
1

Linux Backup Automation
with rsync & Borg

Designing Secure, Efficient, and Fully
Automated Backup Systems on Linux

2

Preface

Every Linux system administrator has a story about the backup that wasn't there

when it mattered most. Perhaps it was a corrupted database on a production

server, a misconfigured script that silently overwrote critical files, or a ransomware

incident that turned months of work into encrypted rubble. In each case, the lesson

is the same: backups are only as good as the system that creates, verifies, and

protects them.

This book exists because backing up data on Linux shouldn't be an af-

terthought—it should be an engineered, automated, and battle-tested process. Lin-

ux Backup Automation with rsync & Borg is a practical guide to designing backup

systems that run reliably without constant human intervention, leveraging two of

the most powerful and trusted tools in the Linux ecosystem: rsync and Borg-

Backup.

Who This Book Is For
Whether you're a Linux system administrator managing a handful of servers, a Dev-

Ops engineer responsible for infrastructure reliability, or an enthusiast who wants

to protect a personal Linux workstation, this book meets you where you are. The

only prerequisites are a working familiarity with the Linux command line and a gen-

uine desire to stop losing data.

3

What You'll Learn
The book is organized into a deliberate progression. We begin by establishing why

backup automation matters and grounding you in the fundamental concepts—

backup types, storage models, and the principles that separate fragile backup

habits from resilient ones.

From there, we dive deep into rsync, exploring its core mechanics before

building real-world incremental backup solutions with shell scripts, cron jobs, and

systemd timers—the native scheduling tools of modern Linux distributions. You'll

learn to push backups securely over SSH and encrypt data in transit, because a

backup strategy without security is simply a liability waiting to be exploited.

The second major arc introduces BorgBackup, a deduplicating, encrypting

backup tool purpose-built for the demands of Linux environments. You'll create

and manage Borg repositories, automate backup workflows, and configure secure

offsite storage—all while understanding the architectural decisions behind each

choice.

The final chapters elevate the conversation from tactical execution to strategic

thinking. We cover monitoring and alerting, because an unmonitored backup is

an assumption, not a guarantee. We address restore testing and validation, be-

cause a backup you've never restored is a backup you can't trust. And we explore

enterprise backup policy design and the evolving role of the Linux professional—

from traditional system administrator to modern reliability engineer.

Five appendices provide quick-reference material you'll reach for repeatedly:

an rsync option cheat sheet, a Borg command reference, backup rotation tem-

plates, sample automation scripts, and a disaster recovery checklist.

4

The Philosophy Behind This Book
Every recommendation in these pages has been shaped by a single conviction: au-

tomation is not a luxury—it is the minimum standard for responsible data

stewardship on Linux. Manual backups fail because humans forget, get busy, and

make mistakes. Automated backups, properly designed and monitored, do not.

This book gives you the knowledge to build systems that embody that principle.

Acknowledgments
This book owes a debt of gratitude to the open-source communities behind rsync,

BorgBackup, and the broader Linux ecosystem. Their tireless work has given all of

us tools of extraordinary power and reliability—freely available, endlessly adapt-

able, and worthy of deep understanding. I'm also grateful to the countless system

administrators, forum contributors, and technical writers whose shared experi-

ences have shaped the best practices documented here.

Finally, thank you—the reader—for taking data protection seriously. The hours

you invest in these chapters will pay dividends the first time a crisis strikes and your

automated Linux backup system delivers exactly what it promised.

Let's build something resilient.

Bas van den Berg

5

Table of Contents

Chapter Title Page

1 Why Backup Automation Matters 6

2 Backup Types and Storage Models 18

3 Understanding rsync Fundamentals 32

4 Building Incremental Backups with rsync 47

5 Writing Backup Scripts 66

6 Scheduling with cron and systemd Timers 85

7 Secure Remote Backups via SSH 101

8 Encrypting Backup Transfers 117

9 Introduction to BorgBackup 134

10 Creating and Managing Borg Repositories 151

11 Automating Borg Backups 166

12 Secure Offsite Backups with Borg 183

13 Backup Monitoring and Alerts 197

14 Testing and Validating Restores 218

15 Designing Enterprise Backup Policies 235

16 From System Administrator to Reliability Engineer 251

App rsync Option Cheat Sheet 272

App Borg Command Reference 285

App Backup Rotation Templates 306

App Sample Automation Scripts 324

App Disaster Recovery Checklist 349

6

Chapter 1: Why Backup Au-
tomation Matters

Data is the lifeblood of every modern organization, every personal project, and

every server that hums quietly in a data center somewhere. Yet despite this funda-

