanding iSCSI Targets and Initiators 94

8 Configuring an iSCSI Target 105

9 Connecting to an iSCSI Target 118

10 Securing iSCSI Storage 135

11 Integrating with LVM 152

12 NFS and iSCSI in Virtualized Environments 164

13 Diagnosing NFS Issues 178

14 Diagnosing iSCSI Issues 191

15 Designing Production-Ready Network Storage 205

16 From System Administrator to Storage Engineer 222

App NFS Configuration Cheat Sheet 238

App iSCSI Command Reference 251

App Secure Storage Deployment Checklist 268

App Troubleshooting Flowchart 283

App Linux Storage Career Path 297

7

Chapter 1: Understanding
Network Storage Models

Network storage has fundamentally transformed the way organizations manage,

access, and protect their data. In the early days of computing, storage was a simple

affair: a hard disk physically attached to a server, accessible only to that single ma-

chine. As networks grew in complexity and businesses demanded more flexibility,

the limitations of this approach became painfully apparent. The need to share data

across multiple servers, to centralize management, and to scale storage indepen-

dently from compute resources gave rise to an entirely new discipline of network-

based storage. Among the most important technologies in this space is iSCSI, the

Internet Small Computer Systems Interface, which has democratized access to en-

terprise-grade storage by leveraging the ubiquitous TCP/IP network infrastructure

that already exists in virtually every organization.

This chapter lays the groundwork for understanding where iSCSI fits within the

broader landscape of network storage. Before diving into configuration files and

command-line tools, it is essential to develop a clear mental model of the different

storage architectures, understand the terminology, and appreciate the design de-

cisions that make iSCSI such a compelling choice for Linux-based storage in-

frastructure.

8

The Evolution of Storage: From Local
Disks to Network Storage
To appreciate the significance of iSCSI, one must first understand the problem it

solves. In a traditional computing environment, each server has its own set of local-

ly attached disks. The operating system communicates with these disks through a

bus interface, most commonly SCSI (Small Computer Systems Interface) or its suc-

cessors like SAS (Serial Attached SCSI). This communication happens at the block

level, meaning the operating system sends raw read and write commands to spe-

cific locations on the disk surface. The operating system's file system layer then or-

ganizes these blocks into files and directories.

This model works perfectly well for a single server, but it introduces serious

challenges at scale. Consider a data center with fifty servers, each with its own local

storage. If one server runs out of disk space while another has terabytes sitting idle,

there is no straightforward way to redistribute that capacity. If a server fails, the

data on its local disks may become inaccessible until the hardware is repaired.

Backup processes must run independently on each machine. Provisioning a new

server requires physically installing disks, a process that can take hours or days.

Network storage emerged as the answer to these challenges. By separating

storage from the server and connecting them over a network, organizations gained

the ability to pool storage resources, share them dynamically, manage them cen-

trally, and protect them more effectively. Two primary models of network storage

emerged: file-level storage and block-level storage. Understanding the distinction

between these two models is absolutely critical to understanding why iSCSI exists

and what makes it different from technologies like NFS.

9

File-Level Storage versus Block-Level
Storage
File-level storage, exemplified by NFS (Network File System) and CIFS/SMB (Com-

mon Internet File System/Server Message Block), operates at the file system layer.

When a client accesses a file over NFS, it sends requests like "open this file," "read

4096 bytes starting at offset 8192," or "create a new directory." The storage server

receives these requests, translates them into local file system operations, and re-

turns the results. The client never directly interacts with the underlying disk blocks.

The server's file system handles all the details of where data physically resides on

disk.

Block-level storage operates at a fundamentally lower layer. Instead of request-

ing files by name, the client sends raw SCSI commands to read and write specific

blocks of data on a storage device. The client's operating system treats the remote

storage device as if it were a locally attached disk. The client runs its own file sys-

tem on top of this block device, making all decisions about how to organize data

into files and directories. The storage server, often called a storage target, simply

receives block-level I/O commands and executes them against its physical disks.

This distinction has profound implications. With block-level storage, the client

has complete control over the file system. It can format the device with any file sys-

tem it chooses, whether ext4, XFS, Btrfs, or even a raw database tablespace. It can

use the device as a swap partition, as a physical volume for LVM (Logical Volume

Manager), or as a member of a software RAID array. None of this is possible with

file-level storage, where the server dictates the file system and the client must work

within its constraints.

iSCSI is a block-level storage protocol. It takes the venerable SCSI command

set, the same set of commands that operating systems have used to communicate

with local disks for decades, and encapsulates those commands inside TCP/IP

10

packets for transmission over a standard Ethernet network. This is the core insight

of iSCSI: rather than requiring specialized hardware and cabling, it reuses the exist-

ing network infrastructure to deliver block-level storage access.

