Linux Backup Automation
with rsync & Borg

Designing Secure, Efficient, and Fully
Automated Backup Systems on Linux



Preface

Every Linux system administrator has a story about the backup that wasn't there
when it mattered most. Perhaps it was a corrupted database on a production
server, a misconfigured script that silently overwrote critical files, or a ransomware
incident that turned months of work into encrypted rubble. In each case, the lesson
is the same: backups are only as good as the system that creates, verifies, and
protects them.

This book exists because backing up data on Linux shouldn't be an af-
terthought—it should be an engineered, automated, and battle-tested process. Lin-
ux Backup Automation with rsync & Borg is a practical guide to designing backup
systems that run reliably without constant human intervention, leveraging two of
the most powerful and trusted tools in the Linux ecosystem: rsync and Borg-

Backup.

Who This Book Is For

Whether you're a Linux system administrator managing a handful of servers, a Dev-
Ops engineer responsible for infrastructure reliability, or an enthusiast who wants
to protect a personal Linux workstation, this book meets you where you are. The
only prerequisites are a working familiarity with the Linux command line and a gen-

uine desire to stop losing data.



What You'll Learn

The book is organized into a deliberate progression. We begin by establishing why
backup automation matters and grounding you in the fundamental concepts—
backup types, storage models, and the principles that separate fragile backup
habits from resilient ones.

From there, we dive deep into rsync, exploring its core mechanics before
building real-world incremental backup solutions with shell scripts, cron jobs, and
systemd timers—the native scheduling tools of modern Linux distributions. You'll
learn to push backups securely over SSH and encrypt data in transit, because a
backup strategy without security is simply a liability waiting to be exploited.

The second major arc introduces BorgBackup, a deduplicating, encrypting
backup tool purpose-built for the demands of Linux environments. You'll create
and manage Borg repositories, automate backup workflows, and configure secure
offsite storage—all while understanding the architectural decisions behind each
choice.

The final chapters elevate the conversation from tactical execution to strategic
thinking. We cover monitoring and alerting, because an unmonitored backup is
an assumption, not a guarantee. We address restore testing and validation, be-
cause a backup you've never restored is a backup you can't trust. And we explore
enterprise backup policy design and the evolving role of the Linux professional—
from traditional system administrator to modern reliability engineer.

Five appendices provide quick-reference material you'll reach for repeatedly:
an rsync option cheat sheet, a Borg command reference, backup rotation tem-

plates, sample automation scripts, and a disaster recovery checklist.



The Philosophy Behind This Book

Every recommendation in these pages has been shaped by a single conviction: au-
tomation is not a luxury-it is the minimum standard for responsible data
stewardship on Linux. Manual backups fail because humans forget, get busy, and
make mistakes. Automated backups, properly designed and monitored, do not.

This book gives you the knowledge to build systems that embody that principle.

Acknowledgments

This book owes a debt of gratitude to the open-source communities behind rsync,
BorgBackup, and the broader Linux ecosystem. Their tireless work has given all of
us tools of extraordinary power and reliability—freely available, endlessly adapt-
able, and worthy of deep understanding. I'm also grateful to the countless system
administrators, forum contributors, and technical writers whose shared experi-
ences have shaped the best practices documented here.

Finally, thank you—the reader—for taking data protection seriously. The hours
you invest in these chapters will pay dividends the first time a crisis strikes and your
automated Linux backup system delivers exactly what it promised.

Let's build something resilient.

Bas van den Berg



Table of Contents

Chapter

O 00 N O 0 AW DN

10
11
12
13
14
15
16
App
App
App
App
App

Title

Why Backup Automation Matters

Backup Types and Storage Models
Understanding rsync Fundamentals
Building Incremental Backups with rsync
Writing Backup Scripts

Scheduling with cron and systemd Timers
Secure Remote Backups via SSH
Encrypting Backup Transfers