mental truth, an alarming number of Linux administrators, developers, and even

seasoned engineers treat backup strategies as an afterthought. They configure

their servers, deploy their applications, tune their databases, and then somewhere

down the road, when disaster strikes, they realize that the one thing they neglected

was the very thing that could have saved them. This chapter lays the foundation for

everything that follows in this book by exploring why backup automation on Linux

is not merely a convenience but an absolute necessity. We will examine the real

cost of data loss, understand the philosophy behind automated backups, explore

the Linux tools that make automation elegant and reliable, and establish the mind-

set that will guide you through the rest of your journey with rsync and Borg.

The Reality of Data Loss in Linux Envi-
ronments
Before diving into any technical discussion, it is worth pausing to consider the scale

of the problem. Data loss is not a hypothetical scenario reserved for textbooks and

certification exams. It happens every single day, across every industry, on servers

running every operating system, including Linux. In fact, because Linux powers the

vast majority of the world's servers, cloud infrastructure, containers, and embed-

7

ded systems, the impact of data loss on Linux systems is disproportionately signifi-

cant.

Consider the following scenarios, all of which are commonplace in Linux ad-

ministration:

A system administrator accidentally runs rm -rf /var/lib/mysql/ instead

of targeting a specific subdirectory. The entire MySQL data directory vanishes in

seconds. There is no recycle bin in the Linux command line. There is no "undo" but-

ton. The data is gone.

A ransomware attack encrypts every file on a web server running Ubuntu. The

attacker demands payment in cryptocurrency. Without a recent, clean backup

stored offsite, the organization faces an impossible choice between paying the ran-

som and losing everything.

A RAID controller fails silently on a CentOS server. The administrator assumed

that RAID provided redundancy, which it does, but RAID is not a backup. When the

filesystem becomes corrupted, the RAID array faithfully mirrors the corruption

across all disks.

A developer pushes a flawed migration script to a production PostgreSQL

database running on Debian. The script drops critical tables. The transaction was

committed before anyone noticed. Without a point-in-time backup, the data from

those tables is irrecoverable.

These are not edge cases. These are the everyday realities of working with Lin-

ux systems. The question is never whether data loss will occur but when it will oc-

cur and whether you will be prepared.

The following table summarizes common causes of data loss on Linux systems

and their relative frequency and impact:

8

Cause of Data Loss Frequency Typical Impact Preventable with
Backups

Human error (acci-
dental deletion, mi-
sconfigurations)

Very High Moderate to Severe Yes

Hardware failure
(disk, controller,
memory)

Moderate Severe Yes

Software bugs (appli-
cation or kernel level)

Moderate Moderate to Severe Yes

Ransomware and
malware attacks

Increasing Critical Yes, if backups are
isolated

Natural disasters (fire,
flood, power surge)

Low Catastrophic Yes, with offsite
backups

Filesystem corruption Low to Moderate Severe Yes

Theft of physical
hardware

Low Critical Yes, with offsite or
cloud backups

Every single entry in that table can be mitigated, and in many cases entirely recov-

ered from, with a properly implemented and automated backup strategy. The key

word there is "automated," and that distinction is what separates organizations that

recover gracefully from those that do not recover at all.

The Difference Between Having
Backups and Having Automated
Backups
Many Linux administrators will tell you they have backups. And technically, they

might. Perhaps once a month, someone manually runs a tar command to com-

9

press a directory and copies it to an external drive. Perhaps there is a script sitting

in someone's home directory that was written two years ago and has not been up-

dated since. Perhaps someone set up a cron job once, but the destination disk

filled up six months ago and nobody noticed because there was no monitoring in

place.

These are not backup strategies. These are backup intentions. The gap be-

tween intention and strategy is where data loss lives.

Manual backups fail for predictable, human reasons. People forget. People get

busy. People leave the organization and take their institutional knowledge with

them. People make mistakes when they do remember. The entire point of au-

tomation is to remove the human element from the repetitive, critical, and error-

prone process of creating and managing backups.