The following table summarizes the key differences between file-level and

block-level network storage:

Characteristic File-Level Storage (NFS) Block-Level Storage (iSCSI)

Protocol Layer Application layer (file opera-
tions)

Block layer (SCSI commands
over TCP/IP)

Client Perspective Sees shared directories and
files

Sees raw block devices (like
local disks)

File System Control Server controls the file sys-
tem

Client controls the file sys-
tem

Typical Use Cases Shared home directories,
web content, general file
sharing

Databases, virtual machine
disk images, boot devices,
applications requiring raw
block access

Multi-Client Access Natively supports multiple
concurrent clients

Typically single-client access
per LUN unless clustered file
system is used

Network Requirements Standard TCP/IP Ethernet Standard TCP/IP Ethernet

Performance Sensitivity Moderate latency tolerance More sensitive to latency
due to block-level opera-
tions

Flexibility Limited to file operations Full control over file system,
partitioning, LVM, and RAID

11

The Three Storage Architectures: DAS,
NAS, and SAN
Network storage is commonly categorized into three architectural models: Direct

Attached Storage (DAS), Network Attached Storage (NAS), and Storage Area Net-

work (SAN). Understanding where iSCSI fits among these architectures is essential

for making informed design decisions.

Direct Attached Storage (DAS) is the simplest model. Storage devices are

physically connected to a single server through a local interface such as SATA, SAS,

or USB. There is no network involved. DAS is inexpensive and offers low latency,

but it lacks the flexibility and shareability of network storage. Every server manages

its own storage independently, leading to the capacity imbalance and manage-

ment overhead problems described earlier.

Network Attached Storage (NAS) is a file-level storage architecture. A NAS

device is a specialized server that connects to the data network and presents

shared file systems to clients using protocols like NFS or SMB. Clients mount these

shared file systems and access files using standard file operations. NAS is excellent

for scenarios where multiple clients need to access the same set of files simultane-

ously, such as shared home directories, media libraries, or collaborative work-

spaces.

Storage Area Network (SAN) is a block-level storage architecture. A SAN cre-

ates a dedicated network specifically for storage traffic, separate from the regular

data network. Storage devices on the SAN present raw block devices (called LUNs,

or Logical Unit Numbers) to servers, which then format and use these devices as if

they were local disks. Traditionally, SANs were built using Fibre Channel, a high-

speed, low-latency networking technology purpose-built for storage. Fibre Chan-

nel SANs deliver exceptional performance but require specialized switches, host

bus adapters (HBAs), and cabling, all of which carry significant cost.

12

This is precisely where iSCSI enters the picture and changes the economics of

block-level storage dramatically. iSCSI enables organizations to build a SAN using

their existing Ethernet network infrastructure. Instead of Fibre Channel switches

costing tens of thousands of dollars, organizations can use standard Ethernet

switches. Instead of expensive Fibre Channel HBAs, servers use their existing net-

work interface cards (NICs). Instead of specialized Fibre Channel cabling, standard

Cat6 or Cat6a Ethernet cables carry the storage traffic. The result is a SAN that de-

livers block-level storage access at a fraction of the cost of a traditional Fibre Chan-

nel SAN.

The following table compares these three architectures with a focus on how

iSCSI relates to each:

Architecture Storage Type Network Protocol Cost iSCSI Rele-
vance

DAS Block None (local
bus)

SATA, SAS,
NVMe

Low iSCSI can re-
place DAS by
providing
centralized
block storage
over the net-
work

NAS File Standard Eth-
ernet (TCP/IP)

NFS, SMB/
CIFS

Moderate iSCSI oper-
ates at a dif-
ferent layer;
NAS and iSC-
SI can coexist
on the same
network

13

SAN (Fibre
Channel)

Block Dedicated Fi-
bre Channel

FCP (Fibre
Channel Pro-
tocol)

High iSCSI pro-
vides equiva-
lent block-
level access
at significant-
ly lower cost

SAN (iSCSI) Block Standard Eth-
ernet (TCP/IP)

iSCSI (SCSI
over TCP/IP)

Moderate This is iSCSI's
primary role:
an IP-based
SAN

How iSCSI Works: A Conceptual Over-
view
At its heart, iSCSI is an elegantly simple idea: take SCSI commands and transport

them over TCP/IP networks. However, the implementation involves several impor-

tant concepts that must be understood before any practical deployment.