Introduction to BorgBackup

Creating and Managing Borg Repositories
Automating Borg Backups

Secure Offsite Backups with Borg

Backup Monitoring and Alerts

Testing and Validating Restores

Designing Enterprise Backup Policies

From System Administrator to Reliability Engineer

rsync Option Cheat Sheet

Borg Command Reference
Backup Rotation Templates
Sample Automation Scripts

Disaster Recovery Checklist

Page

18

32

47

66

85

101
117
134
151
166
183
197
218
235
251
272
285
306
324
349




Chapter 1: Why Backup Au-
tomation Matters

Data is the lifeblood of every modern organization, every personal project, and
every server that hums quietly in a data center somewhere. Yet despite this funda-
mental truth, an alarming number of Linux administrators, developers, and even
seasoned engineers treat backup strategies as an afterthought. They configure
their servers, deploy their applications, tune their databases, and then somewhere
down the road, when disaster strikes, they realize that the one thing they neglected
was the very thing that could have saved them. This chapter lays the foundation for
everything that follows in this book by exploring why backup automation on Linux
is not merely a convenience but an absolute necessity. We will examine the real
cost of data loss, understand the philosophy behind automated backups, explore
the Linux tools that make automation elegant and reliable, and establish the mind-

set that will guide you through the rest of your journey with rsync and Borg.

The Reality of Data Loss in Linux Envi-
ronments

Before diving into any technical discussion, it is worth pausing to consider the scale
of the problem. Data loss is not a hypothetical scenario reserved for textbooks and
certification exams. It happens every single day, across every industry, on servers
running every operating system, including Linux. In fact, because Linux powers the

vast majority of the world's servers, cloud infrastructure, containers, and embed-



ded systems, the impact of data loss on Linux systems is disproportionately signifi-
cant.

Consider the following scenarios, all of which are commonplace in Linux ad-
ministration:

A system administrator accidentally runs rm -rf /var/lib/mysqgl/ instead
of targeting a specific subdirectory. The entire MySQL data directory vanishes in
seconds. There is no recycle bin in the Linux command line. There is no "undo" but-
ton. The data is gone.

A ransomware attack encrypts every file on a web server running Ubuntu. The
attacker demands payment in cryptocurrency. Without a recent, clean backup
stored offsite, the organization faces an impossible choice between paying the ran-
som and losing everything.

A RAID controller fails silently on a CentOS server. The administrator assumed
that RAID provided redundancy, which it does, but RAID is not a backup. When the
filesystem becomes corrupted, the RAID array faithfully mirrors the corruption
across all disks.

A developer pushes a flawed migration script to a production PostgreSQL
database running on Debian. The script drops critical tables. The transaction was
committed before anyone noticed. Without a point-in-time backup, the data from
those tables is irrecoverable.

These are not edge cases. These are the everyday realities of working with Lin-
ux systems. The question is never whether data loss will occur but when it will oc-
cur and whether you will be prepared.

The following table summarizes common causes of data loss on Linux systems

and their relative frequency and impact:



Cause of Data Loss Frequency Typical Impact Preventable with

Backups
Human error (acci-  Very High Moderate to Severe Yes
dental deletion, mi-
sconfigurations)
Hardware failure Moderate Severe Yes
(disk, controller,
memory)
Software bugs (appli- Moderate Moderate to Severe Yes
cation or kernel level)
Ransomware and Increasing Critical Yes, if backups are
malware attacks isolated
Natural disasters (fire, Low Catastrophic Yes, with offsite
flood, power surge) backups
Filesystem corruption Low to Moderate Severe Yes
Theft of physical Low Critical Yes, with offsite or
hardware cloud backups

Every single entry in that table can be mitigated, and in many cases entirely recov-
ered from, with a properly implemented and automated backup strategy. The key
word there is "automated," and that distinction is what separates organizations that

recover gracefully from those that do not recover at all.

The Difference Between Having
Backups and Having Automated
Backups

Many Linux administrators will tell you they have backups. And technically, they

might. Perhaps once a month, someone manually runs a tar command to com-



press a directory and copies it to an external drive. Perhaps there is a script sitting
in someone's home directory that was written two years ago and has not been up-
dated since. Perhaps someone set up a cron job once, but the destination disk
filled up six months ago and nobody noticed because there was no monitoring in
place.

These are not backup strategies. These are backup intentions. The gap be-
tween intention and strategy is where data loss lives.

Manual backups fail for predictable, human reasons. People forget. People get
busy. People leave the organization and take their institutional knowledge with
them. People make mistakes when they do remember. The entire point of au-
tomation is to remove the human element from the repetitive, critical, and error-
prone process of creating and managing backups.