Automated backups on Linux offer several fundamental advantages over man-

ual approaches:

Consistency. An automated backup runs at the same time, in the same way,

every single time. It does not have bad days. It does not get distracted. It does not

decide to skip this week because the server "seems fine."

Reliability. When properly configured with error handling, logging, and moni-

toring, an automated backup system will alert you when something goes wrong. A

manual process has no such mechanism. If a human forgets to run the backup,

there is no notification that the backup was missed.

Efficiency. Tools like rsync and Borg are designed to perform incremental

backups, meaning they only transfer or store data that has changed since the last

backup. This makes frequent automated backups practical even for systems with

large datasets. A human performing manual backups is far more likely to create full

copies every time, wasting time, bandwidth, and storage.

Auditability. Automated systems produce logs. Logs provide an audit trail that

tells you exactly what was backed up, when it was backed up, how long it took, and

10

whether any errors occurred. This audit trail is invaluable for compliance, trou-

bleshooting, and capacity planning.

Recoverability. The ultimate purpose of any backup is recovery. Automated

systems that are regularly tested ensure that when you need to restore data, the

process is well-understood and the backups are known to be valid. Manual

backups that are never tested provide a false sense of security that can be worse

than having no backups at all.

Let us illustrate this with a simple comparison. Consider two approaches to

backing up the /etc directory on a Linux server, which contains critical system

configuration files.

The manual approach might look like this, executed by an administrator who

remembers to do it:

tar -czf /backup/etc-backup-$(date +%Y%m%d).tar.gz /etc

This command creates a compressed tarball of the /etc directory with a date

stamp in the filename. It works, but it depends entirely on a human remembering

to run it. There is no error checking, no logging, no notification if it fails, and no

mechanism to clean up old backups.

The automated approach, even at its simplest, looks fundamentally different:

#!/bin/bash

/usr/local/bin/backup-etc.sh

Automated backup of /etc directory

BACKUP_DIR="/backup/etc"

LOG_FILE="/var/log/backup-etc.log"

DATE=$(date +%Y%m%d-%H%M%S)

RETENTION_DAYS=30

echo "[$DATE] Starting /etc backup..." >> "$LOG_FILE"

mkdir -p "$BACKUP_DIR"

11

if tar -czf "$BACKUP_DIR/etc-backup-$DATE.tar.gz" /etc 2>>

"$LOG_FILE"; then

 echo "[$DATE] Backup completed successfully." >> "$LOG_FILE"

else

 echo "[$DATE] ERROR: Backup failed!" >> "$LOG_FILE"

 echo "Backup of /etc failed on $(hostname) at $DATE" | mail

-s "BACKUP FAILURE" admin@example.com

 exit 1

fi

Clean up backups older than retention period

find "$BACKUP_DIR" -name "etc-backup-*.tar.gz" -mtime +

$RETENTION_DAYS -delete

echo "[$DATE] Old backups cleaned up. Retention: $RETENTION_DAYS

days." >> "$LOG_FILE"

exit 0

This script is then scheduled using cron, the time-based job scheduler that is a fun-

damental component of every Linux system:

Edit the crontab

crontab -e

Add the following line to run the backup every day at 2:00 AM

0 2 * * * /usr/local/bin/backup-etc.sh

The cron entry follows this format:

Field Value Meaning

Minute 0 At minute zero

Hour 2 At 2 AM

Day of Month * Every day of the month

Month * Every month

Day of Week * Every day of the week

12

Even this simple example demonstrates the qualitative difference between a manu-

al backup and an automated one. The automated version logs its activity, handles

errors, sends notifications on failure, manages retention automatically, and runs

without any human intervention. And this is just a basic shell script. The tools we

will explore in this book, rsync and Borg, provide far more sophisticated capabili-

ties.

Note: The crontab -e command opens the current user's crontab file in the

default text editor. For system-wide backup tasks, it is often more appropriate to

place scripts in /etc/cron.daily/, /etc/cron.weekly/, or to use /etc/

crontab directly. The choice depends on your specific requirements and organi-

zational standards.

Why Linux Is the Ideal Platform for
Backup Automation
Linux is not merely a platform on which backup automation can be performed. It is

the platform for which backup automation was, in many ways, designed. The Unix

philosophy that underlies Linux, the philosophy of small, composable tools that

each do one thing well, is the very foundation of effective backup automation.