In the iSCSI architecture, there are two primary roles: the initiator and the tar-

get. The initiator is the client, the server that needs access to remote storage. It

generates SCSI commands and sends them over the network. The target is the

storage server that receives these commands, executes them against its physical

storage, and returns the results. A single target can present multiple storage de-

vices, each identified by a Logical Unit Number (LUN). A single initiator can con-

nect to multiple targets, and a single target can serve multiple initiators.

Every iSCSI target and initiator is identified by a globally unique name called

an iSCSI Qualified Name (IQN). The IQN follows a specific naming convention that

includes the date of registration, the naming authority (typically a reversed domain

name), and a unique identifier. For example:

14

iqn.2024-01.com.example.storage:target01

This naming convention ensures that every iSCSI device on any network anywhere

in the world can be uniquely identified, which is essential for security and manage-

ment purposes.

When an initiator wants to access storage on a target, it first performs a process

called discovery. During discovery, the initiator contacts the target and requests a

list of available targets and their addresses. Once the initiator knows what targets

are available, it establishes a session with the desired target. A session is a TCP

connection (or multiple TCP connections for performance) over which SCSI com-

mands and data flow. Within a session, the initiator can access the LUNs presented

by the target, and the operating system treats these LUNs as local block devices.

The following table outlines the key iSCSI terminology:

Term Definition

Initiator The client that sends SCSI commands
over the network to access remote stor-
age

Target The server that receives SCSI commands
and provides access to storage devices

LUN (Logical Unit Number) A unique identifier for a specific storage
device presented by a target

IQN (iSCSI Qualified Name) A globally unique name assigned to
each initiator and target

Portal A combination of IP address and TCP
port on which a target listens for connec-
tions (default port is 3260)

Discovery The process by which an initiator locates
available targets on the network

Session An active connection between an initia-
tor and a target over which SCSI com-
mands are exchanged

15

CHAP (Challenge Handshake Authenti-
cation Protocol)

An authentication mechanism used to
verify the identity of initiators and targets

TPG (Target Portal Group) A set of network portals through which a
target can be accessed

Why iSCSI on Linux
Linux has become the dominant operating system for server infrastructure, and its

iSCSI support is both mature and comprehensive. On the initiator side, the open-

iscsi package provides a robust, well-tested implementation that integrates seam-

lessly with the Linux kernel's SCSI subsystem. On the target side, the LIO (Linux-

IO) target framework, which is part of the mainline Linux kernel, provides a feature-

rich, high-performance iSCSI target implementation that rivals commercial alterna-

tives.

The combination of Linux and iSCSI is particularly powerful for several reasons.

First, Linux provides excellent tools for managing block devices, including LVM for

flexible volume management, dm-crypt for encryption, and mdadm for software

RAID. All of these tools work transparently with iSCSI-attached block devices, be-

cause the operating system treats them identically to local disks. Second, Linux's

networking stack is highly optimized and supports features like jumbo frames, net-

work bonding, and multiple network namespaces, all of which can be leveraged to

optimize iSCSI performance. Third, the open-source nature of both Linux and its

iSCSI implementations means there are no licensing costs, making it an extremely

cost-effective solution.

Consider a practical scenario. A small company has ten Linux servers running

various applications, including a database server, a mail server, and several web

servers. Instead of managing local disks on each server independently, the compa-

16

ny deploys a single Linux server configured as an iSCSI target with a large RAID ar-

ray. Each application server is configured as an iSCSI initiator and receives one or

more LUNs from the target. The database server formats its LUN with XFS and uses

it for database tablespaces. The mail server formats its LUN with ext4 and stores

mailboxes on it. The web servers each receive their own LUNs for application data.

This centralized approach simplifies backup (only the target server needs to be

backed up), improves utilization (storage capacity can be reallocated as needs

change), and enhances reliability (the target server can use RAID for redundancy).

All of this is achieved using standard Ethernet networking and open-source Linux

software, at a fraction of the cost of a proprietary SAN solution.

Planning Considerations for iSCSI De-
ployments
Before deploying iSCSI in any environment, several important planning considera-

tions must be addressed. Network design is paramount. Because iSCSI traffic

shares the same Ethernet infrastructure as regular data traffic, it is essential to en-

sure that storage traffic does not compete with application traffic for bandwidth.

Best practices include dedicating separate VLANs or even separate physical net-

works for iSCSI traffic, using jumbo frames (MTU 9000) to reduce CPU overhead

and improve throughput, and configuring network bonding or multipathing for re-

dundancy and performance.