Automated backups on Linux offer several fundamental advantages over man-
ual approaches:

Consistency. An automated backup runs at the same time, in the same way,
every single time. It does not have bad days. It does not get distracted. It does not
decide to skip this week because the server "seems fine."

Reliability. When properly configured with error handling, logging, and moni-
toring, an automated backup system will alert you when something goes wrong. A
manual process has no such mechanism. If a human forgets to run the backup,
there is no notification that the backup was missed.

Efficiency. Tools like rsync and Borg are designed to perform incremental
backups, meaning they only transfer or store data that has changed since the last
backup. This makes frequent automated backups practical even for systems with
large datasets. A human performing manual backups is far more likely to create full
copies every time, wasting time, bandwidth, and storage.

Auditability. Automated systems produce logs. Logs provide an audit trail that

tells you exactly what was backed up, when it was backed up, how long it took, and



whether any errors occurred. This audit trail is invaluable for compliance, trou-
bleshooting, and capacity planning.

Recoverability. The ultimate purpose of any backup is recovery. Automated
systems that are regularly tested ensure that when you need to restore data, the
process is well-understood and the backups are known to be valid. Manual
backups that are never tested provide a false sense of security that can be worse
than having no backups at all.

Let us illustrate this with a simple comparison. Consider two approaches to
backing up the /etc directory on a Linux server, which contains critical system
configuration files.

The manual approach might look like this, executed by an administrator who

remembers to do it:

tar -czf /backup/etc-backup-$ (date +%Y%m%d) .tar.gz /etc

This command creates a compressed tarball of the /etc directory with a date
stamp in the filename. It works, but it depends entirely on a human remembering
to run it. There is no error checking, no logging, no notification if it fails, and no
mechanism to clean up old backups.

The automated approach, even at its simplest, looks fundamentally different:

#!/bin/bash
# /usr/local/bin/backup-etc.sh
# Automated backup of /etc directory

BACKUP DIR="/backup/etc"

LOG FILE="/var/log/backup-etc.log"
DATE=S (date +%Y%m%d-%H%MSS)
RETENTION_DAYS=3O

echo "[$DATE] Starting /etc backup..." >> "SLOG FILE"

mkdir -p "S$BACKUP DIR"

10



if tar -czf "SBACKUP DIR/etc-backup-S$DATE.tar.gz" /etc 2>>
"$LOG_FILE"; then

echo "[$DATE] Backup completed successfully." >> "SLOG FILE"
else

echo "[SDATE] ERROR: Backup failed!" >> "S$LOG FILE"

echo "Backup of /etc failed on $(hostname) at $DATE" | mail
-s "BACKUP FAILURE" admin@example.com

exit 1
fi

# Clean up backups older than retention period

find "$BACKUP DIR" -name "etc-backup-*.tar.gz" -mtime +
$RETENTION_DAYS -delete

echo "[SDATE] 0l1d backups cleaned up. Retention: $RETENTION_DAYS
days." >> "SLOG FILE"

exit O
This script is then scheduled using cron, the time-based job scheduler that is a fun-
damental component of every Linux system:

# Edit the crontab

crontab -e

# Add the following line to run the backup every day at 2:00 AM
0 2  * * /Jusr/local/bin/backup-etc.sh

The cron entry follows this format:

Field Value Meaning

Minute 0 At minute zero

Hour 2 At 2 AM

Day of Month * Every day of the month
Month * Every month

Day of Week * Every day of the week

11



Even this simple example demonstrates the qualitative difference between a manu-
al backup and an automated one. The automated version logs its activity, handles
errors, sends notifications on failure, manages retention automatically, and runs
without any human intervention. And this is just a basic shell script. The tools we
will explore in this book, rsync and Borg, provide far more sophisticated capabili-
ties.

Note: The crontab -e command opens the current user's crontab file in the
default text editor. For system-wide backup tasks, it is often more appropriate to
place scripts in /etc/cron.daily/, /etc/cron.weekly/, or to use /etc/
crontab directly. The choice depends on your specific requirements and organi-

zational standards.

Why Linux Is the Ideal Platform for
Backup Automation

Linux is not merely a platform on which backup automation can be performed. It is
the platform for which backup automation was, in many ways, designed. The Unix
philosophy that underlies Linux, the philosophy of small, composable tools that
each do one thing well, is the very foundation of effective backup automation.