Consider the tools that are available natively or easily installable on virtually

every Linux distribution:

rsync is a file synchronization tool that has been a cornerstone of Linux admin-

istration for decades. It uses a delta-transfer algorithm to send only the differences

between source and destination files, making it extraordinarily efficient for incre-

mental backups. It supports compression, SSH tunneling for secure remote trans-

fers, bandwidth limiting, and fine-grained control over which files are included or

excluded. It is installed by default on nearly every Linux distribution.

13

Borg (BorgBackup) is a deduplicating backup program that represents the

modern evolution of backup technology on Linux. It provides encryption, compres-

sion, and deduplication at the chunk level, meaning that even if you back up the

same file in multiple locations or across multiple backup runs, it is stored only once.

Borg supports append-only repositories for ransomware resistance and provides

excellent performance even with very large datasets.

cron and systemd timers provide the scheduling infrastructure. Cron has

been the standard job scheduler on Unix and Linux systems for decades, and sys-

temd timers offer a more modern alternative with better logging integration and

dependency management. Both are available on every mainstream Linux distribu-

tion.

SSH provides the secure transport layer. With key-based authentication, Linux

systems can communicate securely without passwords, enabling fully automated

remote backups without any human interaction.

Shell scripting (Bash) ties everything together. The Bash shell, available on

every Linux system, provides the glue that connects these tools into coherent,

maintainable backup workflows. Variables, conditionals, loops, functions, error han-

dling, and all the other constructs of a full programming language are available to

the backup administrator.

The following table shows how these Linux tools map to the requirements of a

comprehensive backup system:

Backup Requirement Linux Tool How It Addresses the Re-
quirement

Efficient file transfer rsync Delta-transfer algorithm
sends only changes

Data deduplication Borg Chunk-level deduplication
across all backups

14

Encryption at rest Borg AES-256 encryption of
repository data

Encryption in transit SSH Encrypted tunnel for all re-
mote operations

Scheduling cron / systemd timers Time-based execution of
backup scripts

Compression rsync (flag), Borg (built-in),
gzip, zstd

Multiple compression op-
tions at various levels

Logging and monitoring syslog, journalctl, custom
log files

Comprehensive logging in-
frastructure

Notification on failure mail, sendmail, custom web-
hook scripts

Multiple notification mecha-
nisms

Retention management find (with cron), Borg prune Automated cleanup of old
backups

Remote backup rsync over SSH, Borg over
SSH

Native support for remote
repositories

No other operating system provides this level of integrated, composable tooling

for backup automation out of the box. On Windows, achieving the same level of

automation typically requires third-party commercial software. On macOS, while

the Unix underpinnings provide some of these tools, the server ecosystem is negli-

gible. Linux stands alone as the platform where backup automation is both native

and natural.

Establishing the Right Mindset
Before you proceed to the technical chapters that follow, it is essential to establish

the right mindset about backups. This mindset can be summarized in a few princi-

ples that experienced Linux administrators learn, often the hard way.

15

Backups are not optional. They are as fundamental to system administration

as user management, network configuration, and security hardening. A server with-

out automated backups is an incomplete server, regardless of how well everything

else is configured.

Untested backups are not backups. A backup that has never been restored is

a hope, not a guarantee. Every backup strategy must include regular restoration

testing. This means periodically restoring data from your backups to a separate lo-

cation and verifying its integrity. The borg extract and rsync restoration pro-

cesses should be practiced and documented before an emergency occurs.

The 3-2-1 rule is a minimum standard. The 3-2-1 backup rule states that you

should maintain at least three copies of your data, on at least two different types of

storage media, with at least one copy stored offsite. For critical systems, this rule

should be extended to 3-2-1-1-0: three copies, two media types, one offsite, one

offline or air-gapped, and zero errors in your restoration tests.

Automation is not a one-time task. Backup automation requires ongoing

maintenance. As your systems change, your backup configurations must change

with them. New directories are created, new databases are deployed, new services

are added. Your backup scripts and configurations must evolve alongside your in-

frastructure. Schedule regular reviews of your backup strategy, ideally quarterly at

a minimum.

Monitor everything. An automated backup that fails silently is worse than no

backup at all because it creates a false sense of security. Every automated backup

should produce logs, and those logs should be monitored. Failures should gener-

ate alerts. Successes should be recorded and periodically reviewed to ensure that

backup sizes and durations remain within expected parameters.