Security is another critical consideration. By default, iSCSI traffic is not encrypt-

ed, and any device on the network could potentially discover and connect to iSCSI

targets. CHAP authentication should always be configured to ensure that only au-

thorized initiators can access storage. For environments with strict security require-

17

ments, IPsec can be used to encrypt iSCSI traffic, although this comes with a perfor-

mance penalty.

Performance tuning is also important. iSCSI adds network latency to every stor-

age I/O operation, which can impact performance-sensitive applications like data-

bases. Techniques for optimizing iSCSI performance include using dedicated giga-

bit or 10-gigabit Ethernet links, enabling TCP offload features on network adapters,

tuning TCP buffer sizes, and using multipath I/O (MPIO) to distribute traffic across

multiple network paths.

The following table summarizes key planning considerations:

Planning Area Consideration Recommendation

Network Isolation iSCSI traffic competing with
data traffic

Use dedicated VLANs or sepa-
rate physical networks for iSCSI

MTU Size Standard 1500-byte frames in-
crease CPU overhead

Configure jumbo frames (MTU
9000) on all iSCSI network com-
ponents

Redundancy Single point of failure in net-
work path

Implement network bonding
and multipath I/O (dm-multi-
path)

Authentication Unauthorized access to storage
targets

Configure CHAP authentication
on all targets and initiators

Encryption Data in transit is unencrypted
by default

Use IPsec for sensitive environ-
ments

Bandwidth Insufficient throughput for stor-
age workloads

Use 10GbE or higher for pro-
duction iSCSI deployments

Latency Network latency impacts I/O
performance

Minimize network hops and use
low-latency switches

18

Exercises
The following exercises are designed to reinforce the concepts covered in this

chapter and prepare you for the hands-on work in subsequent chapters.

Exercise 1: Identifying Storage Models

On a Linux system, use the lsblk command to list all block devices. Identify

which devices are locally attached (DAS) and consider how these would appear

differently if they were iSCSI-attached devices.

lsblk -o NAME,TYPE,SIZE,TRAN,MOUNTPOINT

Note: The TRAN column shows the transport type. Local SATA disks will show sata,

while iSCSI devices will show iscsi once configured in later chapters.

Exercise 2: Examining SCSI Subsystem

Use the following command to examine the SCSI devices currently recognized

by the Linux kernel:

cat /proc/scsi/scsi

Alternatively, use:

lsscsi

Note: If lsscsi is not installed, install it with yum install lsscsi on RHEL-

based systems or apt install lsscsi on Debian-based systems. This com-

mand will become invaluable when verifying that iSCSI LUNs have been successful-

ly discovered and attached.

Exercise 3: Network Readiness Assessment

Evaluate your network's readiness for iSCSI by checking the current MTU set-

tings and network interface capabilities:

ip link show

cat /sys/class/net/eth0/mtu

19

ethtool eth0 | grep -i "speed\|link detected\|offload"

Note: The output of these commands will tell you the current link speed, whether

jumbo frames are configured, and what offload capabilities your network adapter

supports. All of these factors directly impact iSCSI performance.

Exercise 4: Conceptual Design

On paper or in a text document, design a simple iSCSI storage infrastructure

for a small office with five servers. Define the following elements:

1.	 The IQN for the iSCSI target server

2.	 The IQNs for each of the five initiator servers

3.	 The number and size of LUNs to be created

4.	 The network configuration, including VLAN assignments and IP ad-

dressing

5.	 The authentication method to be used

This exercise forces you to think through the planning considerations discussed in

this chapter before any actual configuration takes place.

Exercise 5: Comparing Protocols

Research and document the differences between iSCSI, Fibre Channel, and

FCoE (Fibre Channel over Ethernet). Create a comparison table that includes the

following attributes: transport medium, typical bandwidth, latency characteristics,

cost, complexity, and Linux support. This exercise will deepen your understanding

of where iSCSI fits in the broader storage ecosystem.

Summary
This chapter has established the foundational understanding necessary for work-

ing with iSCSI on Linux. We explored the evolution from locally attached storage to

20

network storage, examined the critical distinction between file-level and block-lev-

el storage protocols, and positioned iSCSI within the three major storage architec-

tures of DAS, NAS, and SAN. The key takeaway is that iSCSI brings the power of

block-level SAN storage to standard Ethernet networks, eliminating the need for

expensive specialized hardware while providing the same fundamental capabili-

ties. With Linux's mature and comprehensive iSCSI support through open-iscsi and

LIO, organizations of any size can deploy enterprise-grade storage infrastructure

using open-source tools and commodity hardware. The concepts, terminology,

and planning considerations covered in this chapter will serve as the foundation

for every subsequent chapter, where we will move from theory to practice, config-

uring real iSCSI targets and initiators on Linux systems.