Consider the tools that are available natively or easily installable on virtually
every Linux distribution:

rsync is a file synchronization tool that has been a cornerstone of Linux admin-
istration for decades. It uses a delta-transfer algorithm to send only the differences
between source and destination files, making it extraordinarily efficient for incre-
mental backups. It supports compression, SSH tunneling for secure remote trans-
fers, bandwidth limiting, and fine-grained control over which files are included or

excluded. It is installed by default on nearly every Linux distribution.

12



Borg (BorgBackup) is a deduplicating backup program that represents the
modern evolution of backup technology on Linux. It provides encryption, compres-
sion, and deduplication at the chunk level, meaning that even if you back up the
same file in multiple locations or across multiple backup runs, it is stored only once.
Borg supports append-only repositories for ransomware resistance and provides
excellent performance even with very large datasets.

cron and systemd timers provide the scheduling infrastructure. Cron has
been the standard job scheduler on Unix and Linux systems for decades, and sys-
temd timers offer a more modern alternative with better logging integration and
dependency management. Both are available on every mainstream Linux distribu-
tion.

SSH provides the secure transport layer. With key-based authentication, Linux
systems can communicate securely without passwords, enabling fully automated
remote backups without any human interaction.

Shell scripting (Bash) ties everything together. The Bash shell, available on
every Linux system, provides the glue that connects these tools into coherent,
maintainable backup workflows. Variables, conditionals, loops, functions, error han-
dling, and all the other constructs of a full programming language are available to
the backup administrator.

The following table shows how these Linux tools map to the requirements of a

comprehensive backup system:

Backup Requirement Linux Tool How It Addresses the Re-
quirement
Efficient file transfer rsync Delta-transfer algorithm

sends only changes

Data deduplication Borg Chunk-level deduplication
across all backups

13



Encryption at rest Borg AES-256 encryption of
repository data

Encryption in transit SSH Encrypted tunnel for all re-
mote operations

Scheduling cron / systemd timers Time-based execution of
backup scripts

Compression rsync (flag), Borg (built-in), Multiple compression op-
gzip, zstd tions at various levels

Logging and monitoring syslog, journalctl, custom  Comprehensive logging in-
log files frastructure

Notification on failure ~ mail, sendmail, custom web- Multiple notification mecha-
hook scripts nisms

Retention management find (with cron), Borg prune Automated cleanup of old

backups
Remote backup rsync over SSH, Borg over  Native support for remote
SSH repositories

No other operating system provides this level of integrated, composable tooling
for backup automation out of the box. On Windows, achieving the same level of
automation typically requires third-party commercial software. On macQOS, while
the Unix underpinnings provide some of these tools, the server ecosystem is negli-
gible. Linux stands alone as the platform where backup automation is both native

and natural.

Establishing the Right Mindset

Before you proceed to the technical chapters that follow, it is essential to establish
the right mindset about backups. This mindset can be summarized in a few princi-

ples that experienced Linux administrators learn, often the hard way.

14



Backups are not optional. They are as fundamental to system administration
as user management, network configuration, and security hardening. A server with-
out automated backups is an incomplete server, regardless of how well everything
else is configured.

Untested backups are not backups. A backup that has never been restored is
a hope, not a guarantee. Every backup strategy must include regular restoration
testing. This means periodically restoring data from your backups to a separate lo-
cation and verifying its integrity. The borg extract and rsync restoration pro-
cesses should be practiced and documented before an emergency occurs.

The 3-2-1 rule is a minimum standard. The 3-2-1 backup rule states that you
should maintain at least three copies of your data, on at least two different types of
storage media, with at least one copy stored offsite. For critical systems, this rule
should be extended to 3-2-1-1-0: three copies, two media types, one offsite, one
offline or air-gapped, and zero errors in your restoration tests.

Automation is not a one-time task. Backup automation requires ongoing
maintenance. As your systems change, your backup configurations must change
with them. New directories are created, new databases are deployed, new services
are added. Your backup scripts and configurations must evolve alongside your in-
frastructure. Schedule regular reviews of your backup strategy, ideally quarterly at
a minimum.

Monitor everything. An automated backup that fails silently is worse than no
backup at all because it creates a false sense of security. Every automated backup
should produce logs, and those logs should be monitored. Failures should gener-
ate alerts. Successes should be recorded and periodically reviewed to ensure that
backup sizes and durations remain within expected parameters.