Let us put this mindset into practice with a simple exercise that you can per-

form on any Linux system right now.

Exercise: Verify Your Current Backup Status

16

Open a terminal on your Linux system and run the following commands to as-

sess your current backup situation:

Check if rsync is installed

which rsync && rsync --version | head -1

Check if Borg is installed

which borg && borg --version

Check if any backup-related cron jobs exist

crontab -l 2>/dev/null | grep -i backup

Check system-wide cron directories for backup scripts

ls /etc/cron.daily/ /etc/cron.weekly/ /etc/cron.monthly/ 2>/dev/

null | grep -i backup

Check if any systemd timers related to backup exist

systemctl list-timers 2>/dev/null | grep -i backup

Check recent backup logs if they exist

ls -la /var/log/backup* 2>/dev/null

If any of these commands return empty results, that tells you something important

about the current state of your system's backup readiness. By the time you finish

this book, every one of these commands will return meaningful results on your sys-

tems.

Note: The which command locates the executable file associated with a given

command by searching through the directories listed in the PATH environment

variable. If rsync or Borg is not found, they can be installed using your distribution's

package manager. On Debian and Ubuntu systems, use sudo apt install

rsync borgbackup. On Red Hat, CentOS, and Fedora systems, use sudo dnf

install rsync borgbackup. On Arch Linux, use sudo pacman -S rsync

borg.

17

What Lies Ahead
This chapter has established the foundational understanding of why backup au-

tomation matters, particularly in Linux environments. We have examined the real

and present dangers of data loss, distinguished between manual backups and tru-

ly automated backup systems, explored why Linux provides the ideal platform for

backup automation, and established the mindset that will guide your approach

throughout the rest of this book.

In the chapters that follow, we will move from philosophy to practice. You will

learn to wield rsync with precision, understanding not just its basic syntax but its

advanced features for bandwidth management, partial transfers, and complex in-

clusion and exclusion patterns. You will master Borg's deduplication, encryption,

and repository management capabilities. You will build comprehensive backup

scripts in Bash that incorporate error handling, logging, notification, and retention

management. You will learn to schedule these scripts using both cron and systemd

timers, and you will implement monitoring to ensure that your automated backups

remain healthy over time.

Every concept will be grounded in practical, real-world Linux scenarios. Every

command will be explained in detail. Every script will be production-ready, not a

toy example. By the end of this book, you will have the knowledge and the tools to

implement robust, automated backup systems on any Linux infrastructure, from a

single personal server to a fleet of hundreds of machines.

The data on your Linux systems is valuable. It deserves to be protected with the

same rigor and automation that you apply to every other aspect of your in-

frastructure. Let us begin that work.

18

Chapter 2: Backup Types and
Storage Models

Understanding backup strategies is one of the most critical responsibilities for any

Linux system administrator. When data loss occurs, and it inevitably will, the differ-

ence between a minor inconvenience and a catastrophic disaster often comes

down to the quality of your backup plan. This chapter explores the foundational

concepts behind backup types and storage models as they apply to Linux environ-

ments. We will examine how full, incremental, and differential backups work, how

deduplication saves storage space, and how various storage destinations from lo-

cal disks to cloud endpoints fit into a comprehensive backup architecture. By the

end of this chapter, you will have a thorough understanding of the theory and

practice behind choosing the right backup approach for any Linux system.

Understanding Why Backup Types
Matter in Linux
Before diving into the specifics of each backup type, it is important to appreciate

why this knowledge matters. Linux servers often run mission-critical workloads:

web applications, databases, mail servers, file shares, and virtualization platforms.

Each of these workloads generates data at different rates and has different recov-

ery requirements. A database server that processes thousands of transactions per

hour has very different backup needs compared to a static web server that

changes only when new content is deployed.

19

The choice of backup type directly affects three things: how much storage

space your backups consume, how long each backup operation takes to complete,

and how quickly you can restore data when disaster strikes. These three factors,

storage efficiency, backup window, and recovery time, form the core triad that

every backup strategy must balance.

In Linux, the tools available for implementing these backup types are both

powerful and flexible. Utilities like rsync, tar, cp, and specialized tools like Borg

Backup each handle backup types in their own way. Understanding the underlying

concepts ensures you can make informed decisions regardless of which tool you

ultimately choose.

Full Backups: The Foundation of Every
Strategy
A full backup is exactly what the name implies: a complete copy of every file and

directory within the defined backup scope. When you perform a full backup of a

Linux filesystem, every single file is read, copied, and stored at the backup destina-

tion. Nothing is skipped, nothing is excluded (unless you explicitly define exclu-

sions), and nothing is assumed from a previous backup.

The primary advantage of a full backup is simplicity during restoration. If you

need to recover your entire system, you take the most recent full backup and

restore it. There is no dependency on any other backup set. This independence

makes full backups the most reliable and straightforward type to restore from.

However, full backups come with significant costs. Consider a Linux server with

500 gigabytes of data. If you perform a full backup every night, you consume 500

gigabytes of storage each time. Over the course of a week, that amounts to 3.5 ter-

abytes of backup storage for a single server. The backup window is also substantial

20

because every file must be read and transferred, even if only a handful of files

changed since the last backup.

Here is a simple example of creating a full backup using tar on a Linux sys-

tem:

tar -czpf /backup/full-backup-$(date +%Y%m%d).tar.gz /home /etc /

var

This command creates a compressed archive of the /home, /etc, and /var direc-

tories. The -p flag preserves file permissions, which is essential for Linux backups

because the permission model is integral to system security and functionality. The

$(date +%Y%m%d) portion dynamically inserts the current date into the filename,

making it easy to identify when each backup was created.

Using rsync for a full backup looks different but accomplishes the same goal:

rsync -avz --delete /home /etc /var /backup/full/

The rsync approach copies all files to the destination directory. The -a flag en-

ables archive mode, which preserves permissions, ownership, timestamps, and

symbolic links. The -v flag enables verbose output so you can monitor progress,

and -z enables compression during transfer. The --delete flag ensures that files

removed from the source are also removed from the backup destination, keeping

the backup an accurate mirror.

Note: Full backups should always be the starting point of any backup strategy.

Even strategies that rely heavily on incremental or differential backups must begin

with a full backup as the baseline. Without this baseline, incremental and differen-

tial backups have no reference point.

21

Incremental Backups: Efficiency
Through Change Tracking
An incremental backup captures only the files that have changed since the last

backup of any type. This means the first incremental backup after a full backup

contains only the files that changed since that full backup. The second incremental

backup contains only the files that changed since the first incremental backup, and

so on.

This approach dramatically reduces both storage consumption and backup

time. If your 500-gigabyte server only changes 5 gigabytes of data per day, each

incremental backup is approximately 5 gigabytes rather than 500 gigabytes. Over

a week, instead of consuming 3.5 terabytes as a full-backup-only strategy would,

you consume roughly 530 gigabytes: one 500-gigabyte full backup plus six 5-giga-

byte incremental backups.

The trade-off appears during restoration. To restore a complete system from in-

cremental backups, you must first restore the most recent full backup and then ap-

ply every incremental backup in sequence. If you performed a full backup on Sun-

day and it is now Friday, you would need to restore the Sunday full backup, then

Monday's incremental, then Tuesday's, Wednesday's, Thursday's, and finally Fri-

day's. If any single incremental backup in this chain is corrupted or missing, you

cannot complete the restoration beyond that point.

In Linux, rsync can perform incremental backups using the --link-dest op-

tion, which creates hard links to unchanged files from a previous backup:

rsync -avz --link-dest=/backup/2024-01-14 /home /etc /var /

backup/2024-01-15/

This command compares the current state of the source directories against the

previous backup at /backup/2024-01-14. Files that have not changed are repre-

22

sented as hard links rather than new copies, consuming virtually no additional disk

space. Files that have changed are copied in full. The result is a backup directory

that appears to contain a complete copy of the data but actually uses minimal ad-

ditional storage.

Borg Backup takes this concept even further with its built-in deduplication en-

gine, which we will explore later in this chapter.

The following table summarizes the key characteristics of incremental backups

compared to full backups:

Characteristic Full Backup Incremental Backup

Data Captured All files in scope Only files changed since last
backup

Storage Required High (complete copy each
time)

Low (only changes stored)

Backup Speed Slow (all files processed) Fast (only changed files pro-
cessed)

Restore Speed Fast (single backup needed) Slower (full plus all incremen-
tals needed)

Restore Complexity Simple Complex (chain dependency)

Risk of Data Loss Low (self-contained) Higher (chain must be intact)

Differential Backups: A Middle Ground
Differential backups occupy the space between full and incremental backups. A

differential backup captures all files that have changed since the last full backup,

regardless of any differential backups that may have occurred in between.