Let us put this mindset into practice with a simple exercise that you can per-
form on any Linux system right now.

Exercise: Verify Your Current Backup Status

15



Open a terminal on your Linux system and run the following commands to as-

sess your current backup situation:

# Check if rsync is installed

which rsync && rsync --version | head -1

# Check if Borg is installed

which borg && borg --version

# Check if any backup-related cron Jjobs exist

crontab -1 2>/dev/null | grep —-i backup

# Check system-wide cron directories for backup scripts
1ls /etc/cron.daily/ /etc/cron.weekly/ /etc/cron.monthly/ 2>/dev/
null | grep -i backup

# Check if any systemd timers related to backup exist

systemctl list-timers 2>/dev/null | grep -i backup

# Check recent backup logs if they exist
ls -la /var/log/backup* 2>/dev/null

If any of these commands return empty results, that tells you something important
about the current state of your system's backup readiness. By the time you finish
this book, every one of these commands will return meaningful results on your sys-
tems.

Note: The which command locates the executable file associated with a given
command by searching through the directories listed in the PATH environment
variable. If rsync or Borg is not found, they can be installed using your distribution's
package manager. On Debian and Ubuntu systems, use sudo apt install
rsync borgbackup. On Red Hat, CentOS, and Fedora systems, use sudo dnf
install rsync borgbackup. On Arch Linux, use sudo pacman -S rsync

borg.

16



What Lies Ahead

This chapter has established the foundational understanding of why backup au-
tomation matters, particularly in Linux environments. We have examined the real
and present dangers of data loss, distinguished between manual backups and tru-
ly automated backup systems, explored why Linux provides the ideal platform for
backup automation, and established the mindset that will guide your approach
throughout the rest of this book.

In the chapters that follow, we will move from philosophy to practice. You will
learn to wield rsync with precision, understanding not just its basic syntax but its
advanced features for bandwidth management, partial transfers, and complex in-
clusion and exclusion patterns. You will master Borg's deduplication, encryption,
and repository management capabilities. You will build comprehensive backup
scripts in Bash that incorporate error handling, logging, notification, and retention
management. You will learn to schedule these scripts using both cron and systemd
timers, and you will implement monitoring to ensure that your automated backups
remain healthy over time.

Every concept will be grounded in practical, real-world Linux scenarios. Every
command will be explained in detail. Every script will be production-ready, not a
toy example. By the end of this book, you will have the knowledge and the tools to
implement robust, automated backup systems on any Linux infrastructure, from a
single personal server to a fleet of hundreds of machines.

The data on your Linux systems is valuable. It deserves to be protected with the
same rigor and automation that you apply to every other aspect of your in-

frastructure. Let us begin that work.

17



Chapter 2: Backup Types and
Storage Models

Understanding backup strategies is one of the most critical responsibilities for any
Linux system administrator. When data loss occurs, and it inevitably will, the differ-
ence between a minor inconvenience and a catastrophic disaster often comes
down to the quality of your backup plan. This chapter explores the foundational
concepts behind backup types and storage models as they apply to Linux environ-
ments. We will examine how full, incremental, and differential backups work, how
deduplication saves storage space, and how various storage destinations from lo-
cal disks to cloud endpoints fit into a comprehensive backup architecture. By the
end of this chapter, you will have a thorough understanding of the theory and

practice behind choosing the right backup approach for any Linux system.

Understanding Why Backup Types
Matter in Linux

Before diving into the specifics of each backup type, it is important to appreciate
why this knowledge matters. Linux servers often run mission-critical workloads:
web applications, databases, mail servers, file shares, and virtualization platforms.
Each of these workloads generates data at different rates and has different recov-
ery requirements. A database server that processes thousands of transactions per
hour has very different backup needs compared to a static web server that

changes only when new content is deployed.

18



The choice of backup type directly affects three things: how much storage
space your backups consume, how long each backup operation takes to complete,
and how quickly you can restore data when disaster strikes. These three factors,
storage efficiency, backup window, and recovery time, form the core triad that
every backup strategy must balance.

In Linux, the tools available for implementing these backup types are both
powerful and flexible. Utilities like rsync, tar, cp, and specialized tools like Borg
Backup each handle backup types in their own way. Understanding the underlying
concepts ensures you can make informed decisions regardless of which tool you

ultimately choose.