Consider the same 500-gigabyte server. On Sunday, you perform a full backup.

On Monday, 5 gigabytes of data change, so Monday's differential backup is 5 giga-

23

bytes. On Tuesday, an additional 3 gigabytes change (for a total of 8 gigabytes

changed since Sunday), so Tuesday's differential backup is 8 gigabytes. By Friday,

the differential backup might be 25 gigabytes because it captures all changes ac-

cumulated since Sunday.

The advantage of differential backups becomes clear during restoration. To

restore the system, you need only two backup sets: the most recent full backup

and the most recent differential backup. This is significantly simpler and faster than

the incremental approach, which requires the full backup plus every incremental in

sequence.

The disadvantage is that differential backups grow larger each day as more

changes accumulate. They consume more storage than incremental backups but

less than performing full backups every day.

In Linux, implementing differential backups can be accomplished using find

combined with tar:

find /home /etc /var -newer /backup/full-backup-timestamp-file

-print0 | \

 tar -czpf /backup/diff-backup-$(date +%Y%m%d).tar.gz --null

-T -

This command uses find to locate all files newer than a reference timestamp file

(created at the time of the last full backup) and pipes that file list to tar for ar-

chiving. The -print0 and --null flags handle filenames containing spaces or

special characters safely, which is a common concern on Linux systems where file-

names can contain virtually any character.

Another approach uses rsync with a carefully managed reference point:

rsync -avz --compare-dest=/backup/last-full/ /home /etc /var /

backup/diff-$(date +%Y%m%d)/

The --compare-dest option tells rsync to compare source files against the

specified directory and only transfer files that differ. Unlike --link-dest, it does

24

not create hard links for unchanged files, so the resulting backup directory contains

only the changed files.

Note: The choice between incremental and differential backups often de-

pends on your recovery time objectives. If fast restoration is critical and you can af-

ford slightly more storage, differential backups are often preferred. If storage is at a

premium and you can tolerate longer restoration times, incremental backups are

the better choice.

Deduplication: Eliminating Redundan-
cy at the Block Level
Deduplication is a storage optimization technique that identifies and eliminates

duplicate copies of data. Rather than storing the same data multiple times, a dedu-

plication system stores one copy and uses references (similar in concept to hard

links or pointers) wherever that data appears again.

There are two primary levels of deduplication: file-level and block-level. File-

level deduplication identifies identical files and stores only one copy. Block-level

deduplication goes further by breaking files into smaller chunks (blocks) and iden-

tifying duplicate blocks across all files. This means that even if two files are not

identical, any shared portions between them are stored only once.

Borg Backup implements content-defined chunking, a sophisticated form of

block-level deduplication. When Borg processes a file, it divides the file into vari-

able-length chunks based on the content itself rather than fixed-size blocks. This

approach is resilient to insertions and deletions within files because shifting con-

tent does not cause all subsequent chunk boundaries to change, as would happen

with fixed-size chunking.

25

Here is an example of creating a Borg repository and performing an initial

backup:

borg init --encryption=repokey /backup/borg-repo

borg create /backup/borg-repo::full-{now:%Y-%m-%d} /home /etc /

var

The first command initializes a new Borg repository with encryption. The second

command creates an archive within that repository. When subsequent backups are

created:

borg create /backup/borg-repo::daily-{now:%Y-%m-%d} /home /etc /

var

Borg automatically deduplicates the data. If 95 percent of the data is identical to

the previous backup, only the 5 percent that changed is actually stored. The ar-

chive appears to contain a complete copy of all the data, but the actual storage

consumed is minimal.

You can verify the deduplication efficiency using:

borg info /backup/borg-repo

This command displays statistics including the original size of all archives, the

deduplicated size, and the compression ratio. It is common to see deduplication

ratios of 10:1 or higher in environments where backups are performed daily and

data change rates are modest.

The following table compares deduplication approaches:

Deduplication
Type

Granularity Storage Sav-
ings

Processing
Overhead

Example Tools

No Deduplica-
tion

None None Minimal tar, cp