Full Backups: The Foundation of Every
Strategy

A full backup is exactly what the name implies: a complete copy of every file and
directory within the defined backup scope. When you perform a full backup of a
Linux filesystem, every single file is read, copied, and stored at the backup destina-
tion. Nothing is skipped, nothing is excluded (unless you explicitly define exclu-
sions), and nothing is assumed from a previous backup.

The primary advantage of a full backup is simplicity during restoration. If you
need to recover your entire system, you take the most recent full backup and
restore it. There is no dependency on any other backup set. This independence
makes full backups the most reliable and straightforward type to restore from.

However, full backups come with significant costs. Consider a Linux server with
500 gigabytes of data. If you perform a full backup every night, you consume 500
gigabytes of storage each time. Over the course of a week, that amounts to 3.5 ter-

abytes of backup storage for a single server. The backup window is also substantial

19



because every file must be read and transferred, even if only a handful of files
changed since the last backup.
Here is a simple example of creating a full backup using tar on a Linux sys-

tem:

tar -czpf /backup/full-backup-$(date +%Y%m%d) .tar.gz /home /etc /

var

This command creates a compressed archive of the /home, /etc, and /var direc-
tories. The -p flag preserves file permissions, which is essential for Linux backups
because the permission model is integral to system security and functionality. The
$ (date +%Y%m%d) portion dynamically inserts the current date into the filename,
making it easy to identify when each backup was created.

Using rsync for a full backup looks different but accomplishes the same goal:

rsync -avz --delete /home /etc /var /backup/full/

The rsync approach copies all files to the destination directory. The -a flag en-
ables archive mode, which preserves permissions, ownership, timestamps, and
symbolic links. The -v flag enables verbose output so you can monitor progress,
and -z enables compression during transfer. The --delete flag ensures that files
removed from the source are also removed from the backup destination, keeping
the backup an accurate mirror.

Note: Full backups should always be the starting point of any backup strategy.
Even strategies that rely heavily on incremental or differential backups must begin
with a full backup as the baseline. Without this baseline, incremental and differen-

tial backups have no reference point.

20



Incremental Backups: Efficiency
Through Change Tracking

An incremental backup captures only the files that have changed since the last
backup of any type. This means the first incremental backup after a full backup
contains only the files that changed since that full backup. The second incremental
backup contains only the files that changed since the first incremental backup, and
so on.

This approach dramatically reduces both storage consumption and backup
time. If your 500-gigabyte server only changes 5 gigabytes of data per day, each
incremental backup is approximately 5 gigabytes rather than 500 gigabytes. Over
a week, instead of consuming 3.5 terabytes as a full-backup-only strategy would,
you consume roughly 530 gigabytes: one 500-gigabyte full backup plus six 5-giga-
byte incremental backups.

The trade-off appears during restoration. To restore a complete system from in-
cremental backups, you must first restore the most recent full backup and then ap-
ply every incremental backup in sequence. If you performed a full backup on Sun-
day and it is now Friday, you would need to restore the Sunday full backup, then
Monday's incremental, then Tuesday's, Wednesday's, Thursday's, and finally Fri-
day's. If any single incremental backup in this chain is corrupted or missing, you
cannot complete the restoration beyond that point.

In Linux, rsync can perform incremental backups using the --1ink-dest op-

tion, which creates hard links to unchanged files from a previous backup:

rsync -avz —--link-dest=/backup/2024-01-14 /home /etc /var /
backup/2024-01-15/

This command compares the current state of the source directories against the

previous backup at /backup/2024-01-14. Files that have not changed are repre-

21



sented as hard links rather than new copies, consuming virtually no additional disk
space. Files that have changed are copied in full. The result is a backup directory
that appears to contain a complete copy of the data but actually uses minimal ad-
ditional storage.

Borg Backup takes this concept even further with its built-in deduplication en-
gine, which we will explore later in this chapter.

The following table summarizes the key characteristics of incremental backups

compared to full backups:

Characteristic Full Backup Incremental Backup

Data Captured All files in scope Only files changed since last
backup

Storage Required High (complete copy each Low (only changes stored)

time)

Backup Speed Slow (all files processed) Fast (only changed files pro-
cessed)

Restore Speed Fast (single backup needed)  Slower (full plus all incremen-

tals needed)
Restore Complexity Simple Complex (chain dependency)

Risk of Data Loss  Low (self-contained) Higher (chain must be intact)

Differential Backups: A Middle Ground

Differential backups occupy the space between full and incremental backups. A

differential backup captures all files that have changed since the last full backup,

regardless of any differential backups that may have occurred in between.
Consider the same 500-gigabyte server. On Sunday, you perform a full backup.

On Monday, 5 gigabytes of data change, so Monday's differential backup is 5 giga-

22



bytes. On Tuesday, an additional 3 gigabytes change (for a total of 8 gigabytes
changed since Sunday), so Tuesday's differential backup is 8 gigabytes. By Friday,
the differential backup might be 25 gigabytes because it captures all changes ac-
cumulated since Sunday.

The advantage of differential backups becomes clear during restoration. To
restore the system, you need only two backup sets: the most recent full backup
and the most recent differential backup. This is significantly simpler and faster than
the incremental approach, which requires the full backup plus every incremental in
sequence.

The disadvantage is that differential backups grow larger each day as more
changes accumulate. They consume more storage than incremental backups but
less than performing full backups every day.

In Linux, implementing differential backups can be accomplished using find

combined with tar:

find /home /etc /var -newer /backup/full-backup-timestamp-file
-print0 | \

tar -czpf /backup/diff-backup-$(date +%Y%m%d).tar.gz —--null
_T —_
This command uses find to locate all files newer than a reference timestamp file
(created at the time of the last full backup) and pipes that file list to tar for ar-
chiving. The -print0 and --null flags handle filenames containing spaces or
special characters safely, which is a common concern on Linux systems where file-

names can contain virtually any character.

Another approach uses rsync with a carefully managed reference point:

rsync -avz —--compare-dest=/backup/last-full/ /home /etc /var /
backup/diff-$ (date +%Y%m%d) /

The --compare-dest option tells rsync to compare source files against the

specified directory and only transfer files that differ. Unlike --1ink-dest, it does

23



not create hard links for unchanged files, so the resulting backup directory contains
only the changed files.

Note: The choice between incremental and differential backups often de-
pends on your recovery time objectives. If fast restoration is critical and you can af-
ford slightly more storage, differential backups are often preferred. If storage is at a
premium and you can tolerate longer restoration times, incremental backups are

the better choice.

Deduplication: Eliminating Redundan-
cy at the Block Level

Deduplication is a storage optimization technique that identifies and eliminates
duplicate copies of data. Rather than storing the same data multiple times, a dedu-
plication system stores one copy and uses references (similar in concept to hard
links or pointers) wherever that data appears again.

There are two primary levels of deduplication: file-level and block-level. File-
level deduplication identifies identical files and stores only one copy. Block-level
deduplication goes further by breaking files into smaller chunks (blocks) and iden-
tifying duplicate blocks across all files. This means that even if two files are not
identical, any shared portions between them are stored only once.

Borg Backup implements content-defined chunking, a sophisticated form of
block-level deduplication. When Borg processes a file, it divides the file into vari-
able-length chunks based on the content itself rather than fixed-size blocks. This
approach is resilient to insertions and deletions within files because shifting con-
tent does not cause all subsequent chunk boundaries to change, as would happen

with fixed-size chunking.

24



Here is an example of creating a Borg repository and performing an initial

backup:
borg init --encryption=repokey /backup/borg-repo

borg create /backup/borg-repo::full-{now:%Y-%m-%d} /home /etc /

var

The first command initializes a new Borg repository with encryption. The second
command creates an archive within that repository. When subsequent backups are

created:

borg create /backup/borg-repo::daily-{now:%Y-%m-%d} /home /etc /

var

Borg automatically deduplicates the data. If 95 percent of the data is identical to
the previous backup, only the 5 percent that changed is actually stored. The ar-
chive appears to contain a complete copy of all the data, but the actual storage
consumed is minimal.

You can verify the deduplication efficiency using:

borg info /backup/borg-repo

This command displays statistics including the original size of all archives, the
deduplicated size, and the compression ratio. It is common to see deduplication
ratios of 10:1 or higher in environments where backups are performed daily and
data change rates are modest.

The following table compares deduplication approaches:

Deduplication Granularity Storage Sav- Processing Example Tools
Type ings Overhead

No Deduplica- None None Minimal tar, cp

tion

25



